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 ABSTRACT   
  
 Potential utilization of concentration and expansion functions in the detection of dependence of 
two random variables is investigated. Also, a brief literature survey is explored. Pitfalls and drawbacks of 
such applications are emphasized.  
 
  
1. INTRODUCTION 
 
 The exposition presented in the remainder of this work shall frequently refer to 
the immediate following definition and remark. The definition is based essentially 
on Raoult [5] (c.f., also, the monograph of Hengartner and Theodorescu [2]). 
 
Definition 1. For a bi-measure space ),,,( ϑμℑΩ  (a measurable space ),( ℑΩ  with a 
pair ),( ϑμ  of measures simultaneously defined on it), the measure ϑ  is assumed  to 
have Lebesgue decomposition with respect to the measure sϑϑϑμ += a: , such that 
aϑ  is absolutely continuous with respect to μϑμ <<a( , in short) and sϑ  is 

singular with respect to ,( μϑμ ⊥s in short). Furthermore, if Qc is a subset of Ω , such 

that { },0)(: =Ω∈= ωμωcQ  the subspace ),( UQ  of ),( ℑΩ  will be relevant for the 
following discussions, where cQQ −Ω=  with )()( Qμμ =Ω  and U is the −σ algebra 
of Q satisfying ℑ⊆U . A real-valued function )(tfu  (resp., )(tgu ) with domain 
I [ ])(,0 Qμ=  and range )](,0[ Qϑ  is called concentration (resp., expansion) of the 
measure ϑ  with respect to the measure μ  on the subalgebra U, if, ∈∀t I  there 
exist some ∈BA  , U, such that  
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{ }U    ∈=≤== AforvAandtAvAtf a
u )()(:sup)()( ϑμϑ                      (1.1) 

{ }U     ∈==== BforsBandtBsBtgresp a
u )()(:inf)()(.,( ϑμϑ .           (1.2) 

Remark 1.  
(i) The above definition can also be extended to a family of bi-measure 

spaces such as )),,,,(( Jjj ∈ℑΩ  ϑμ  where J  is an index set. 
(ii) Existence of concentration function (the upper bound for (1.1)) is 

provided in Raoult [5] in terms of Neymann-Pearson test procedure (c.f., also, [2]). 
As a matter of fact, a typical example for application of concentration to a statistical 
area is Neymann-Hypothesis testing procedure, where A is rejection region, μ  
represents the measure under null hypothesis and ϑ  (and hence aϑ ) denotes the 
measure under alternative hypothesis.   
 (iii) If U ℑ=  or if the relevant algebra is clear from the context, the index U of  

uf  and ug  can be ignored. 

 (iv) Note that μϑ <<a  implies both 0)()( == cca QQ μϑ  and ,0)( =Qsϑ  so that 
).()()()()( csasa QQ ϑϑϑϑϑ +=Ω+Ω=Ω   

 (v) If ),,,( ϑμℑΩ  is a bi-probability space, i.e., if ϑ  and μ  are probability 
measures on ),( ℑΩ  then 1)( =Ωϑ  and 1)()( ==Ω Qμμ  with 
I [ ] [ ] [ ]1,0)(,0)(,0 === QQ ϑμ   
 (vi) Also, for the special case AAB c −Ω==  with { } tA =∈ωμ  and 
{ } tAc −=∈ 1ωμ   in such a bi-probability space, we have )()()( cAA ϑϑϑ +=Ω  

1)1()( =−+= tgtf uu  
 
 Raoult [ ]5  discusses the concepts of concentration and expansion (étalement) 
in connection with Lebesgue decompositions covering a general bi-measure space 
on a unidimensional basis. The concentration in (1.1) is also noted [ ].2  An alternate 
better-known notion of concentration is due to Levy [ ],4  who uses the concept for 
sums of random variables. To discriminate it from the former, the latter type of 
concentration is generally labelled as Lévy concentration functions. Raoult [ ]5  
shows the relation between these two types of concentration – Further developments 
concerning Lévy concentration functions can be found in [ ]2  – The expansion 
function in (1.2) is however less known and hence has apparently no  statistical and 
probabilistic applications. 
 Within a different setting and in a relatively recent attempt to obtain a general 
formulation for the so-called Gini-type concentration indices, on the other hand, 
Gifarelli and Regazzini [ ]1  re-dwell upon concentration, and to this end, the authors 
specify a function (c.f., Theorem 2.2 in [ ].1 ).  

{ },)(:)(inf)()( tAandAAAt a ≥∈== μϑϑϕ U                           (1.3) 
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∈∀t I. The relevant measure space for (1.3) is again a bi-probability space such as 
),,,( ϑμℑΩ . Essentially, )(xϕ  corresponds to an expansion function in the sense of 

(1.2), and yet, it is called concentration function by the authors. In fact, except for 
(1.3), the remaining results of Cifarelli and Regazzini [ ]1  pertain to concentration 
functions. It is thus possible to classify Cifarelli-Regazzini type of concentration 
functions within the general category of concentration functions given in 
Definition1. 
 The presentation below is connected to the case where ),,,( ϑμℑΩ  is a bi-
probability space. In the two-dimensional case involving families of distributions 
like Fréchet class, we shall also use a family of spaces ).),,,,(( Jjj ∈ℑΩ ϑμ  
Throughout the remainder of discussions, it is assumed that concentration and 
expansion functions exist. Within this setup, we let, ,I∈∀t   

{ },1)(:)(inf)()1( tAandAAAt cccca
u −≥∈==−= μϑϑϕ U                               (1.4) 

denote an expansion function, and  
{ },)(:)(sup)()( tAandAAAt a

u =∈== μϑϑψ U                               (1.5) 
stand for the corresponding concentration function. If no confusion is expected to 
arise, the index U of uϕ  in (1.4) and uψ  in (1.5) is generally ignored for 
convenience of notation. 
 The functions in (1.4) and (1.5) can further be stated in convenient forms: In 
reality, the property μϑ ppa  in the Lebesque decomposition sa ϑ+ϑ=ϑ  implies, 
by Radon-Nikodym Theorem, existence of a nonnegative function l [ )∞=∈ + ,0R  
such that .dd μ⋅=ϑ l  Thus, for tA  defined as { } U∈∈≤= QcA tt ωωω ,)(: l  with 

,,0)( I ∈≠= ttAtμ  we have  

∫ ∫===
t

t

A

c

Lt
a dHdAt

0
).()()()()( lll ωμωϑψ                              (1.6) 

The last integral is based on the existence of a distribution function )(lLH  given by  
{ }.,)(:)( QLHL ∈≤= ωωωμ ll  

Similarly, for { }QcA t
c
t ∈>= ωωω ,)(: l  with ,t)A( c

t 01 ≠−=μ  we shall have  

∫ ∫
∞

===−
c
t tA c

L
c
t

a dHdAt ).()()()()1( lll ωμωϑϕ                         (1.7) 

Note that when both ϑ  and μ  are dominated by a common measure ν  with 
νϑ dfd ⋅=  and ,νμ dgd ⋅=  then νμϑ dgdd )( ⋅=⋅= ll  and .νϑ dfd ⋅=  Thence, we 

have ,gf ⋅= l  so that  

0)(,
)(
)(

)(
)()( >== ω

ω
ω

ωμ
ωϑω g

g
f

d
d

l  
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the last quotient being so-called likelihood ratio. μϑ ddL /=  with values 
)(/)()( ωμωϑω dd=l  will otherwise be referred as generalized likelihood ratio 

below. Integrating out by parts, the last term of (1.6) becomes 

∫ ∫=−=
tc t

sL dscdHtt
0 0

,))(()( llψ                                               (1.8) 

(c.f., also [ ]1 ), and, by substituting (1.8) in the relation 1)()1( =+− tt ψϕ  given in  
Remark 1 above, the expansion in (1.7) on the other hand boils down to  

 ∫ ∫∫ =−=−−=−
tc

t
s

t

sL dscdscdHtt
0

1

0
.1))((1)1( ιϕ l                                 (1.9) 

The quantity tc  in (1.6)-(1.7) and (1.8)-(1.9) is the so-called t-quantile for the 
population of L   

{ }tHRc Lt ≥∈= + )(:inf ll                                          (1.10) 
.I∈∀t  

 In a concluding remark, Cifarelli and Regazzini [ ]1  point potentials of (1.3) for 
application to such probabilistic issues as homogeneity, association, etc. Upon the 
suggestion, Scarsini [ ]6  attempts to extend the concept of concentration to the two-
dimensional case and investigate its potential uses for ordering Fréchet class of 
bivariate distributions in terms of the degree of dependence they display. The 
conclusion reached by the author appears however to be hardly optimistic. As will 
be clear in the following pages, these nonpromissing results stem from the facts that 
(i), without (1.2) and/or (1.4), (1.1) and/or (1.5) alone provides only a partial, and 
often misleading, picture for dependence, especially in the presence of positive 
quadrant dependence (c.f., Lehmann [ ],3 , for the concept); (ii) as is also posed by 
Scarsini [ ]6 , the question that whether the concept of concentration and expansion 
does really coincide with the concept of dependence of random variables needs 
further investigations. These issues will  be taken up next in a sequence of sections 
below. First, however, we summarize the known properties of these functions 
(Lemma 1 and Corollary to this lemma). We also prove some properties of 
expansion function (Lemma 2), which, in fact, do not seem to exist in literature. In 
order to be able to detect bivariate dependence in terms of concentration and 
expansion functions, we then set up a two-dimensional framework. The final two 
sections investigate the relationship of dependence to the concept of concentration-
expansion functions. 
 
2. ANALYTICAL PROPERTIES OF CONCENTRATION AND  
EXPANSION FUNCTIONS 
 
 As explicitly given by Raoult [ ],5  the concentration and expansion functions 

)(tuψ  and )(tuϕ  have the following analytical properties: 
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Lemma 1:  
      (i) )(tuψ  is an increasing (nondecreasing) and continuous concave function in I; 
      (ii) given two sub-algebras ∗U  and 0U  of ℑ , ;),()(

00 IUU ∈∀≤⇒⊂
∗∗ ttt uu ψψ   

      (iii) )(tuϕ  is also an increasing (nondecreasing) and continuous convex function 
in I; 
      (iv) the functions )(tuψ  and )(tuϕ  are related to each other through  

),)(()()( tt uu −Ω−Ω= μϕϑψ                                              (2.1) 
which, as noted in Remark 1 above, is equal to  

),1(1)( tt uu −−= ϕψ                                                   (2.2) 
for a bi-probability space. 
 
Proof: Noting that the functions are probability measures, the nondecreasing and 
continuity properties are easy to see. As for the concavity (convexity), this will be 
discussed below. See, also, [ ].5   
 
Remark 2. Cifarelli and Regazzini (Theorem 2.3 in [ ]1 ) maintains without proof 
that concentration functions are convex. However, in connection with decomposition 
concentrations, a proof for the concavity of concentration functions is provided in 
Theorem 4.2.2 of [ ].2   
 In addition to the properties mentioned in Lemma 1, the expansion function uϕ  
displays some further features – the index U of uϕ  will henceforth be ignored: 
Lemma 2: 
         (i) ,,1)1( Ι∈∀−=− tttϕ  iff  μ=ϑ everywhere on U; 
         (ii) 0)0(,1)1( == uϕϕ and otherwise ;,1)1(1 I∈∀<−<− ttt ϕ  

         (iii) ϑϕ   I ifftt ,,0)1( ∈∀=−  is singular with respect to μ , i.e. , .sϑϑ =   
 
Proof: 
 (i) Note that, )( Q∈∀ω , )()( ωμωϑ = ),()( ωμωϑ dd =⇒   

)( Q∈∀ω ,1)( =⇒ ωl )( Q∈∀ω . Hence, from (1.7), we obtain 

∫∫ −====−
c
t

c
t AA

c
t

a tddAt .1)()()()()1( ωμωμωϑϕ l  

Conversely, tt −=− 1)1(ϕ  implies that ).(,1)( Q∈∀= ωωl  Hence, the result follows. 

         (ii) { } QQAt c =∈≥=⇒= ωωω ,0)(:0 0 l  and hence, 

.1)()()()()1( 0 ∫ ====
Q

aca dQA ωμωϑϑϕ l  

Likewise,  φ=
→

c
t

t
A

1
lim  with 0)(lim

1
=

→

c
t

t
Aμ  and  
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∫ ===
→ φ

ωμωϑϕ .0)()()(lim)0(
1

dAc
t

a
t

l  

Finally, for ),( ∞∈ tcl  and ( ],,t 10∈  we have  

∫∫∫
Ω

=<<=− .1)()()()()()1( ωμωωμωωμ dddt
c
t

c
t AA

ll  

The left-hand side inequality follows from (1.4). To show this let 
{ } U∈≤= )(: ωω ltt cE  with tEt −= 1)(μ  and ).1()( tEt

a −= ϕϑ  Consider the 
following collection of sets in U  

G = { }.)()(1: EEtE t μμ ≤=−∈  U  
Obviously, by (1.4),  

)()(1 EEt t
G
∩==− μμ  

)()()1( EEt a
t

a
G
∩==− ϑϑϕ  

Now these two measures must satisfy ),()( t
a

t EE ϑμ ≤  because the two simultaneous 

relations )()( tt
a EE μϑ =  and )()( tt

a EE μϑ <  are contradictory. In fact, if the latter 
would hold simultaneously, then there would be some ∗E  in G  with 

,1)()1()( tEtE t
aa −=<−=∗ ϑϕϑ  such that .tEE ⊂∗ This however is against the initial 

assumption that there is no G∈E   which is contained by .tE  Thence, the result 
follows.      
     (iii) When ϑ  is singular with respect to ,μ , so will be the measure aϑ  and hence 
the integral in (1.7) will be zero.                                                                           QED 
Remark 3. The case where ( ],,t,)A()t( c

t
a 1011 ∈∀=ϑ=−ϕ  is interesting to note: In 

fact, for this case, we have ( ];,t,)Q()A( ac
t

a 101 ∈∀=ϑ=ϑ  that is, ( ],,t 10∈∀   

.1)()()()()( ∫∫ ===
QA

c
t ddA

c
t

ωμωωμωϑ ll  

This is tantamount to stating that )(ωl  is equal to a constant  +
tl  in ,c

tA  such that 

).(/1 c
tt Aμ=+l  This case will be resumed in connection with the discussions on two-

dimensional case (c.f., end of Section 3 below). 
 
Corollary: In view of the properties of )1( t−ϕ  mentioned in the foregoing lemma 
and remark, the concentration function )1(1)( tt −−= ϕψ  in (1.5) satisfies further 
that: 

(v) ;.,.,1)1(,,)( μϑϕψ =−=−∈∀= iffeittiffttt Ι  
(vi) ;.,.,0)1(,,1)( μϑϕψ ⊥=−∈∀= iffeitifftt Ι  
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(vii) )(.,.,1)1(,,0)( ωϕψ liffeitifftt =−∈∀= Ι is constant in its relative domain 

tA  and ( ];,t,Ac
t 10∈∀  

(viii) otherwise, Ι.∈∀<< ttt ,)(0 ψ    
Remark 4. Through proved differently, excepting for (vii), the results of this 
corollary can also be found in Theorem 2.3 of [ ].1  Part of the proof of (vii) is in 
Remark 3. The remainder of the proof can be found at the end of Section Three 
where we dwell on Fréchet bounds.  
 When concentration and expansion functions both exist, their convex and 
concave natures seem to render them dual to each other for potential applications in 
Statistics. For easy reference, this duality is emphasized below. In fact, let  

,),()( Qdd ∈∀= ωωμωϑ such that ,,1)( Q∈∀= ωωl                   (2.3) 
then, adopting )(0 tψ  and )1(0 t−ϕ  for the respective concentration and expansion 
functions corresponding to (2.3), we have, ,Ι∈∀t   

∫∫ ==−=−=−=−
tt AA

tdttdtt )()(,1)(1)(1)1( 000 ωμψωμψϕ  .            (2.4) 

On the other hand, if, ,Q∈∀ω  we have ),()( ωϑωμ dd <  then, ),(1, ωω l<∈∀  Q and 
hence  

∫∫ <−=<=−=−
c
t

c
t AA

twddtt ,1)1()()()(1)1(0 ϕμωωμϕ l                   (2.5) 

so that, for this case, expansion functions will be more appropriate. Conversely, if 
,,1)( Q∈∀< ωωl  so that  

),()()()()( 0 ttddt
tt AA

ψωμωμωψ ==≤= ∫∫l                                   (2.6) 

and thus concentration functions will be more appropriate for this latter case. 
 
Remark 5. When ϑ  and μ  are indexed and identified by some real-valued 
parameter θ  with the respective values ϑθ  and μθ  concentration and expansion 
functions can meaningfully be associated with the well-known information integral 
of  Kulbak: For { } ),1,0(,)(: ∈∈≤∈= tcQA tt  Uωω l  we obviously have  

),()(log)())((log)())((log)()(log ttddddd
t tt A AA

ψψωμωμωμωϑωμω ∫ ∫∫ ≤≤−=l  

provided that they are all defined. When multiplied by (-1) and taken over the entire 
space { } ,)(:1 U∈=∞<∈= QQA ωω l  the integral on the left hand side is so-called 
Kulback’s mean information or Kulback’s information integral on .At  In Wilks’ [ ]7  
notation, 

{ } ∫ >−=⋅−
tA

ttt dAAHAH 0)()(log)()|,()|,( ωμωμθθθθ ϑμμμ l  

discriminates μ  against ϑ  on ),1,0(, ∈tAt   where  
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∫=
tAt

t dd
A

AH )())((log
)(

1)|,( ωμωμ
μ

θθ μμ  

∫=
tAt

t dd
A

AH )())((log
)(

1)|,( ωμωϑ
μ

θθ ϑμ  

represent H-functions of Boltzmann, conditional on .tA  
 
3. TWO-DIMENSIONAL SETUP 
 
 The discussions in both Raoult [ ]5  and Cifarelli and Regazzini [ ]1  run  in a uni-
dimensional setup. To provide a framework for applications of concentration and 
expansion functions to bivariate dependence, a two-dimensional setup must hence be 
introduced: Given a probability space ),,( πℑΩ  we define two distinct measurable 
functions (random variables) on Ω  

Z 2: R→Ω×Ω⎟
⎠
⎞⎜

⎝
⎛= Y

X .                                              (3.1) 

A new probability space ,( 2R B μ,2 ) = )( μB,X,  is hence induced, where, for 
convenience of notation, we let X  stand for 2R  and B for B2. As usual, B2 is the 
Borel algebra of 2R  and μ  is the probability measure induced under 
transformations )(ωX  and )(ωY , ∈∀Eei  .,. B,  

)).)(()( 11 EYEXE −− ∩= πμ                                        (3.2) 
Given 1, R∈yx , for { } 1R∩≤= xXCx ∈B and { } ∈∩≤= 1RyYDy B, we have  

))()(()( 1
11 R−− ∩= YCXC xxX πμ  

))()(()( 1
1

1
yyY DYXD −− ∩= Rπμ  

))()()( 11
yxyx DYCXDC −−

+ ∩=∩ πμ  

)).()()( 1
0 yxxyx DYCDC −×=∩ μμ                                      (3.3) 

Accordingly, a bi-probability space ),( 0 +μμB,X, can be obtained. The measure +μ  
cannot be singular with respect to the measure 0μ  everywhere in B, simply for the 
reason that marginal probabilities Xμ  and Yμ  are obtained from +μ  and that 

YX μμμ ⋅=0   (c.f., the final paragraph of Section 4 for further discussions). 
Therefore, +μ is assumed to have the Lebesgue decomposition 

sa
+++ += μμμ                                                     (3.4) 

with respect to ,0μ  i.e., 

,00 μμμμ ⊥<< ++
sa and  
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where ,0)( =+ Eaμ  whenever .,0)(0 B∈∀= EEμ  Thus, if { },0)(: 0 =∈= ωμω XMc  

with cMXM −=  and ),()( 00 MX μμ =  then ,B∈∀E   we can write  

                                     )()()()( 0000 MMM ∩=∩+∩= EEEE c μμμμ  

),()( M∩= ++ EEa μμ   since .0μμ <<+
a                                  (3.5) 

By substituting 0μ  for μ  in Definition 1 above, +μ  for ,ϑ X  for ,Ω M for Q  and 
the Borel algebra )(Mβ  of subsets of M for U, a setup parallel to the one in 
Definition 1 is obtained. Provided that the relevant distributions exist, we can set  
  )()( xXX CforxF μ   
  )()( yYY DforyF μ   
  )(),( yx DCforyxF ∩+μ  
  ).(),( 00 yx DCforyxF ∩μ                                               (3.6) 
When no confusion is expected to arise, the probability measures in (3.3) and the 
distributions in (3.6) will interchangeably be used below. 
 
 As in the univariate case, the distribution )(HL ⋅  of the random variable L is 
obtained from  

{ } ,),(:),()( 0 tcyxyxcH ttL =≤∈= lXμ                                       (3.7) 
where  

+ℜ→X:L ,                                                       (3.8) 
such that, ,),( X∈∀ yx   

,),(
0μ

μ
d
dyx +=l                                                     (3.9) 

with the differential being evaluated at .),( X∈yx  As such, for 
{ }tt cyxyxA ≤∈= ),(:),( lX   

∫∫== +
tA

t
a dAt μμψ l)()(                                                  (3.10) 

gives the concentration function in (1.5), where, for some I∈t  the t-quantile tc   is  
{ }.)(:inf tHc Lt ≥ℜ∈= + ll                                             (3.11) 

Similarly, ,I∈∀t  and for { }tc
t cyxyxA >∈= ),(:),( lX  

∫∫ ⋅=−
c
tA

dt 0)1( μϕ l  

∫ ∫
∞

=⋅=
tc t

sL dscdH
1

,)(ll                             (3.12) 

yields the expansion function in (1.4) for the two-dimensional case. 
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 An important point to note for the bivariate case is the fact that )( yx DC ∩+μ  
and )(0 yx DC ∩μ  cannot be singular with respect to each other. Actually, since 

)DC( yx ∩μ0 = 0 if and only if ∅=∅= yx DorC  or both, then, for ,, B∈yx DC  
implies that )( yx DC ∩+μ =0 as well. Thus, we cannot have, ,, B∈∀ yx DC  

)( yx DC ∩+μ ⊥ )(0 yx DC ∩μ  unless of course ∅=X . In practice, this means that 

)()( EE a
++ = μμ , i.e., .)(,0)( BM ∈∀∈∀=+ FandEFs βμ  In other words, the 

superscript a  of a
+μ  is unrequired in the bivariate case. 

 On the other hand, for the discussion to follow and for future reference, it 
should be recalled that independence is defined in terms of  

,),(),,(),()()( 00 X∈∀=∩=∩+ yxyxFyxForDCDC yxyx μμ  
such that negation of independence refers to dependence; negative complete 
dependence on the other hand corresponds to Fréchet lower bound, i.e.,  

)( yx DC ∩+μ =max { } orDC yYxX ,0,1)()(  −+ μμ  
),( yxF = max { } ;),(,0,1)()( X∈∀−+ yxyFxF YX   

whereas positive complete dependence applies to Fréchet upper bound, i.e.,  
)( yx DC ∩+μ =min { } ,),(,)(),( X∈∀ yxDC yYxX μμ   

which, in terms of distributions, can alternatively be re-expressed as  
),( yxF = min { } .),(,)( ),( X∈∀ yxyFxF YX  

As will be noted below, the Fréchet bounds for bivariate measures (distributions) are 
not necessarily identical with the respective lower and upper bounds for 
concentration and expansion functions. For practical reasons, this constitutes a 
drawback in detecting the phenomenon of complete dependence through these 
functions. 
 Returning to the comment made in Remark 3 above, for some ),,(t 10∈  we 
define  

{ }tc
t cyxyxA >∈= ),(:),( lM  

{ }1,),(: R∈>∈= ycyxxC t
c
t lM  

{ }1,),(: R∈>∈= xcyxyD t
c
t lM  

in B with .c
t

c
t

c
t DCA ∩=  The constant value +

tl  of the generalized likelihood ratio 
L  pointed out in Remark 3 will correspond to  

,
)()(

1
c
tY

c
tX

t DC μμ ⋅
=+l  

such that  

{ } )1,0(,
)()(

1
)(),(max

1
∈∀=

⋅
≤ + t

DCDC
tc

tY
c
tX

c
tY

c
tX

l
μμμμ  

 

in the two-dimensional case. Set 
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,
)()(

1)]([)1( ∫∫∫∫
⋅

=⋅==− ++
+

+

c
t

c
t A

YXc
tY

c
tXA

YXt
c
t dd

DC
ddAt μμ

μμ
μμμϕ l  

which, by hypothesis, is equal to 1, ),(t 10∈∀ . On the other hand, the Fréchet upper 
bound is  
                          { })()(min)()1( c

tY
c
tX

c
t DCAt μμμϕ ⋅==− +  

{ } ∫∫=
c
tA

YXc
tY

c
tX

dd
DC

μμ
μμ )(),(max

1
 

                                                       

,1)1()]([
)()(

1
=−==

⋅
≤ ++

+∫∫ tAdd
DC

c
t

A
YXc

tY
c
tX c

t

ϕμμμ
μμ

                       

).,(t 10∈∀  As such )1,0(,1)1()1( ∈∀=−<− + ttt ϕϕ  which means that there is no 
analytical necessity for the expansion function ϕ )1( t− of the upper Fréchet bound 
to reach the overall upper bound 1)1( =−+ tϕ  for expansion functions, ).,(t 10∈∀   
 For some ).,(t 10∈  on the other hand, let us define the following sets in B 

{ }tt cyxyxA ≤∈= ),(:),( lM  
{ }1,),(: R∈≤∈= ycyxxC tt lM  
{ }1,),(: R∈≤∈= xcyxyD tt lM  

with .ttt DCA ∩=  The lower bound for concentration functions is  

,0)(,0)]([)( 00 ≠=== ∫∫−
+

−
t

A
t AdAt

t

μμμψ l  

).1,0(∈∀t  For this to hold, we must have .),(,0),( M∈∀= yxyxl  That is, 0)( =+ tAμ  
or αμ =+ )( tA  for some constant ),1,0(,10 ∈∀<< tα  so that  

.0
0
== +

μ
μ

d
d

l  

αμ =+ )( tA  and 0=l  are however contradictory, and consequently we must have 
0)( =+ tAμ . Now the Fréchet lower bound for )( tt DC ∩+μ  is however  

{ }.0,1)()(max)(* −+=∩+ tYtXtt DCDC μμμ  
That is equal to zero everywhere in M, when 

.),(),()())(1))((1( XM ⊂∈∀⋅≥−− yxDCDC tYtXtYtX μμμμ  
Thus, a sufficient condition for ,),(,0),( M∈∀= yxyxl  is given by  

{ } ,00,1)()(max)(* =−+=∩+ tYtXtt DCDC μμμ  
.),( M∈∀ yx  
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4. IMPLICATIONS FOR BIVARIATE DEPENDENCE  
 
 As is noted in earlier, concentration functions in (1.4) are appropriate for the 
case { }1)(: <ωω l  and expansion functions in (1.5) are in turn suitable for 
{ })(1: ωω l< . These two respective cases can be matched with negative and positive 
dependencies in the bivariate setup: For two distinct random variables such as X  
and Y defined in (3.1) above, the concepts of negative and positive quadrant 
dependence are defined respectively as (c.f.,[3]), X∈∀ ),( yx   

)()()()( 0 yYxXyxyx DCDCDC μμμμ ⋅=∩<∩+                       (4.1) 

).()()()(0 yxyYxXyx DCDCDC ∩<⋅=∩ +μμμμ                       (4.2) 
Obviously, the relations in (4.1)-(4.2) follow from the following respective relations 
of their derivatives: 

0μ<μ+ dd  
.dd +μ<μ0  

Therefore, the corresponding generalized likelihood ratios become 
),,(1),( 0 yxyx ll =<                                             (4.3) 

),,(1),(0 yxyx ll <=                                              (4.4) 
,),( X∈∀ yx  where 1),(0 =yxl  corresponds to the independence case with 

),,(),( yxandyx ll  standing for the respective ratios for (4.1) and (4.2). Thus, for 
{ } BX ∈=≤∈= 0),(:),( ll tt cyxyxA  and for the respective two cases (4.3) and (4.4), 

we have 
ttAddAt t

AA
t

a

tt

===<== ∫∫∫∫+ )()()()( 00000 ψμμμμψ ll                    (4.5) 

).1()()()1(1 00000 tAddAtt c
t

a

AA

c
t

c
t

c
t

−==<==−=− +∫∫∫∫ ϕμμμμϕ ll           (4.6) 

Application of concentration functions to positive quadrant dependence will thus 
result in an analytical inconsistency like  

),()( 0000 t
AA

t
a AddA

c
t

c
t

μμμμ =<= ∫∫∫∫+ ll                                      (4.7) 

for { } BX ∈=>∈= 0),(:),( ll t
c
t cyxyxA .  Such inconsistencies are often come across 

in literature dealing with positive dependence ordering. 
 To sum up the foregoing, we have: 
 
Lemma 3. For all sets such as { } BX ∈=≤∈= 0),(:),( ll tt cyxyxA  and for every 
nonnegative real t  in [0,1],  

,)(0 tt ≤≤ψ  
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indicates that X and Y display negative quadrant dependence, such that, in the 
absence of singularity of the relevant measures, 0)( =tψ  is sufficient for a negative 
complete dependence and that tt =)(ψ  stands for independence of X  and Y . 
Dually, for every { } BX ∈=>∈= 0),(:),( ll t

c
t cyxyxA  and for every positive ,I∈t   

1)1(1 ≤−≤− tt ϕ  
implies that X and Y  have a positive quadrant dependence, such that tt −=− 1)1(ϕ  
stands for independence of X  and Y , and 1)1( =− tϕ  corresponds to the case 
mentioned in Remark 3 above. 
 
Corollary. Let iψ  and jψ  be two concentration functions for the respective distinct 
measures ++ )()( ji and μμ (resp., distributions iF  and jF ) in a family 

)),,,,(( )(0 J∈+ ζμμ ζBX  of bi-probability spaces (resp., Fréchet class of bivariate 
distributions with a given pair of marginals). Also, assume that ji and ϕϕ  are the 
corresponding expansion functions for these measures (resp., distributions). If 

)()(),1,0( ttt ji ψψ ≤∈∀  and/or )1()1( tt ij −≤− ϕϕ  and if, )()(   ),1,0( ttt ji ψψ <∈∃  
and/or )1()1( tt ij −<− ϕϕ  then +)(iμ  (resp., iF ) can be said to display a higher-order 
dependence than +)( jμ  (resp., jF ).  
 
Remark 6. Note that the foregoing discussions are valid for sets 

{ } .,),(:),( 0 ItcyxyxA tt ∈∀∈=≤∈= BX ll  For sets tE  in B such as  
 { } )1,0(,),(:),( ∈≤∈= tcyxyxE tt lX  
             { } { }00 ),(:),(),(:),( llll >∈∪≤∈= yxyxyxyx XX  
             ),( ttt FEF −∪=  
however a convex combination of concentration and expansion functions can be 
suggested, i.e., 

)1()()( ttt −⋅+⋅= ϕαψαφ ϕψ  
where )|(0 tt EFμαψ = and ψϕ αμα −=−= 1)|(0 ttt EFE  provided that the latter are 
known. 
 Using both of concentration and expansion functions at the same time, the 
interval [ ]1,0=Ι  can thus be reduced by its half, i.e., [ ]2

1,0 . The inequalities in (4.5) 

and (4.6) indicate on the other hand  that, given some [ ],,0 2
1∈t  neither concentration 

nor expansions functions are appropriate to discriminate )),(.,( yxFresp +μ against 
)),(.,( 00 yxFresp μ  in the interval ).1,( tt −  This setback however can obviously be 

overcome by scanning all values of [ ],,0 2
1∈t  which actually is the optimal way to 

screen out such a detection. Since the larger t is the smaller the interval )1,( tt −  will 
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be, checking large t-values may be tempting for practical reasons. Obviously, for 

2
1=t  this interval is zero. 

 Apart from such practical problems, there does not seem to exist any problem 
for detecting dependence in terms of concentration and expansion functions. We 
have to keep in mind however the fact that concentration and expansion functions 
are designed merely to distinguish )),(.,( yxFresp +μ  from )),(.,( 00 yxFresp μ  for all 

.),( X∈yx  And this is accomplished for those +)(ζμ  )),(.,( yxFresp    that belong to 
the family )),,,,(( )(0 J∈+ ζμμ ζBX  (resp., the so-called Fréchet Class of joint 
distributions) with some given pair of marginals. How much information on 
dependence and independence that ),( yxF  and ),(0 yxF can contain is completely 
another problem, as will be observed in the following extremal, but illuminating, 
case. 
 
Illustration: Consider the Bernoulli case where the random variables 1,0  =x  and 

1,01 =−= xy  are completely and negatively dependent on each other with 
correlation 1),( −=YXρ . The probability functions of ),( yxF  and ),(0 yxF  are 

respectively yx ppyxf )1(),( −=  and xyyxyyxx ppppppyxf −+−+−− −=−−= 1111
0 )1()1()1(),(  

with .1)()1,1( 2
0 =+= qpF  Clearly, 

1)1,1()0,1(,)1,0(,0)0,0( ==== FandpFqFF  
                       1)1,1()0,1(,)1,0(,)0,0( 0000 ==== FandpFqFpqF  
Thus X∈∀≤ ),(),,(),( 0 yxyxFyxF . Consequently, the corresponding concentration 
function must lie in I∈∀tt],,0[  (c.f., Corollary (vi) to Lemmas 1 and 2). 
 Straightforward computations however show that concentration values are 

,1)1()(,)(,0)0( ==== ψψψψ andppqq  say, for .pq <  For this case, the 
concentration function )(tψ  is capable of detecting the artificial discrepancy 
between ),( yxF and ),(0 yxF  In fact, though they are different functionally, as far as 
dependence of X  and Y is concerned, ),( yxF  and ),(0 yxF  are inherently not 
different from each other, because ),(0 yxF   is a product of the marginal distributions 
of two random variables assumed initially and intentionally to be completely 
dependent. Thus, the concentration function )(tψ  has in this instance been able to 
detect whether, ,),( X∈∀ yx  ),( yxF  and ),(0 yxF  display the same structure of 
dependence or not. 
 
5. CONCLUDING REMARKS  
 
 We end the foregoing discussions on concentration and expansion functions by 
re-emphasizing the following: 
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 (i) If they are to be used for statistical applications on bivariate dependence, 
concentration and expansion functions must be both be used, because concentration 
is seemingly appropriate for negative dependence, and expansion appears on the 
contrary to be suitable for positive dependence. These functions are nonetheless 
incapable of detecting complete dependences, especially positive complete 
dependence. 
 (ii) Clearly, the concepts of concentration and expansion are intrinsically not 
identical with the concept of dependence bearing on two random variables. The 
former relate to detection of continuity or singularity of two probability measures. 
The latter bears on the question whether joint probabilities (distributions) are formed 
by the product of their marginal measures (distributions) or not. Therefore, care 
should be taken in applications of concentration and expansion to dependence. 
 (iii) Since both the marginals and the joint measures are defined on a common 
measurable space, joint measures (distributions) cannot be singular with respect to 
the product of their marginals (marginal distributions) everywhere in the relevant 
space, unless we are confronted with an empty probability space. 
 (iv) The foregoing exposition comprises some initial results of an ongoing 
research on the topic. The authors intend to present full results in a separate paper in 
near future. 
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