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ABSTRACT

The aim of this paper is to give explicit proof of the equivalence of categories 2-groupoids and that
of crossed modules, and to explore the relations of coadmissible 2-homotopy and coadmissible
homotopy, respectively for 2-groupoids and crossed modules.

1. INTRODUCTION

Higher dimensional category have been considered by various author
[4,5,9,11,14]. The category of 2-category contains a category of 2-groupoids
[11,14], namely, the 2-category in which all arrows are invertible. This category is
equivalent to at least three others categories, of which two are those of crossed
modules over groupoids, and of double groupoid with -connection {7,15]. Crossed
module are more obviously related to classsical toels, namely, groupoids, modules
over groupoids, second relative homotopy group and chain complexes [5]. Also the
category of crossed module is equivalent to category of G-groupoids (i.c., group
object in the category of groupoids) [8,13] and to others mentioned as above.

The structure of the work is as follow: 2-Groupoid and crossed module and
their examples are given in Section 1. In Section 2, crossed module associated with a
2-groupoid and 2-groupoid associated with crossed module are explained. In the
final section, the relations between the coadmissible 2-homotopies and the
coadmissible homotopies are established.

2. Groupoids and Crossed Modules

The material in this section is pretty standard We choose to use a classical
generalization of the notion of a so-called 2-category originally due to Ehresmann
[10} and sce also Kelly and Street [14]. The 2-categories with invertible arrows
(both arrows of dimension 1 and arrows of dimension 2) are so called 2-groupoids.
In detail we give the following definition.
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Definition 1.1. A 2-groupoid H={H,, H,, Hy) is a set H, together with two
compatible groupoid structures

Ho=(H, ay, By, +,) Hi=H, o, By, +)
each with H; as its set of morphisms. The objects of the groupoid structure H, H;
are regarded as members of H, coinciding with the identity morphisms of Hy, H;.
The compatibility condition are

I o= 1moo B1, Po=Boxi=Pofis

(D). a1 (mien) = o (m)y+oo (n) and B (m+en) = B 1(m)+ B 1(n),
whenever m,ne H and m+on is defined.

(11I). (Interchange Law)
(mton)+ (k+ol) = (mr+k)+o (nh 1)
whenever m, n, k, 1€ H and both sides are defined.

A 2-groupoid H has objects or O-cells x etc., arrows or 1-cells axx— vy etc.,
and the 2-cells which are often pictured paralel two arrows.

Given a 2-groupoid H, we shall write U(H) for its underlying ordinary
groupoid (obtained by leaving out the 2-cells). We can give following examples:

(1). Any ordinary groupoid G can be viewed as a 2-groupoid, with only identity 2-
cells.

(if) Let X be a topological space, let Y < X be any subspace and let SC Y be a set
of base points. The fundamental groupoid =, (Y, S) on the set S is the underlying
groupoid of a 2-groupoid W = W(X, Y, S): the 2-cells in W are homotopy classcs
of maps from the square Ix 1 into X, which are constant along the vertical edges
with value in §, and the horizontal edges into Y. The domain and codomain of such
a deformation are given by restriction to Ix 0 and Ix 1 respectively. Thus for arrows
[a] and {b] from xeStoyeSin =, (Y, S), a 2-cell [m | = ([a], [b]) is represented by
a mapping m : Ix [— X. Using the homotopy extension property is possible to
verify that this gives a well-defined 2-groupoid W, we call it the Whitchead 2-
groupoid of (X, Y, 8). The related construction of a homotopy double groupoid with
connection is treated in full by Brown-Higgins [2].

Definition 1.2. For two 2-groupoids H and K, a homomorphism ¢ : H—>K is a

function sending the objects, arrows and cells of H to those of K, such that all the
structure is preserved.
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In particular, the restriction of ¢ to objects and arrows is an ordinary groupoid
homomorphism U(H) — U(K) of underlying groupoids; and for any two objects x
andy of H, the restriction of ¢ to arrows x—y and. 2-cells between them yiclds
an ordinary functor H(x, y) — K(¢ x, ¢y). The 2-groupoids and homomorphisms

form a category, written 2-Grpds.

We recall the definition -of crossed modules over -groupoids. Crossed module
were introduced by JH.C. Whitehead over the groups [16,17]. For the groupoid
case, basic references are Brown-Higgins and I.Igen.

Definition 1.3, Let G, C be groupoids over the same object set and let C be totally
intransitive. Then an action of G on C is given by a partially defined function
CxG—C,

* written (¢, a)+> ¢, which satisfies

1. ¢°is defined if and only if f(c) =ou@), and then f(c*)=f(a), where o, f arc
respectively the source and target maps of the groupoid G.
2. (¢, +c,)" =¢ +cT,

3. ¢ =(c!)" and cf* =¢, forallc, c; € C(x, x), ae G(x, ¥) , be G, 2).

Definition 1.4.A crossed module of groupoids consists of a pair of groupoids C
and G over a common object set such that C is totally intransitive, together with an
action of G en C, together with a functor 8:C — G which is the identity on the
-object sct.and satisfics

1. 38(c*)=-a+dc+a

2. ™ =—c +c+e
forc, ¢ € C(x, x), ae Gx, y).

A crossed module will be denotedby C=(C, G, §). Acrossed modaule of groups
1s acrossed module of groupoids as above in which €, G are groups.

The followings are standard examples of crossed modules:

(1. Let H be a normal subgroup of a group G with i : H— G the inclusion.
The -action of G -on the right of H by conjugation makes (H, G, i) into a crossed
module.

(i1). Suppose G is a group and M is a right G-module; let 0: M— G be the
constant map sending M to the identity element of G. Then (M, G, 0) is a crossed
module.

(ii1). Suppose given a morphism

n:M—->N
of left G-modules and form the semi-direct product Gx N.
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This is a group which acts on M via the projection from Gx N to G. We define a
morphism
3. M—>GxN

by 3 (m) = (1, n (m)) where 1 denotes the identity in G. Then (M, GxN, 3 )isa
crossed module.

Also we can define a category CrsMod of crossed modules of groupoids. Let
C=(C, G, 38), C=(C', G, 8) be crossed modules. A functor f=(f}, f;) . C—> C’is
called a homomorphism of crossed modules, if the maps f;:G— G' and £,:C > C'

hold 3f, =1, 5, fi(c)2™ =f,(c*).

2.The crossed module associated with a 2-groupoid
Let H be a 2-groupoid in the sense of Section 1. Then it has a 2-groupoid structure
H = (H,, H;, Hy) satisfying the compatibility conditions (T)-(III).

We shall show that any 2-groupoid H contains a crossed module C = A H, of
the kind described in Section 2. We state this as a proposition:

Proposition 2.1. Let H = (H,, H;, Hy) be a 2-groupoid. Then H induce a crossed
module C=(C, G, 8)=1H.
Proof. Given a 2-groupoid H , we define C= L H by X=H,, G=H; and
Cx={neH:| Bin=13
It follows from (I) that if ne C(x) a,n =, B; n=x. Thus we have the alternative
characterization:
Cx)={neH o,n=Pon=x.}
Let C be the family {C(x)},.,, and for ne C(x), define 3 n = o 1(n). Then dne G
since
o, Binmoa,n=x
This defines 3 :C - G, 8 (n)= o (n) for ne C and we define
o, B G>X by a=oag B=0q
Clearly G is a groupoid over X with respect to the composition +;. Also for each
xe X and C(x) is a group with respect to each of the compositions +; for i=0,1, with
zero element x. If m,ne C(x) then, we find that
n+om=n+t m=mtyn
Let ne C(x) and let ae G(x, y). We define
n"=-a+yn+ya
then
Bpin*=-Bia+Bin+oPia
=-a+on+ea=y
and oy ¢ = o a=x. Thus, in either case, n* € C(y) and we obtain an action of G
on C. This action is preserved by
d(n")=-o1atyo; Nty oy a=-at+yd ntga.
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Moreover, if me C(x), ue Hand a ¢u = X, then
utomtou=m™.

From (I), we see that if m, ne C(x), then -m +ony+om= n>.
This completes the verification that C = (C, G, &) is a crossed module, which we
denote by A H. We observe that this crossed module is entirely contained in H, and
all its compositions are induced by +o, while its source and target maps are induced
by various «;, B;. The groups C(x) and C(y) are disjoint if x=y.

Now our aim is to show that H can be recovered from the crossed module
C=(C, G, X)= H contained in it. We state thisasa proposition:

Proposition 2.2. Let C = ) H be a crossed module over groupoids. Then C induces
a 2-gropoid K =(K,, K4, Ko).
Proof. Let C=(C, G, ) be a crossed module over a groupoid. Let K be the set
GxC={(a,c)| acqG, ceC(Ba)}
We define  aofa, ¢) = a(@) and Poa, ¢) = P(a). So let Ky = oK = B oK.
Suppose now that we are given m=(a, ¢) , n=(b, ¢') such that § om = o ¢ n, that is, p
B (a) = o (b). We define
m+on = (a, ©)+o(b, d) = (atb, ¢>+d),
which is an element of K.
Similarly, we define o (3, ¢)=a+8cand B.(a c)=a
Let B1(m)= o, (m). Then we define
mtn= (3,¢)+ (b, ¢)=(a, ctc),
again an element of K, hereb=a+3 c.
Also we have to show that
oy (m+en)= (o (m)+o oy (M)
Brm+om)= B, m)+ B @)
One can easily prove this for o ;. For $,, letm =(a, ¢), n= (b, ¢') , mton € GxC,
then

B1(m+on)=Ph ((a,c)+ (b, c)
= B (atb, )
= atbtd (& +c¢")
=atb+8 (¢} 3(c)
=a+b-b+8 (¢ )+b+3 (¢)
=a+d (¢ )+b+d (")
=Bi@c)+o 1.

So a, and §, are morphisms of groupoids.
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In each case one can easily see that the composition +,, + define groupoid
structures on K with Ko, K, as their set of identities and oo, Bo, &1, B1 as their

source and target maps. The interchange law as follows :

((a, ©) +1@@1, c))rol(b, Dby, di)) = (a, ctc)to(b, dtdi)
= (atb, (c+c))+d+d))
and
(@, Srtod, DY+i((@, €1) +olbr, dr)) =(atb, C+d)+(a+by. ™ +dy)
=(a+b, *+d+c” +d)).
These are equal if and only if
¢ +d=d+c]
ie, cl=-d+ c)+d=cM™ Onthe other hand, for (b, d)+(b;, d;), we must have
b+ 8d=b,.
We can say that the interchange law is exactly equivalent to the 2nd rule for crossed

modules.
Now we present the main theorem:

Theorem 2.3. The functors

A 2-Gipd — CrsMod
and

0 : CrsMod — 2-Grpd
defined above are inverse equivalences.
Proof. Given a 2-groupoid H, the 2-groupoid K = © % H is naturally isomorphic to
H by the

(a,c) > L+

where ae G, ce (L H).

The bijection determines the structure on K = 0 A H. This leads us to define 2-
groupoid on 0 (C), we shall recalt that «, (a,¢)=a+ dc, B1(a, ¢) =a. The map
6 A preserves +, and +;;
8 % ((a c) +o (b, d) )= 6 A(atb, c™+d)

=0 A (atb, -ly+ct+i+d)

= lan-lytoctolytod

=latocto Iy +od

=0 A (@,cC) 400 A (b d)
On the other hand, if C is a crossed module, H =6 (C) and D =4 6 (C), then C
consists of element m = (a, ¢) and so )

D={meC | g (m)=13

consists of elements m = (1, c), where ce C(x). It is easy to see that the
map C — D defined by
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e (1,0, ceC®
gives a natural isomorphism C-> A 6 C. The morphism A 6 preserves the
structures. Indeed, X 6 (ctod) = (1, c+d) = (1], ¢ +d)= (I, c)+(1,, d)=
AB()+o A O (and L B(ct d)=(1,, ctd)= L 0 (c)H A 8(d).

3. Homotopies of crossed modules and 2-groupoids

The notion of homotopy for morphisms of crossed modules over groups has been
well known for many years [16],[17). This was put in the general context of a
monodial closed structure on the category of crossed complexes in [5]. The
homotopy of crossed module over groupoid has been explored by the author [12].

In this section, we explain the relation between homotopies for crossed
modules over groupoids and homotopies for 2-groupoids. The formulae given
below are playing important role in our study.

Definition 3.1, Let C = (C, G, 8) be a crossed module over groupoids with base
space X. A coadmissible homotopy s is a pair of maps s, : X—> G, s1:G—>C
which satisfy the following
a) Psyx)=x, xe X and f(s,a) =PB(), aeG,
b si@a+b)=s(a)° +s(b), 3,beG.
¢) = (fy, fi, f2), defined as follows,
fo(x) = o so(x),
fi(@) = so(a a) +a +5 s,(a) so( B ),
f(0)=(cts, 8 ¢ )P
is an automorphism f= (fy, f;, £,) of C.

The notion of homotopy for 2-groupoids is essentially a special case of 2-
natural transformation due to Gray in [11].

Definition 3.2. [6] Let H = (H,, H;, Hy) be a 2-groupoid and let f be an
automorphism of H. A pair (o, o) where 6 oHy—H; and o :H, » H, is
called a coadmissible 2-homotopy of f if

@). x oo (X)=1(x) and B G o(x) =x,
(). facHi(x, y),
o G 1(3) = -c (X))t o oY)
poi@=aand Booi(a)=P (a)

(). 01 (atb) = o (a)tyc 1(b) whenever a+b is defined in H;.
(d). for each me H with o ;(m)=a, p(m)=b, we have
m+ 6 1(b) = 1(a) +; f{m).
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Proposition 3.3. Let H = (H,, H;, Hy) be a 2-groupoid and let f, g be
automorphisms of H and, let ¢ : g=1, t : f=1be homotopies. Then we can define
a coadmissible  2-homotopy
o* tgf=ly
by
(o * 1)(x)= 1o+ o o(x)
and
(o * (@)= o fayh ©i(f@)
foreach xe X ae G.
Proof. We verify the condition a), b). ¢) of Definition 3.2 for o * 1,i€,
aBlo*1 =X
oo * 1 ) (x) =gf(x), xe X.
b)Ifae G(x,y),
a (0 * © W@ -(c * 1)(X) +gf@+(c * 1)(y). B(o*1h@)=a,
Bo(oc * th(@= B (@),
and (o * 1), isalinear map.i.c.,
(6 * th(ath)y=(c * 1)1(a) to(o * )
¢) For any m =(a, b)e H,
m+ (6 * th(b)= (o * th(ayt gi(m).
In fact,
@ (o * )= a (o of () +o To X)
= a (co(fx)
a (o) f(x)
gf(x)

il

It

and also similarly we obtain
B(o * 1) (X)=p(0o ({{(x)+ 10(x)
=B 10(x)
=X.
For linearity, suppose a, be H; and a+b is defined. Then
(o * 1) (ath) =o, (atb) +, 1 f(atb) by definition*
= (5 1(a) o o (b)) T (f(@)+o T (b)), by lincarity
= (o 1(a)y+ 11@)) +o( o 1(b) +; T f(b)), Interchange Law
=(o* 11 Y@ to(oc1* 1) (D).
Propesition 3.4. Let H = (H,, H), Ho) be a 2-groupoid. Then M(H), the set of
coadmissible 2-homotopies of H, is a group with respect to the multiplication *
given in Proposition 3.3, with identity constant homotopy ¢ : I=1 and inversion
o f'=I for a coadmissible 2-homotopy o f= I
Proof. It has been proved that in previous Proposition 3.3 that if o,t are two
coadmissible 2-homotopics of H, then o * t is a coadmissible 2-homotopy of H.
Also one can easily show that the constant 2-homotopy ¢ :1=1 is a constant map. In
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order to define an inverse element let o : f=1 be a coadmissible 2-homotopy. An
inverse coadmissible 2-homotopy is given by o : f! =1I; where o,' = —o,(f'(x))

and o;'(a) = —o,(f (a)). One can easily show that ¢ * 6 '=c and ¢ * 5 =c, as
follows:
(o7 * oh(a)=c @ +o (f'(a)
=-c i@yt o (f'(a)
=¢(a).
and

It

o1 (a) +o;' (f(a))

=61 (a) -0 (I (f)
c1(@) -0 (a)
=c(a).

(o*o7' ()

Theorem 3.5. Let A : 2-Grpd— CrsMod be the natural transformation as defined in
Theorem 2.1 andlet o: f=1: H — H be a coadmissible 2-homotopy of H. Then
Moy M) = MDis a coadmissible homotopy for corresponding crossed module
C=(GxC, G, 8 ). If further, then A(c*1) = A(c)*A(T).
Proof. Let m = (a, c)eH, and a, ce Hi(x, y). By definition of %, A(ac)=
(y,a(m)). If o, @ = (a -csH@r o, (¥), then clearly A o (@)=(ly, -a-c,
+(a)+ oo (¥). In fact, by definition & in crossed module C, o (L o, (@) = &
(» o4 @)). If we write L ¢ =s;, then we obtain
351 (@)=-a-c(x)+f(a) +o, ().
Moreover, if a, be H; and a+b is well-defined, then
L o1 @tb) =k 6 @"+% 51 (),
i.e., L o isa derivation map.
A o (atb) = -(a+b)- ¢ ¢ X)+Hatb)+ ¢4 @)....(D)
and A o (@)’ =a-0,; @) =(a, o+t 6, (), » 6,b) =b-c )@+,
(@). Then 2. 61(a)° +4 & ((B)=b-a- oH(a)+ G o(y)tb-b- & o(y) @)+ o o(z)=(a+b) -
o o(x)H@H(b)+ 6 (2)... dD).
Since (I) and (II), A &, is a derivation map. Hence
r(o)ya@®z= ad)
Moreover, if t:g=1,then A (o *17)= L(c A (z ). Infact, A (o *t)(a)= A c.(a)
+o(h 11 (@) . & o 1(@)=-a0 o(x)- 1 f(X) + gf@)+ 1o f(Y)+ oY), A o (@)=
-a -6 o(x)H@+ oo (y),and A 1t fa)= f(a) -7, fx)+gf@)+ Tof(y). Thus A o,
@+ A tf@=% c,(@-0,F+ L 1)yt oo (¥)=A o (ay (A 1 fa))®0® .
ie, A (o * 1)= L (c)* A (7).
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