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ABSTRACT

Potential utilization of concentration and expansion functions in the detection of dependence of
two random variables is investigated. Also, a brief literature survey is explored. Pitfalls and drawbacks of
such applications are emphasized.

1. INTRODUCTION

The exposition presented in the remainder of this work shall frequently refer to
the immediate following definition and remark. The definition is based essentially
on Raoult [5] (c.f., also, the monograph of Hengartner and Theodorescu [2]).

Definition 1. For a bi-measure space (Q,3,4,9) (a measurable space (Q,3) with a
pair (u,9) of measures simultaneously defined on it), the measure $ is assumed to

have Lebesgue decomposition with respect to the measure x:9=9%+9°, such that
9% is absolutely continuous with respect to u (9% << u, in short) and $° is
singular with respect to u ($° Ly, in short). Furthermore, if Q° is a subset of Q, such
that Q¢ ={w e Q: u(w) =0}, the subspace (Q,U) of (Q,3) will be relevant for the

following discussions, where Q = Q- Q¢ with u(Q) = x(Q) and U is the o - algebra
of Q satisfying U = 3. A real-valued function f,(¢#) (resp., g,(r)) with domain
I=[0,u(Q)] and range [0,%(Q)] is called concentration (resp., expansion) of the
measure 9 with respect to the measure u on the subalgebra U, if, Vte I there
exist some 4, B € U, such that
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Su(0) = 8°(A) = sup{v: u(A) <t and H(A)=v for AU} (1.1)
(resp., g,(t) = 9“(B) =inf{s: u(B) =t and $(B) =s for Be U}. (1.2)
Remark 1.

(i) The above definition can also be extended to a family of bi-measure
spaces such as ((Q,3,4,9,), j € J) where J is an index set.

(ii) Existence of concentration function (the upper bound for (1.1)) is
provided in Raoult [5] in terms of Neymann-Pearson test procedure (c.f., also, [2]).
As a matter of fact, a typical example for application of concentration to a statistical
area is Neymann-Hypothesis testing procedure, where A is rejection region, p
represents the measure under null hypothesis and 9 (and hence 9“) denotes the
measure under alternative hypothesis.

(iii) If U= 3 or if the relevant algebra is clear from the context, the index U of
f, and g, can be ignored.

(iv) Note that $“ << ¢ implies both 9“(Q°) = u(Q°)=0 and $°(Q) =0, so that
Q) = (D) + & () = 9(0) + $°(0°).

v) If (Q,3,4,9) is a bi-probability space, i.e., if 9 and u are probability
measures  on (Q,3) then Q) =1 and 1) =puQ) =1 with
I=[0..()]=[0.9]=[0.]

(vi) Also, for the special case B=4°=Q-4 with plwed}=t and
y{meA"}:l—t in such a bi-probability space, we have HQ)=34)+H4°)
=fu®)+g,(1-1)=1

Raoult [5] discusses the concepts of concentration and expansion (étalement)
in connection with Lebesgue decompositions covering a general bi-measure space
on a unidimensional basis. The concentration in (1.1) is also noted [2] An alternate
better-known notion of concentration is due to Levy [4 who uses the concept for
sums of random variables. To discriminate it from the former, the latter type of
concentration is generally labelled as Lévy concentration functions. Raoult [5]
shows the relation between these two types of concentration — Further developments
concerning Lévy concentration functions can be found in [2] — The expansion
function in (1.2) is however less known and hence has apparently no statistical and
probabilistic applications.

Within a different setting and in a relatively recent attempt to obtain a general
formulation for the so-called Gini-type concentration indices, on the other hand,
Gifarelli and Regazzini [1] re-dwell upon concentration, and to this end, the authors
specify a function (c.f., Theorem 2.2 in [1]).

p(t) = 9% (A) = inf{H(4): AeU and p(A)>1}, (1.3)
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vt e L. The relevant measure space for (1.3) is again a bi-probability space such as
(Q,3,4,9) . Essentially, ¢(x) corresponds to an expansion function in the sense of
(1.2), and yet, it is called concentration function by the authors. In fact, except for
(1.3), the remaining results of Cifarelli and Regazzini [I] pertain to concentration
functions. It is thus possible to classify Cifarelli-Regazzini type of concentration
functions within the general category of concentration functions given in
Definitionl.

The presentation below is connected to the case where (Q,3J,x,.9) is a bi-
probability space. In the two-dimensional case involving families of distributions
like Fréchet class, we shall also use a family of spaces ((Q,3,4,9)).j€J).

Throughout the remainder of discussions, it is assumed that concentration and
expansion functions exist. Within this setup, we let, Vi e I,

@, =1-1)=9%A4) = inf{S(A“') c A e U and p(A°) > l—t}, (1.4)
denote an expansion function, and
v, () = 99(4) = sup{9(4) : A € U and pu(A) =1}, (1.5)

stand for the corresponding concentration function. If no confusion is expected to
arise, the index U of ¢, in (1.4) and w, in (1.5) is generally ignored for
convenience of notation.

The functions in (1.4) and (1.5) can further be stated in convenient forms: In
reality, the property $“ << u in the Lebesque decomposition 9= 9% +9° implies,
by Radon-Nikodym Theorem, existence of a nonnegative function ¢ e R, =[0,c)
such that d9=/-du. Thus, for A, defined as 4, ={w:/(w)<c,weQ}eU with
u(4)=t=0,teI, we have

p(0) = 9°(4) = [ Uw)du(w) = [tdH (0). (1.6)
4, 0
The last integral is based on the existence of a distribution function H, (¢) given by
H (1) = plo: L(w) < l,w € O},

Similarly, for 4 = {a) (W) >0 € Q} with u(AY)=1-t=0, we shall have

p(1-1) = (&) = [ l(w)du(w) = [(dH(1). (1.7)
Af ¢
Note that when both § and p are dominated by a common measure v with
d9=f-dv and du=g-dv, then d9="(-du=((-g)dv and d9=f-dv. Thence, we
have f=/-g, sothat
_d%(o) _ f(o)

= i@~ g@)

g2(w)>0
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the last quotient being so-called likelihood ratio. L=d9/duy with values
l(w)=d%(w)/du(w) will otherwise be referred as generalized likelihood ratio
below. Integrating out by parts, the last term of (1.6) becomes

w(t) = Cf(t — H (0))dl = jcsds, (1.8)
(c.f., also [1]), and, by substitl(iting (1.8) in ths relation p(1-1)+w(¢) =1 given in
Remark 1 above, the expansion in (1.7) on the other hand boils down to
@(l—t):I—T(t—HL(f))dz:l—jcsds:jl'csds. (1.9)
The quantity ¢, in (1.6)—(?.7) and (1.8)—(1.90) is th; so-called t-quantile for the

population of L
¢, =inf{f e R, : H, (£)>1} (1.10)
Vtel.

In a concluding remark, Cifarelli and Regazzini [1] point potentials of (1.3) for
application to such probabilistic issues as homogeneity, association, etc. Upon the
suggestion, Scarsini [6] attempts to extend the concept of concentration to the two-
dimensional case and investigate its potential uses for ordering Fréchet class of
bivariate distributions in terms of the degree of dependence they display. The
conclusion reached by the author appears however to be hardly optimistic. As will
be clear in the following pages, these nonpromissing results stem from the facts that
(i), without (1.2) and/or (1.4), (1.1) and/or (1.5) alone provides only a partial, and
often misleading, picture for dependence, especially in the presence of positive
quadrant dependence (c.f., Lehmann [3],, for the concept); (ii) as is also posed by
Scarsini [6], the question that whether the concept of concentration and expansion
does really coincide with the concept of dependence of random variables needs
further investigations. These issues will be taken up next in a sequence of sections
below. First, however, we summarize the known properties of these functions
(Lemma 1 and Corollary to this lemma). We also prove some properties of
expansion function (Lemma 2), which, in fact, do not seem to exist in literature. In
order to be able to detect bivariate dependence in terms of concentration and
expansion functions, we then set up a two-dimensional framework. The final two
sections investigate the relationship of dependence to the concept of concentration-
expansion functions.

2. ANALYTICAL PROPERTIES OF CONCENTRATION AND
EXPANSION FUNCTIONS

As explicitly given by Raoult [5] the concentration and expansion functions
v, (@) and ¢,(¢) have the following analytical properties:
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Lemma 1:
(1) v, (® is an increasing (nondecreasing) and continuous concave function in I;

(ii) given two sub-algebras U, and Uy of I, U c Uy =y, (1) <y, (1), Viel;

(iil) ¢, (r) is also an increasing (nondecreasing) and continuous convex function
in I

(iv) the functions y, (¢) and ¢, (¢) are related to each other through

W, () = Q) — ¢, (u(€2) - 1), (2.1
which, as noted in Remark 1 above, is equal to
vy () =1-¢,(1-1), (2.2)

for a bi-probability space.

Proof: Noting that the functions are probability measures, the nondecreasing and
continuity properties are easy to see. As for the concavity (convexity), this will be
discussed below. See, also, [5]

Remark 2. Cifarelli and Regazzini (Theorem 2.3 in [l]) maintains without proof

that concentration functions are convex. However, in connection with decomposition
concentrations, a proof for the concavity of concentration functions is provided in
Theorem 4.2.2 of [2]

In addition to the properties mentioned in Lemma 1, the expansion function ¢,

displays some further features — the index U of ¢, will henceforth be ignored:
Lemma 2:

(1) p(1-t)=1-t, VteL iff 9=peverywhere on U,

(i1) ¢(1) =1, ¢,(0) = 0 and otherwise 1-7 < p(1-1) <1, V¢ € I,

(iii) @(1-1)=0, Ve e L, iff 9 is singular with respect to uz, i.e., $=9.

Proof:
@) Note that, NVweQ), Hw) = pu(w) = dd(ow) = du(v),
Vw e Q) = l(w) =1, (Vo € Q). Hence, from (1.7), we obtain

p(1-0)=9(4) = [Uw)du(®) = [du(w)=1-t.
A A

Conversely, o(1-t)=1-¢ implies that /(w) =1, (Vo € Q). Hence, the result follows.
(ii) t1=0= 45 = {o: ¢(») > 0,0 € 0} = Q and hence,
p(1) = 9°(45) = 9°(Q) = [H(@)du(w) =1.
o

Likewise, lim4/ =¢ with limu(4) =0 and
t—1 t—1
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0(0) = lin}ga (4] = [U(@)du(w) = 0.
- y

Finally, for 7 € (¢;,©) and te (0,1], we have
(-0 = [du(w) < [((@)du() <[ l(o)du(®) =1.

A7 A Q
The left-hand side inequality follows from (1.4). To show this let
E ={w:c,<lw)}eU with wE,)=1-¢r and I*(E,)=¢(1-1). Consider the
following collection of sets in U

G={EcU:1-t=uE,) < u(E)}
Obviously, by (1.4),

1-t=pu(E) = ﬂ(gE)

p(-1)=9E) = 9“(2E)

Now these two measures must satisfy u(E,) < 9%(E,), because the two simultaneous

relations 9%(E,) = u(E,) and 9°(E,) < u(E,) are contradictory. In fact, if the latter
would hold simultaneously, then there would be some E, in & with
9U(E) =p(1-1) < 9°(E,) =1-t, such that E, c E,. This however is against the initial
assumption that there is no E €& which is contained by E,. Thence, the result
follows.

(i) When 9 is singular with respect to g, , so will be the measure $“ and hence
the integral in (1.7) will be zero. QED
Remark 3. The case where o(1-t)=9%*(A{)=1,Vte (0,1], is interesting to note: In
fact, for this case, we have 9*(AY) =9%(Q) =1, vt € (0,1} thatis, vt e (0,1}

A = [Uo)du(@) =] Uw)du(w) =1.
A o
This is tantamount to stating that /(o) is equal to a constant ¢ in 4, such that

(7 =1/ u(A). This case will be resumed in connection with the discussions on two-
dimensional case (c.f., end of Section 3 below).

Corollary: In view of the properties of ¢(1-¢) mentioned in the foregoing lemma
and remark, the concentration function w(t)=1-@(1-¢) in (1.5) satisfies further
that:

VMw@)=t,VieLiff p(l-t)=1-1t,ie,iff 9=y

Vi)w(@) =1, VeeLiff p(—1)=0,ie.,iff 3Ly



SOME COMMENTS ON CONCENTRATION AND EXPANSION FUNCTIONS 151

vil) w()=0,VeeL iff p(1-t)=1,ie.,iff {(w)is constant in its relative domain

A, and AS, vt e (0,1}

(viii) otherwise, 0 <w(r)<t, Vi e L
Remark 4. Through proved differently, excepting for (vii), the results of this
corollary can also be found in Theorem 2.3 of [1] Part of the proof of (vii) is in
Remark 3. The remainder of the proof can be found at the end of Section Three
where we dwell on Fréchet bounds.

When concentration and expansion functions both exist, their convex and
concave natures seem to render them dual to each other for potential applications in
Statistics. For easy reference, this duality is emphasized below. In fact, let

dHw) = du(w), Vo € Q, such that ((w)=1,Vw € Q, (2.3)
then, adopting w, () and ¢,(1-¢) for the respective concentration and expansion
functions corresponding to (2.3), we have, VieL

o(-0) = 1-yo(1) =1~ [du(@) =1-1, yo(0) = [du(@) =1 . (2.4)
4 4
On the other hand, if, Vo € O, we have du(w) < d9(w), then, Vo € O, 1< {(w), and
hence
po(l-1)=1-1= [du(w) < [H(@)du(w) = p(1-1) <1, (2.5)
A A
so that, for this case, expansion functions will be more appropriate. Conversely, if
lw) <1, Yo e Q, so that
p(0) = [U@)du) < [du(w) =t =y (2), (2.6)
AI Af
and thus concentration functions will be more appropriate for this latter case.

Remark 5. When 9 and g are indexed and identified by some real-valued
parameter ¢ with the respective values 6y and ¢, concentration and expansion

functions can meaningfully be associated with the well-known information integral
of Kulbak: For 4, = {w € Q: {(») <¢,}e U, 1 € (0,l), we obviously have

[log l(@)du(w) = | (logdHw))du(@) ~ [(logdu(w))du(w) < logy(1) < y(1),

At At At
provided that they are all defined. When multiplied by (-1) and taken over the entire
space 4 ={we Q:/(w)<wo}=QeU, the integral on the left hand side is so-called
Kulback’s mean information or Kulback’s information integral on A,. In Wilks [7]
notation,

{H(0,,0, | 4)~H(0,,05 | 4)}- u(4,) = - [log l(@)dp(@) > 0
4y

discriminates x against 9 on 4,,¢ e (0,1), where
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HO,.0,14)= o [togdu(o)dste

H(0,.05] 4) = ﬁ [(logd 8(@))du(w)
1) 4,

represent H-functions of Boltzmann, conditional on 4,.

3. TWO-DIMENSIONAL SETUP

The discussions in both Raoult [5] and Cifarelli and Regazzini [1] run in a uni-

dimensional setup. To provide a framework for applications of concentration and
expansion functions to bivariate dependence, a two-dimensional setup must hence be
introduced: Given a probability space (Q,3,7) we define two distinct measurable
functions (random variables) on Q

Zz(i{j:QxQ—ﬂRz. 3.1)

A new probability space (R,,B,,u)=(%,8,4) is hence induced, where, for
convenience of notation, we let X stand for R, and B for B,. As usual, B, is the
Borel algebra of R, and u is the probability measure induced under
transformations X(w) and Y(w),ie., VE € B,
w(E) =X YE)NnY'E)). (3.2)

Given x,y eRy, for C, ={X <x}nR; e B and D, ={Y <y} R, € B, we have

#x(Co) =2(X(CHNY T (R))

py (D)) =2(X~ (R)NY (D))

1:(CcnDy) = (X' Y (D))

Ho(C M Dy) = 1 (Cx Y (D). (3.3)
Accordingly, a bi-probability space (¥,9, 4,4, ) can be obtained. The measure s,
cannot be singular with respect to the measure z, everywhere in ‘B, simply for the
reason that marginal probabilities uxy and gy are obtained from x, and that
Ug =ty -py (c.f., the final paragraph of Section 4 for further discussions).
Therefore, u, is assumed to have the Lebesgue decomposition
My = pE (3.4)
with respect to ), i.e.,

My << py and gL,
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where u%(E)=0, whenever u,(E)=0,VE e®B. Thus, if M ={weX: yy(w)=0},
with 9 =X -IM° and 1, (X) = (M), then VE B, we can write
Ho(E) = pg(E NIN) + g (E NINC) = 11y (E N IMN)
UI(E)=p (ENM), since uf << 1. (3.5
By substituting z, for x4 in Definition I above, u, for 9, X for Q, 9 for O and

the Borel algebra B(9m) of subsets of 9 for U, a setup parallel to the one in
Definition 1 is obtained. Provided that the relevant distributions exist, we can set

Fy(x) for px(Cy)

Fy(y) for py(D))

F(x,y) for #,(C,n\D,)

Fo(x,p) for po(C, N Dy). (3.6)
When no confusion is expected to arise, the probability measures in (3.3) and the
distributions in (3.6) will interchangeably be used below.

As in the univariate case, the distribution H; (-) of the random variable L is
obtained from

Hi(e) = pol(x.p) e X U(x,y) < ¢} =1, (3.7)
where
L:X >R, , (3-8)
such that, V(x,y) e X,
(e, y) = S (3.9)
dpg

with the differential being evaluated at (x,y)eX. As such, for
A ={xy) Xty <l
w(t) = ul(4) = £Vdﬂ (3.10)
gives the concentration function in (1.5), wthere, for some ¢ e I the t-quantile ¢, is
¢, =inf{teR, H (0)>1}. (3.11)
Similarly, vz e I, and for A4S ={(x,y) e X : {(x,y) > ¢,}

p(1—1)= [[£-duq
A7

= Tli-dHL(f,)zjl‘csds, (3.12)

Ct

yields the expansion function in (1.4) for the two-dimensional case.
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An important point to note for the bivariate case is the fact that ., (C, N D,)
and y4(C,ND,) cannot be singular with respect to each other. Actually, since
1o(Cx NDy)= 0 if and only if C, =& or D, = or both, then, for C,,D, B,
implies that 4,(C,nD,)=0 as well. Thus, we cannot have, VC,,D, e,

#.(Cy D) L py(C,nD,) unless of course X=& . In practice, this means that
U (E)=pl(E), ie, w (F)=0,VEepB(OM) and VF eB. In other words, the

superscript @ of u{ is unrequired in the bivariate case.
On the other hand, for the discussion to follow and for future reference, it
should be recalled that independence is defined in terms of
1 (CenDy)=uy(C, D)) or F(x,y)=Fy(x,y), V(x,y) € X,
such that negation of independence refers to dependence; negative complete
dependence on the other hand corresponds to Fréchet lower bound, i.e.,
1(C A D) =max {uy (C,) + uy (D,) =1, 0}, or
F(x,y) = max {Fy (x) + Fy (y) =1, 0}, V(x,y) € X;
whereas positive complete dependence applies to Fréchet upper bound, i.e.,
#,(Ce N D)) =min Yy (C,), uy (D)}, V(x,y) € X,
which, in terms of distributions, can alternatively be re-expressed as
F(x,y) = min {Fy (x), Fy (0}, V(x,y) € X.
As will be noted below, the Fréchet bounds for bivariate measures (distributions) are
not necessarily identical with the respective lower and upper bounds for
concentration and expansion functions. For practical reasons, this constitutes a
drawback in detecting the phenomenon of complete dependence through these
functions.
Returning to the comment made in Remark 3 above, for some te (0,1), we
define

A ={(x,y) e M U(x,y) > ¢}
CE={xeM:l(x,y)>c,y R}
Df ={yeM:l(x,y)>c,x R}
in B with 4 =C; nD;. The constant value ¢; of the generalized likelihood ratio

L pointed out in Remark 3 will correspond to
o1
L ¢ cy
Uy (CP) - puy(Dy)
such that

! < ! =0, Ve (o))

max ey (CE), pay (DE)| gy (CF)- py (DY)
in the two-dimensional case. Set
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+ e+ + 1
o (U=0)=[u, (A" =17 - [[duyduy = —————[[duydu, ,
A Uy (CP)- py (DzC)A;’

which, by hypothesis, is equal to 1, Vvt e (0,1) . On the other hand, the Fréchet upper
bound is

G -1)= T, (AS) =minfu ¢ (C7 )ty (D))}
1
= duydu
maX{ﬂx(Cf),ﬂy(Df)}g o
1

< (fduyduy ~ L (AT =9 (-0 =1,
e (€D e =L ’

vte(0,1). As such @a(1-t)<¢p™(1-1)=1, Vte(0,]) which means that there is no
analytical necessity for the expansion function @ (1-¢)of the upper Fréchet bound

to reach the overall upper bound ¢*(1-¢) =1 for expansion functions, Vvt e (0,1).
For some t € (0,1). on the other hand, let us define the following sets in B
4 ={(x.y)eM: L(x,y) < ¢}

Cl = {X emMm: é(xay) < ¢,V € IR1}

D, ={yeM:l(x,y)<c,x R}
with 4, = C, n D,. The lower bound for concentration functions is

w0 = [, (AT = [[ldpg =0, wy(4,) # 0,
4y

vt € (0,1). For this to hold, we must have /(x,y) =0, V(x,y) e M. Thatis, 1,(4,)=0
or u,(4,)=a for some constant 0 <a <1, V¢ e (0,1), so that

_du. _
dpg
U, (4)=a and (=0 are however contradictory, and consequently we must have

4. (4,)=0. Now the Fréchet lower bound for x (C, nD,) is however
H(C, D) = max{uy (C,) + py (D)~ 1,0}
That is equal to zero everywhere in 901, when
(= w1y (CNA = py (Dy) 2 px (C) - py (D), V(x,y) € M < X.
Thus, a sufficient condition for 4(x,y) =0, V(x,y) e M, is given by
H(C, D)) = max{uy (C,) + py (D) = 1,0} = 0,
Y(x,y) e 9.
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4. IMPLICATIONS FOR BIVARIATE DEPENDENCE

As is noted in earlier, concentration functions in (1.4) are appropriate for the
case {w:/(w)<1} and expansion functions in (1.5) are in turn suitable for
{o:1< ((0)}. These two respective cases can be matched with negative and positive

dependencies in the bivariate setup: For two distinct random variables such as X
and Y defined in (3.1) above, the concepts of negative and positive quadrant
dependence are defined respectively as (c.f.,[3]), V(x,y) e X

/u+(CxmDy)</UO(meDy):/uX(Cx)'/UY(Dy) (41)
#y(Cy D) = g (C)- py(Dy) < 11, (C, A D). (4.2)

Obviously, the relations in (4.1)-(4.2) follow from the following respective relations
of their derivatives:

dp, <dpg
dug <dp, .
Therefore, the corresponding generalized likelihood ratios become
Lx,y) <1=1Ly(x,p), 4.3)
Co(x,y) =1< [(x,), (4.4)

V(x,y)e X, where /(,(x,y)=1 corresponds to the independence case with
U(x,y) and U(x,y), standing for the respective ratios for (4.1) and (4.2). Thus, for
A ={x,») e X :U(x,y)< ¢, =y} DB and for the respective two cases (4.3) and (4.4),
we have

(1) = i (4) = [[Ldpg < [[Codpg = po(4) = wo(0) =1 (4.5)
At At
1=t =py(1=1) = py(A) = [[odug < [[Tduy = pl(47) = p(1-1). (4.6)
Af Af

Application of concentration functions to positive quadrant dependence will thus
result in an analytical inconsistency like

Hi(4) = szdﬂo < Wo dpy = (4, ), (4.7)
A A7
for A ={(x,y) e X:4(x,y) > ¢, = {,} € B. Such inconsistencies are often come across

in literature dealing with positive dependence ordering.
To sum up the foregoing, we have:

Lemma 3. For all sets such as 4, ={(x,y) e X:/(x,y)<c,=(,} B and for every

nonnegative real ¢ in [0,1],
0<w()<t,
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indicates that X and Y display negative quadrant dependence, such that, in the
absence of singularity of the relevant measures, y/(z) =0 is sufficient for a negative
complete dependence and that w(r)=¢ stands for independence of X and Y.
Dually, for every A4S ={(x,y) e X :4(x,y) > ¢, =} B and for every positive ¢ € I,
1-t<pl-1)<1

implies that X and Y have a positive quadrant dependence, such that p(1-7)=1-¢
stands for independence of X and Y, and ¢(1-¢)=1 corresponds to the case
mentioned in Remark 3 above.

Corollary. Let y; and y; be two concentration functions for the respective distinct
measures g, and i, (resp., distributions F, and F;) in a family
((X,B, g, t4£)1 ) € J) of bi-probability spaces (resp., Fréchet class of bivariate
distributions with a given pair of marginals). Also, assume that ¢, and ¢; are the
corresponding expansion functions for these measures (resp., distributions). If
Vie (), y;()<y;(t) and/or @,(1-1)<@(1-1) and if, Jre(0)), w;()<y;(®)
and/or ¢;(1-1) <@;(1-1) then g, (resp., F;) can be said to display a higher-order
dependence than ;. (resp., F;).

Remark 6. Note that the foregoing discussions are valid for sets
A ={x,») e X :U(x,y)<¢, =y} B, Vtel Forsets E, in‘B such as
E, = {(x,y) eX:l(x,y) < c,}, te(0,)

={(x,y) e X (x,y) < Lo} u{(x,y) € X (x,y) > £y}

=FU(E -F),
however a convex combination of concentration and expansion functions can be
suggested, i.e.,

¢ =a, -wt)+a, p-1)

where a,, = (F, | E,) and a, = uy(E, - F, | E,) =1-a,, provided that the latter are

(73
known.
Using both of concentration and expansion functions at the same time, the

interval I=[0,1] can thus be reduced by its half, i.e., [0%] The inequalities in (4.5)
and (4.6) indicate on the other hand that, given some ¢ € [0,%], neither concentration
nor expansions functions are appropriate to discriminate u, (resp., F(x,y)) against
Uy (resp., Fy(x,y)) in the interval (¢,1-¢). This setback however can obviously be
overcome by scanning all values of 7 e [0,%], which actually is the optimal way to

screen out such a detection. Since the larger t is the smaller the interval (¢,1-¢) will
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be, checking large t-values may be tempting for practical reasons. Obviously, for
t =+ this interval is zero.

Apart from such practical problems, there does not seem to exist any problem
for detecting dependence in terms of concentration and expansion functions. We
have to keep in mind however the fact that concentration and expansion functions
are designed merely to distinguish g, (resp., F(x,y)) from g (resp., Fy(x,y)) for all

(x,y) € X. And this is accomplished for those -, (resp., F(x,y)) that belong to
the family ((X,,u9,4.) ¢ €J) (resp., the so-called Fréchet Class of joint

distributions) with some given pair of marginals. How much information on
dependence and independence that F(x,y) and F,(x,y)can contain is completely

another problem, as will be observed in the following extremal, but illuminating,
case.

Illustration: Consider the Bernoulli case where the random variables x=0,1 and
y=1-x=0,1 are completely and negatively dependent on each other with
correlation p(X,Y)=-1. The probability functions of F(x,y) and Fy(x,y) are

respectively f(xy)=p*(1-p)" and fy(x.y)=p"(1-p)'™p"> (1= p)’ =" (1= )~
with F,(1,1) = (p+¢)* =1. Clearly,

F(0,0)=0, FO,l)= ¢, F1,0)= p and F(l1)=1

£y(0,0) = pq, Fy(0.1) = g, Fy(1,0) = p and Fy(L]) =1
Thus F(x,y) < Fy(x,»), Y(x,y) € X . Consequently, the corresponding concentration
function must lie in [0,7], V¢ € I (c.f., Corollary (vi) to Lemmas 1 and 2).

Straightforward computations however show that concentration values are

w(0)=0,w(q)=q,w(p)=p and y(1)=1, say, for g<p. For this case, the
concentration function w(s) is capable of detecting the artificial discrepancy
between F(x,y)and Fy(x,y) In fact, though they are different functionally, as far as
dependence of X and Y is concerned, F(x,y) and Fy(x,y) are inherently not
different from each other, because F;(x,y) is a product of the marginal distributions

of two random variables assumed initially and intentionally to be completely
dependent. Thus, the concentration function (¢) has in this instance been able to

detect whether, V(x,y)eX, F(x,y) and Fy(x,y) display the same structure of
dependence or not.

5. CONCLUDING REMARKS

We end the foregoing discussions on concentration and expansion functions by
re-emphasizing the following:
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(1) If they are to be used for statistical applications on bivariate dependence,
concentration and expansion functions must be both be used, because concentration
is seemingly appropriate for negative dependence, and expansion appears on the
contrary to be suitable for positive dependence. These functions are nonetheless
incapable of detecting complete dependences, especially positive complete
dependence.

(i1) Clearly, the concepts of concentration and expansion are intrinsically not
identical with the concept of dependence bearing on two random variables. The
former relate to detection of continuity or singularity of two probability measures.
The latter bears on the question whether joint probabilities (distributions) are formed
by the product of their marginal measures (distributions) or not. Therefore, care
should be taken in applications of concentration and expansion to dependence.

(iii) Since both the marginals and the joint measures are defined on a common
measurable space, joint measures (distributions) cannot be singular with respect to
the product of their marginals (marginal distributions) everywhere in the relevant
space, unless we are confronted with an empty probability space.

(iv) The foregoing exposition comprises some initial results of an ongoing
research on the topic. The authors intend to present full results in a separate paper in
near future.
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