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ABSTRACT

We give new results of stability and convergence of a numerical scheme for a complete
abstract second order differential equation of elliptic type by using finite difference method. First, the
theory of linear operators sums is reffered to. Next, we deal with the previous problems using the
explicite resolution of an infinite linear system.
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1. INTRODUCTION

In this work, we study the following abstract second order differential
equation

u'(t)+2Bu'(t) + Au(t) = 1 (t), te(0,1) (1)
under the nonhomogenous boundary conditions
u(0)= ¢
{ @
ul) =y

where @,y and f(f) belongs to a complex Banach space E. A and B are two closed

linear operators with domains D(4) and D(B). Our aims is to study the stability and

the convergence of a numerical scheme using finite differences ([6], [8]).
1
N+

Let N be an enough great positive natural number, putting : A=_L_ we

consider the following problems:
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ij”—2vj+vj_| Vi<V )

+2B +Av. = f, 1<j<N
G p 1= 7 ®
L Y= Vyn =Y
where v, is the approximative value of u(jh), f; = f(jh), and:

Wis —2W; + W, Wi — W) = i<

X +28B P +Aw, = f; 1<j<N )
w, =0 Wy =0

We assume the next hypothesis:
(H 1) B is the generator of a strongly continuous group in E.

(H2) 3K >0 / VA20 (4~ B - D)

L(E) v
(H3){(A ~B A (B-ul) " —(B- ) (A-B* =AD" =0
VuelR  VAz0
IK>0 / YA20
i) ||B(A B* - AI)” ||L(E) X
i) ||B (A-B2 =AD" ||L(E)
iii) "A(A—Bz - Iy “L(E <

(H 4)

(H1) implies that D(B)= E; but D(4 — B?) is not necessarily dense. The
hypothesis (H2), (H3) and (H4) allows us to apply the theory of linear operators
sum’s Da Prato-Grisvard [1]. The hypothesis (H2) and (H4) express the ellipticity of
(1), (2) (see [4]). In Labbas-El Haial [5], the authors give a result of existence,
uniqueness and maximal regularity of the strict solution u when f is holderian,
where: u e C([0,1]; E) is a strict solution of (1), (2) if and only if : u verifies (1)-(2)
and

u e C}([0,1}; E) " C'([0,1}; D(B*)) N C({0,1); D(A)).
Our aims is to find an a priori estimate that is fundamental for the study of the
stability and the convergence of the numerical scheme.

This work is structured as follows, in the second section, we use the linear
operators sum’s theory. This method is based in the built of the natural
representation of the eventual solution by using operational calculus and the
Dunford’s integral (see [1]) in some interpolation spaces characterized in [3]. The
result obtained generalize the one given in Medeghri [8] (case where B=0). In the

third section, we recall definitions and properties of the sequence spaces S, and [*
[6], [7] and [2]. S, being a unital Banach algebra, we obtain existence and
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uniqueness of the solution of an infinite linear system. Then we get an
approximation method for boundary problems of a second order differential
equation, using the numerical scheme. Convergence and stability are obtained by the
explicit resolution of an infinite linear system. These results generalize in a certain
sense those given in [6].

2, APPLICATION OF LINEAR OPERATORS SUM’S THEORY
2.1. Construction of the solution
Writting the problem (3) in the form

L,V+@,8V+AV =F )

~

in E=E", with
V=,V )s F=(f faresfy)
and
P, = max .
T, is the following N order tridiagonal matrix
-21 0. . o0
1 -2 1
10
I,=—| .
e .0
. .1 -2 1
o . .0 1 =2
®, is the following N order bidiagonal matrix
-11 0. . O
0 -1 1
2 .
0,==
" h .0
-1 1
0 0 -1
and

‘(BV) =(Bv,, Bv,,..., Bvy)
for ¥ € D(B) = [D(B)]"
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{'(ZV) = (Av,, AV, AVy)
for V e D(4) =[D(A)]"
The solutlon of problem (I) is ngen by
V=o- I(A B* - AN'YdA
with y a sectorial boundary curve of the following sector of the complex plane
S(6,,7,) = {z eC: Iargzl <6, }u B(O,r,),
oriented positively and B(0,7,) is the open ball of radius #,. The hypothesis (H2)
implies the existence of &, e b, w/ 2[ and r, >0 such that the resolvent set of
A~ B? contains S(8,,7,).

Y=V, Voo Vi)
where

y _sinha(N+1—j)ev_j,,B + sinh of
7 sinha(N +1) sinh (N +1)
and

N+1
e(N+1—_/)th/+ ZK;e_B(j—k)hf;‘
k=0

sinh ak.sinha(N +1- j)
sinha.sinha(N +1)

if k<

K4 =-h’
sinh gj.sinh (N +1— k)
sinha.sinha(N +1)
for o such that 1+ (Ah* —2)e” +e** =0 and A ;é;‘;-smz ¥ with k =0,1,...,N.

2.2. A priori estimate

if k>

Considering problem (4), one has the following result

Proposition 1. Under the hypotheses (H1), (H2), (H3) and (H4) there exists C>0
such that

w” <C max
0<jEN+

0Sj<N+l fj"E
Proof. Writing
W= (W, Wysees Wy)
then
W=—_71— L(A-B2 - AI'vda
2ir
where

Y = (¥ Varis Yu)
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and

N N+1Ka —B(j~k)h

Y= Z € f"
k=0
From (H2) one has
2 -1 K
3JK>0/ VA=20 ||(A B - "L(E) 1+4

and from (H1)

frrer
On the other hand

NZ-H
=0
h inha(N +1-
| sinh a(N + J)I i Imhakl
| sinh. Slnha(N + l)l k=0
2] sinh a( ])|
| sinh.sinh a(N +l)| k=1
h2 sinh Rea(N +1- j)sinh Re(a /2)(j + 1) coshRe(e / 2) j
I sinh a.sinh a(N + 1)| sinh Re(a/ 2)
h sinh Re ar( /) sinh Re(a / 2)(N - j + 1) coshRe(a / 2)(N - j)
| sinha.sinha(N + l)I sinh Re(a / 2)
h*sinh Rea(N +2)
" | sinha.sinha(N +1)| sinhRe(a/2)
h? sinh Re(a / 2)(N + 2) coshRe(a/2)(N +2)
"~ |sinh a|fsinh(a/ 2)(N +D)cosh(a / 2)(N +1)|sinh Re(ar/ 2)
h* (coshRe(a/ 2) coshRe(a/2)(N +1)
]smh al\ sinh Re(a/2) " sinh Re(a/2)(N +1)
Kh*J4 - 27|
|smh a||(/12h“ 4317y
<X

A
2.3. Stability and convergence

a
K2

|smh a(N +1-k)|

Considering problems (1)-(2) and (3), putting &; = u(jh)-v ; we have the
result of stability and convergence
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Theorem 2. Under the hypotheses (H1), (H2), (H3) and (H4); ¢,y e D(L)
(with L = A+ B?) such that Ag, Ay, f(0), f(1) belong to D, (0,+x) and Be,By
belong to D (8 +1/2,+0)f & C* ([01];E) with 8 € ]o 1 we have

0< jSN+1 )
Proof. The hypothesis allows us to use the result of Labbas-ElHaial [5] that gives us
the existence, the unicity and maximal regularity of the solution of problem (1), (2).
Remark that ¢, verifies the problem

E,,—26,+¢. £in =& :
L h; "+2B[”h JJ+Agj=gj—fj 1<j<N

£ =0 £y =0

u,,—2u,+u, U, —Uu,
g =t f“+23( “‘h fj+Auj

with

h2

then ¢; verifies the a priori estimate

0<1$N+l " <C05]<N+1 j_'f]“E
Replacing respectively g; and f, we have
—2u, + o — U,
-1= h“2 Y- 23(”“‘}1 "1J+ Au, — (u"(jh) + 2Bu'(jh) + Au(jh))

then
g~ 1= %u"( jh+0,h) +%u”(—jh +0,1)~u"(jh) + 2Bu'(jh + O,h) — 2Bu'(jk)

and using the holderianity of #” and Bu' (see [5]), we obtain the result.

3. APPLICATION OF THE INFINITE MATRIX THEORY TO THE STUDY
OF THE FINITE DIFFERENCES

3.1. Recall on infinite matrices

Let M =(a;,);.
complex numbers. We set

S, = {(aj,q)jykz, /su;l{z lam l] < oo}. &)
J2EA_g=t

be an infinite matrix whose coefficients are reals or
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From [4] we know that S, is a Banach algebra with respect to the norm

M|, = SPP(Z I IJ- ~ (6)
J21 ¢=1

By the same way we define the one-column infinite matrix X =(x;),,

where x is a scalar for every j, and the well-known vector space
r ={(x,-),~21 /sug(lx,-l)m} | %
j2

normed by ”X ” o = supdx ; |).We are lead to study infinite linear systems of the form
j2!

7 Zaqu =y; Jj=L12,. (8)
5 ,

where (a;,); .., and (y,),, are given and y;is a scalar for all j. (8) is equivalent
to the matrix equation
MX =Y ©)]
with M =(aj,q)j,q21, X=(xj)j21 and Y=(yj) -
S, being a unital Banach algebra, if
r-m <1 (10)

ISt

M is invertible in S, and for all ¥ €%, equation MX =Y admits a unique solution
in I*, given by
X=Y.(I-M)'y.
k=0 ‘
In [2], [6] and [7] are given spaces generalizing the preceding ones.

3.2. Application to numerical scheme

We deal with problem (1), (2), where- 4 and B are two reals with
A <0, ¢ =y =0. From (3) we deduce that (1) and (2) are equivalent to the system

Bav;+v, +ayByv,, =h*Byf, j=12,.,N, an
Vo =0, vy, =0
where
ay=1+2B—— and B, = !
N N 1 12"
N+1 ~2-2B L+ AG)

Using infinite matrices, this system can be written under the form
M\Vy =h’ByFy, where M, =(a;,(N)),,, is defined by
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1 if g=jand j<N,
ayPBy fg=j+land j<N-1,
Py ifg=j-land j<N,

0 otherwise;

a;(N) =

and
"Fy =(fis Losos S0y Vi = (V5 v550,v3,0,0.00).
We see that for each integer N, M, €S,,V,, and F, €l®. Since 4 <0, we deduce
that if A is sufficiently small
2-2Bh

I =l =18l +lewBil = 55— <

Then, system (11) admits in /* only one solution which can be written under the
form

Vy =3 =M,)" ByFy. (12)

n=0

3.3. Expression of the solution V,,

In this section we shall give the expressions of v, in which f, is zero as
v2N+1

A A
Consider the infinite matrix M, = (a,,(N)), ., defined by
1 if g =j,
ayBy if g=j+1,

ﬂN if q= J - 1’
0 otherwise;

A
a,(N)=

A
As we have seen in [4], we can give the expression of (/ - M, )" according to the
cases when nis odd or even. Note that the calculations are easier that in the case

A
when M,, isreplaced by M,. We obtain the following
Propesition 3. When j is even, the coordinates of the solution are given by

._l 0
v =3 (D ﬁ”(fc,ia; ,--,,+sz+”22(—1)" VY i
p=0 s=0 P=j (13)
© ) vl -1 i-ds
-k Z ﬁ:lm(czifl —C2i+1-1 s |fl
i=j+

with
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. I
Vip= 2 (CF=Caf = f, 12+ CIlal 7 f, 0y

se[0£]-4-1)] s=1

When jis odd j/2is replaced by (j-1)/2 in the expression of y; , and
the third term in the sum defining v ; vanishes.
Proof. Doing as in [4] one verifies that V), is solution of system (12). In (13), v; can
be written by the means of three sums : o, ;,0,; and o, ; respectively. Let us proof
that in the case when j =2k, k >1, wehaveforall je {1,...,N}

ByviatvtayPyv;, = hz[)’ij.
The sum fByo,,,+0,;+ayfyo,,,; 1is equal to hZ,Bij, since Vp e
... j- 2} and 0 < 5 < p the coefficient of the term A°B7* S i-pr2s1 18 €qual to
Cray - C;ay +a,Clay =ay(Cy - Ch, + C7) = 0.

If p=j-1 the coefficient of WByf,, in the sum

ﬁNo—z,j—l +0,;+ ay Pyo, L is

Cllaf /ot - Cliaf " v ayCltaf 7 =0,¥s e {L,2,..., j 1},

p+l

If p=j the coefficient of A* ,BN f, isequal to
(Cj : Co)aN ( T j+l)aN +aNC' =0.
We get the coefficients of 4’7 f,, h*BL" f,,... doing the sum
Cllay! —Cliai +ayClay =0,  1<s<j-1
If pzj+1 and se {1,2,...,]} we get
Cj—s-lap—j+:+l _C;:]\‘afl-ﬂ—]h\' +ach s p Js O,
as coefficient of h ﬂ"*zfp _js2st inthe sum fyo, . +0,; +ayfyo, ;. For s=j
one gets two terms C2+1 + C =0 as coefficient of A’ 3L f beju-  When

0<s<[Z£]-k-1 the coefficient of h>BJ*f

p—j=2s+1 is
(C]+s+l __Cs)ap JHl-s _(C;I.lv +l)ap-rl-/—.r +aN(C:+’ C:-l)ap j-s =0.

Finally the sum of the coefficients of h*B/" f, corresponding to even powers of
By,(p =2i), inthe terms fyo, ;,,0;; and B0, ,, is
_(Cf,ﬂ' —1 Ct k) p~k—i+l (C‘p:_,; _C;;I;)ap#-l—t—k +aN(C;')+k Cl —k- l)ap—l k =0.

Let us give now another expression of v,.

Proposition 4. There exist two sequences (o;(g,5)) ,, and (z,(g,5));, such that
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=h22ﬂ§‘“‘(2 aj<q,s>fzs+,]~hzzﬂ;4+2(z r,(q,smsj. (14)

420 520 g20 520
There exists a constant K, >0, depending only on B, such that

lo,(4:9)| < KaChal [, (a.9)| < K, Cl, ek

Proof. When j =2k +1, the calculation gives

Ciaf™ if 0<sg<kandk-g<s<k+gq,
0,(g,8)=(CL** = C3* " Naf*™ if k+1<gand 0<s<qg-k-1, (15)
Ciai*s if k+1<gand g-k<s<k+gq,
Citait if0<g<kandk-—g<s<k+q-1
7,(g,5) ={(CL*" = Ci¥)af*™ if k+1<qand0<s<q-k, (16)
Cirtagt ifk+1<gandg-k+1<s<k+q+],

Note that k,ss_N_Z'l in (15) and ss-';'_ in (16). Let us show  that

|o‘ ; (q,s)l < K,Cj,ay. First consider the case when B is negative. We have a) <1,

~k -N
a¥ =(14—2—B| <[i+—2_B| =M=
N+1 N+1

2 .
7 tends to e® , as N — o, we deduce that there exists a constant

therefore

. —Nin(1+
Since ¢ "™

K}, >0 suchthat a;* < K},. Elsewhere s being positive, we get

i <alt <Kjalb.
Consider now the case when B >0, corresponding to «, >1. As we have seen
above there exists a constant Kj >0 such that ay <Kj. In fact, here
a) tends to e*®, as N — . Then, we only have to prove that af* <K}, using

the relations given in (15). One gets successively, if 0<s<g+k then o, <af™,
and
ayf <al <al <Kj.
When 0<s<qg-k-1<(N-1)/2, we have g < N, hence
ay <dla) ' <al <ay <K
and ay* <af < K}. Finally, when ¢~k <s<g+k and q >k +1 we deduce that

s k+q
ay <ay?, and
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a* <al <al <K
If we set K, =sup(K},K}), we conclude that IO'j(q,S)ISKBCZ,,a,’(,. We proceed
similarly for z,(g,s).

One deduces the following property
Proposition 5. There exists a constant K >0 such that

K &
V"ISN+1‘\va

v=l

. (17)

"VN " = max
5 1<j<N

Proof. We are going to determine an upper beund of 'lv fl where v, is given by (14).
We get : '

0 0 N
Iv| < hZK{Z C1,Glay B |By] +Y €l Wew By |77]84] JZ 1| (18)
¢=0 q=0 v=]
Using the Taylor series
> 1
CL (Jay By)Y = —————,
; “ \/7 " 1-4a, 82
where '\/07 Jij Nl < 1/2, hbeing sufficiently small. We obtain
e o , l2-28h+ar’| &
h Z By [Z O-j(q’s)fzmj <h |ﬂN|KB 5 Z|fv| (19)
>0 =0 ‘ 2h\/B2 — A—ABh+ L h*

Since B*> -~ A >0, this inequality is true as & — 0. Doing analogous calculations for
the second sum defining v, in (14), we get

[r,(g.9)| < 2K, CE ;.
We deduce that there exists K >0 for which (17) is satisfied.

3.4. Case when A is an operator and B=0

When B =0, the result has been generalized to the case when 4 is a closed
linear operator, whose domain D, is included in a Banach space G. A satisfies the
unique hypothesis of ellipticity (H2), in which B =0. We obtain the second order
differential equation : ,

u"(t)+ Au(t)=g() e G, with u(0)=u(1)=0.
As we have seen in subsection 3.3, the explicit calculation of the solution V)
permits us to show the following result given in [6].

Proposition 6. There exists K > 0 such that
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| K
My T N+15"e
Indeed, here a,, =1 and B, = (=21 + Ah*)™". We have
b=+ (S bl S cnladin 5 L
where
1\( 2
1Bulle, <@ +D2J4-2v + 12 1] WD 1

ue) T 1+2(N+1)> 2
Using the Taylor series

il 1
Z CZq"ﬂN“L(G) T
o= V 1- 4”'BN "L(G)

1
(N+1) 55

we deduce that

h2

stG?

5> ﬂw{z a,(q,smﬁ,] <

920 520

which gives the conclusion.

3
4
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