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ABSTRACT
The aim of this paper is to give explicit proof of the equivalaıce of categories 2-groupoids and that 

of crossed modules, and to explore the relations of coadmissible 2-homolopy and coadmissible 
homotopy, respectively for 2-groupoids and crossed modules.

1. INTRODUCTION

Higher dimensional category have been considered by various author 
[4,5,9,11,14], The category of 2-categoty contains a category of 2-groupoids 
[11,14], namely, the 2-categoty in vvhich ali arrows are invertible. This category is 
equivalent to at least three others categories, of which two are those of crossed 
modules över groupoids, and of double groupoid with connection [7,15]. Crossed 
modüle are more öbviously related to classsical tools, namely; groupoids, modules 
över ^oupoids, second relative homotopy group and chain complexes [5]. Also the 
category of crossed modüle is eguivalent to category of G-groupoids (i.e., group 
object in the category of groupoids) [8,13] and to others mentioned as above.

The structure of the work is as follow; 2-Groupoid and crossed modüle and 
their examples are given in Section 1. In Section 2, crossed modüle associated witlı a 
2-groupoid and 2-groupoid associated with crossed modüle are explained. In the 
final section, the relations between the coadmissible 2-homotopies and tire 
coadmissible homotopies are established

2. Groupoids and Crossed Modules
The material in this section is pretty Standard. We choose to use a classical 
geneıalization of the notion of a so-ealled 2-category originally dne to Elıresmann 
[10] and see also Kelly and Street [14], The 2-categories with invertible arrows 
(both arrows of dimension 1 and arrows of dimension 2) are so called 2-groupoids. 
In detail we give the following defınition.
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Definition 1.1. A 2-groupoid H={H2, Hı, Ho) is a set H2 togetlıer with two 
compatible groupoid structures

Ho = (H, ao,Po, +o) H, = (H, a„p„+.)
each with H2 as its set of morphisms. The objects of the groupoıd structure Ho, Hj 
are regarded as meınbers of H, coinciding with the identity morphisms of Ho, H]. 
The compatibility condition are

(I) . ao=aoaı=ao Pı , Po=Poaı=PoPı

(II) . a ı(m+on) = a ı(m)+oa ](n) and P ı(m+on) = p ı(m)+oP ı(n), 
whenever nı,ne H and m+cjı is defined.

(III) . (Interchange Law)
(ra+on)+ı(k+ol) = (m+,k)+o(n+ıl) 

whenever m, n, k, 1 e H and both sides are defined.

A 2-groupoid H has objects or 0-cells x ete., arrows or 1-cells a;x -> y ete., 
and the 2-cells which are often pictured paralel two arrovvs.

Given a 2-groupoid H, we slıall write U(H) for its ımderlying ordinary 
groupoid (obtainedby leaving out the 2-cells). We can give following examples:

(i) . Any ordinary groupoid G can be viewed as a 2-groupoid, with only identity 2- 
cells.

(ii) Let X be a topological space, let Y c X be any subspace and let S c Y be a set 
of base points. The fundamenlal groupoid tIi (Y, S) on the set S is the underiying 
groupoid of a 2-groupoid W = W(X, Y, S): the 2-ceIIs in W are homotopy classes 
of ınaps from the square Ix I into X, which are constant along the vertical edges 
with value in S, and the horizontal edges into Y. The domain and codoraain of such 
a deformation are given by restriction to I x 0 and 1x1 respectively. Thus for arrows 
[a] and [b] from xe S to y e S in n, (Y, S), a 2-cell [m ] = ([a], [bj) is represented by 
a mapping m ; Ix I->X. Using the homotopy extension property is possible to 
verily that this gives a well-defined 2-groupoid W-, we cali it the Whitehead 2- 
groupoid of (X, Y, S). The related construction of a homotopy double groupoid with 
coımection is treated in fiili by Brown-Higgins [2].

Definition 1.2. For two 2-groupoids H and K, a homomorphism (|) : H -> K is a 

fimction sending tlıe objects, arrows and cells of H to those of K, such that ali the 
structure is prescrved.
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In particular, the restriction of 4» to objects and arrovvs is an ordinaıy groupoid 

homomorphism U(H) ->U(K) of underiying groupoids; and for any two objects x 
and y of H, the restriction of (j) to arrows x -> y and 2-cells between them yields 

an ordinary functor H(x, y) -> K( ıj) x, 4> y)- The 2-groupoids and homomorphisms 
form a category, written 2-Grpds.

We recall tlıe definition of crossed medules över groupoids. Crossed modüle 
were introduced by J.H.C. Whitehead över the groups [16,17], For the groupoid 
case, basic references are Brown-Hîggins and İ.İçen.

DefiBition 1.3. Let G, C be ^oupoids över the same ofc^eet set and let C be totally 
intransitive. Then an aetion of G on C is given by u partially definedfcnction

CxG-^C,

written (c. a) c“ , which satisfıes

l. is definedif-and only if P(c) = a(a), aadlhen jXc^)—1Xa) • whö’e a, p are 
respectively the source and target maps of the groupoid G.

(c,+c2)“=c“+c;1. .a
'2 ’

3. a+b = (c®)*' and c,®’ = c, for ali Cı, C2 e C(x, x), a e G(x, y), be G(y, z).

Defhtttion 1.4. A crossed modüle of groupoids consists of a pair of groupoids C 
and G över a connnon object set such tliat C is totally intransitive, together witlt an 
aetion of G on C, together with a functor 5: C -> G which is the identity on the 
object sctandsatisfıes

1. 5(0“) = -a + 5c + a

1. .Scı _= -C, + C + C|c
for c, Cı e C(x, x), ae G(x, y),
A crossed modüle will be denoted by C = (C, G, 5 ). A crossed modüle of groups 
is a crossed modüle of groupoids as above in which C, Gare ş-oups.

The followings are Standard examples of crossed modules:
(i>. Let H be a normal subgroup of a group G with i : H -> G the inciusion. 

The aetion of <1 on the right of H by conjugation makes (H, G, t) into a crossed 
modüle.

(ii). Suppose G is a group and M is a right G-module; let 0; G be the 
constant map sending M to the identity element of G. Then (M, G, 0) is a crossed 
modüle.

(İÜ). Suppose given a morphism
p; M->N

of left G-modules and form the semi-direet produet G k N.
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This is a group which acts on M via the projection from GxN to G. We deGne a 
morplıism

5;M-»Gt<N 
by S (m) = (1, rı (m)) whcre 1 denotes the identity in G. Then (M, Gk N, 8 ) is a 

crossed modüle.
Also we can define a category CrsMod of crossed modules of groupoids. Let 

C=(C, G, 8 ), C-(C', G', S) be crossed modules. A fimctor f=(fı, f2) :C-> C' is 
called a homomorplusm of crossed modules, if the nıaps fı;G-> G' and f2:C -> C'

hold S fi = f- 5 . fı(c),f2(a)

2.The crossed modüle associated with a 2-groupoid
Let H be a 2-groupoid in the sense of Section 1. Then it has a 2-groupoid structure 
H = (H2, Hı, Ho) satisfying the compatibility conditions (I)-(III).

We shall shovv that any 2-groupoid H contains a crossed modüle C = A, H, of 
the kind described in Section 2. We State this as a proposition;

Proposition 2.1. Let H = (H2, Hı, Ho) be a 2-groupoid. Then H induce a crossed 
modüle C= (C, G, 6 )= X H.
Proof. Given a 2-groupoid H, we define C = X H by X = Ho, G = Hı and

C(x)= { neH21 Pı n = l^}

It follovvsfrom (I) that ifneC(x) n = Pın = x. Thus we have tlıe alternative 
characterization;

C(x) = {neH| «o = P c>n= x.}
Let C be tire faınily {C(x) 
since

and for ne C(x), define 5 n = a ,(n). Then 8 ne G

a„ p ] 11= «g n = X
This defines 5 :C-> G, 6 (n)= a ı(n) for ne C and we define 

a, P :G->X by a = ao, P = Po
Clearly G is a groupoid över X with respect to the composition +1. Also for each 
X e X and C(x) is a group with respect to each of the compositions +i for i=0,l, with 
zero element x. If nı,ne C(x) then, we find that

n+,,m = n+ı m = m+o n
Let ne C(x) and let a e Gfx, y). We define

n® = -a +o n +o a
then

P ın* = -P 1 a+o P 1 n+o P 1 a
= -a +0 n +0 a = y

and aoC = otoa=x. Thus , in either case, 11“ e C(y) and we obtain an action of G 
on C. This action is preserved by

5 (n“) = -a 1 a+oot 1 n+o a 1 a = -a+o5 n+oa.
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Moreover, if m e C(x), u e H and a oU = X, then

-u +o m +o u = m'»lU
SmFrom (I), we see that if m, ne C(x), then -m +o Uo +o m = n

This completes the verification that C = (C, G, 8) is a crossed modüle, which we 
denote by X. H. We observe that this crossed modüle is entirely contained in H, and 
ali its compositions are induced by +o, vvhile its source and target maps are induced 
by various a(3;. The groups C(x) and C(y) are disjoint if x=y.

Now our aim is to show that H can be recovered from the crossed modüle 
C=(C, G, X)= X H contained in it. We State this as a proposition:

Proposition 2.2. Let C = X H be a crossed modüle över groupoids. Then C induces 
a 2-gropoid K =(K2, Kj, Ko).
Proof. Let C = (C, G, 8) be a crossed modüle över a groupoid. Let K be the set

We define

G^;C = {(a, c) I aeG, c6C(pa)}
a o(a, c) = a (a) and P o(a, c) = P (a). So let K© = a oK = p oK.

Suppose now that we are given m=(a, c), n=(b, c') such that p om = a o n, that is, P 

P (a) = a (b). We define
m+ou = (a, c)+o(b, d) = (a+b, c’’+d), 

whiclkis anelement of K.
Similarly, we define a ı(a, c) = a+8 c and P ı(a, c) = a.

Let p ı(m) = a ı (n). Then we define
m+ıu = (a, c) +1 (b, c') = (a, c+c'),

again an element of K, here b = a+8 c.
Also we have to show that

a 1 (m +o n) = (a 1 (m) +o a ı (n)) 
P1 (m +o n) = p 1 (m) +o P1 (n)).

One can easüy prove this for a ı. For p j, let m =(a, c), n= (b, c'), m+o ne Gıx C, 
then

P1 (m +o n) = p 1 ((a, c) +o (b, c'))
= pıCa+frc*^')

= a+b+8 (c‘’ + c')
= a+b+8 (c’’)+8(c')
= a+b-b+ 8 (c )+b+ 8 (c')
= a+8 (c )+b+8 (c')
= P1 (a, c) +o P1 (b, c').

So a, and f31 are morphisms of groupoids.
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In each case one can easily see that the composition +o, +ı define groupoid 
structures on K with Ko, Ki as their set of identities and a o, P o, ot ı, p ı as their 
soıuce and target maps. The interchange law as follows : 

((a, c) +ı(aı, cı))+o((b, d)+ı(bı, dı)) = (a, c+cı)+o(b, d+dı) 
= (a+b, (c+cı)'’+d+dı)

and
((a, c)+o(b, d))+ı((aı, Cı) +o(bı, dO) =(a+b, c‘’+d)+ı(aı+bı,c‘' +dı) 

=(a+b, c‘’+d+c'^ +dı).
Thesc are cqual if and only if

i.e., cj^ = -d + cj' + d = cj*®^

cj* +d=d + cî^

. On the other hand, for (b. d) +ı(bı, dı), we must have 

b+ 6d = bı.
We can say that the interchange law is exactly equivalent to the 2nd rule for crossed 
modules.

Now we present the main theorem:

Theorem 2.3. The functors

and
A. ;2-Gıpd CrsMod

0 : CrsMod 2-Grpd 
defined above are inverse equivalences.
Proof. Given a 2-groupoid H, the 2-groupoid K = 9 X H is naturally isomorphic to 
Hby the

(a, c) -> la+oc
where ae G , ce

The bijection determines the structure on K = 0 X H. This leads us to define 2- 
groupoid on 6 (CJ, we shall recall that aj (a, c) = a + 5 c, P ı(a, c) = a. The map 
6 Â, preserves +o and +ı;

0 1 ((a, c) +o (b, d) )= 0 X (a+b, c^+d)

— 9 A, (a+b, -Ib+c+lb+d)
= la+b-lb+oC+olb+od
= la+o C+o Ib +o d
= 0 k (a,c)+o e k (b,d)

On the other hand, if C is a crossed modüle, H =6 (C) and D = k 0 (C), tlıen C 
consists of element m = (a, c) and so

D = {me C 1 p ı(m)'= l^}

consists of elements m = (K, c), where c e C(x). It is easy to see that the 
mapC -> 2) defined by
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cı-+(lx, c), ceC(x)
gives a natura! isomorphism C-> A, 0 C. The morphism A. 0 preserves the
structures. Indeed, X 0 (c+od) = (L c+d) = (1 v H ... c'^ +d)= (l^, c)+(lx, d)=

0 (c) +0 Â 0 (d) and A. 0 (c+ı d) = (1^, c+d) = A. 0 (c)+ı A, 0 (d).

3. Homotopies of crossed modules and 2-groupoids

The notion of homotopy for morphisms of crossed modules över groups has been 
well known for many years [16],[17], This was put in the general context of a 
nionodial closed structure on the categoıy of crossed conıplexes in [5], The 
homotopy of crossed modüle över groupoid has been explored by the author [12],

In tlıis seetion, v/e explain tlıe relation between homotopies for crossed 
modules över groupoids and homotopies for 2-groupoids. The formulae given 
below are playing important role in our stucty.

Definition 3.1. Let C = (C, G, 6) be a crossed modüle över groupoids with base 
space X. A coadmissible homotopy s is a pair of maps So : X-> G, Sı;G-+ C 
which satisfy the folloıving

a) P(SoX) = X, XeX and P(Sıa) = P(a), aeG,
b) sı(a + b) = Sı( a)'’ + Sı(b), a, be G.
c) f= (fi), fi, f2), defined as follows,

fo(x) =a So(x),
fi (a) = So( a a) + a+5 Sı (a) -So( P a).

ı-soP(<;)f;(cV=(C * S; (S C i 
İS an automorphism f= (fo, fı, f2) of C.

The notion of homotopy for 2-groupoids is essentially a special case of 2- 
natural transforraation due to Gray in [11],

Definition 3.2. [6] Let H = (H2, Hı, Ho) be a 2-groupoid and let f be an
automorpliism of H. A. pair ( ct o, er 1) where cto:Ho~>Hi and CTi;Hi-> H2, is
called a coadmissible 2-homotopy of f if

(a), a CT o (x) = f(x) and p ct o(x) = x, 
(b). IfaeHı(x,y),

a cr ı(a) = -CT o(x)+f(a>E ct o(y) 
Paı(a) = aand Pocrı(a) =p(a).

(c ). CT 1 (a+b) = CT 1 (a)+o ct 1 (b) whenever a+b is defined in Hj. 
(d), for each m e H with a 1 (m)= a, p 1 (m)= b, we have

m +1 CT ı(b) =CT ı(a) +1 f(m).
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Proposition 3.3. Let H = (H2, H], Ho) be a 2-groupoid and let f, g be
autofflorphisms of H and, let ct : g s I, 
a coadmissible 2-homotopy

; fal be homotopies. Then we can define

CT * T:gfalH

T

by
* t)o(x)= T<3(f(x))+ CTo(x)

and
(cr * T)ı(a)= CTıfa)+ı rı(f(a))

for each x e X, a e G.
Proof. We verify the condition a), b), c) of Definition 3.2 for cı * t ,.i.e.,

a) p(a * T )o(x) = x,
a< er * T )o (x) = gf(x), xe X.

b) If ae G(x, y).
a (a 
Po(c

X )ı(a)=-(cr * x)o(x) + gf(a) + (cy *
* x)ı(a)= p (a).

and(cr * t)i İs a hnear map,i.e.,
(cr * x)ı(a+b) = (cr * x)ı(a)+o(cr * t)]

■c)o(y). P(cr * T)ı(a)-a^

c) For any m =(a, b) e H2,
m+ı (cr * T)ı(b)= (cr * T),(a)+, gf(m).

In fact,
a (cr *

and also similarly we obtain

T )o(x)= a (CT o(f (x)) +0 -t o (x)
= a (CTo(f(x))
= a (ao)f(x)
= gf(x)

P(<7 * x)o(x)^p(cro(f(x))+ xo(x) 
= P xo(x)
= X.

*

For linearity, suppose a, be Hı anda+b is defıned. Then
(cr * T )ı (a+b) = a 1 (a+b) +1 r f (a+b) by definition*

= (cr 1 (a) +0 C71 (b))+ı X (f(a)+o x f(b)), by linearity
= (cr ı(a)+ı xf(a)) +o(cr ı(b) +1 xf(b)), Interchange Law 
= (oı*tı )(a)+o(crı* xı ) (b).

Proposition 3.4. Let H = (H2, Hı, Ho) be a 2-groupoid. Then M(H), the set of 
coadmissible 2-homotopies of H, is a group with respect to the multiphcation *
given in Proposition 3.3, with identity constant homotopy c ; Ia I and inversion 
c> ■' : f’ a I for a coadmissible 2-homotopy cr :f a I.

Proof. It has been proved tliat in {»evious Proposition 3.3 that if cr,T are two 
coadmissible 2-homotopies of H, then cr * t is a coadmissible 2-homotopy of H. 
Also one can easily show that the constant 2-homotopy c :I a I is a constant map. In
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order to define an inverse element let ct : f s I be a coadmissible 2-homotopy. An 
inverse coadmissible 2-homotopy is given by c: f’ =1; where ctö’ = -ao(f"’(x)) 

■’=c and c"’ * ct=c, asand CTj’(a) = -CT,(f '(a)). One can easily show that er * o 

follows;
* er )ı(a) =er '’Ca) +cr (f’(a))

= -(rf'(a)+er(f’(a))

= c(a).
and

(CT*a,’)ı(a)= er, (a)+CTı’(f(a))
= cr 1 (a) -CT 1 (f\f(a))
= crı(a)-CTı (a)
= c(a).

Theorem 3.5. Let X ; 2-Grpd-> CrsMod be the natural transfonnation as defined in 
Theorem 2.1 and letCT:f=I:H^ H be a coadmissible 2-homotopy of H. Then 
X(ct) : X(f) = X(I) is a coadmissible homotopy for corresponding crossed modüle 
C=(G X C, G, 5 ). If further, then X(cy * t) = X(ct) * X(r).
Proof. Let m = (a, c)€H2 and a, C€Hı(x, y). By definition of X, X(a,c)=
(ly,a(m)). If CT) (a) = ( a, -ero+f(a)+ o (y), then clearly X eri (a)=(ly. -a-CTo
+f(a)+ er o (y)). In fact, by definition S in crossed modüle C, a ı(X er ı (a)) = 5 
(X er 1 (a)). If we write er i= Sı, then v/e obtain

S Sı (a) = -a - er o (x) + f(a) +er o (y).
Moreover, if a, be Hı and a+b is well-defined, then

X er 1 (a+b) = X er ı (a)’’+ X er ı (b),
i .e., X er 1 is a derivation map.

X er 1 (a+b) = -(a+b)- er o (x)+f(a+b)+ er o (z)....(I) 
and X er ı (a)*" =-a - er ı (a) = ( a, er o +f(a)+ er o (y)), X er ı(b) =-b-CT o(y)+f(a)+cr o 
(z). Then X er ı(a)'’ +X er ı(b)=-b-a-er o+f(a)+er o(y)+b-b-er o(y) +f(a)+CT o(z)=(a+b) - 

er o(x)+f(a)+f(b)+ er o (z)... (II).
Since (I) and (II), X er ı is a derivation map. Hence

Moreover, if t ; g s 1, then X ( ct
X(CT):X(f)s X(I) 

■ * T)= X (er ). İnfact, * T )ı(a)= X cr ı(a)

+o( X T, f(a) a ı(a)=-aCT o(x)- t o f(x) + gf(a)+ t o f(y)+ cr o(y), cr, (a) =

-a -CT o(x)+f(a)+ ci o (y), and t i f(a)= -f(a) - t o f(x)+gf(a)-l- t of(y). Thus A- c ı 

(a) + A- T ıf(a) = A, C71 (a)- ct i (y)+ X t f(a)+ er o (y) = X a ,(a)+ (X t f(a) .

i.e., 7. -:) = X (c)* A, (t).*
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