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ABSTRACT

In this paper, we find the homology representations and characters of the orientation-preserving
automorphism groups of regular hypermaps of genus 2.
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1. INTRODUCTION

A classification of regular hypermaps of genus 2 have been completed by
Azevedo and Jones in [2]. They have shown that there are 43 of them, of which 10
are maps. Another 20 regular hypermaps can be obtained from these regular maps.
The remaining 13 regular hypermaps are not associates of these maps: they are 5
regular hypermaps and their associates.

It follows from the result obtained by Singerman in [22] that there are three
possible lattices of triangle groups corresponding to genus 2 hypermaps, so that the
orientation-preserving automorphism groups Aut H, one for each of the three
Riemann surfaces which admit regular hypermap of genus 2. Thus we consider
three lattices separately in our calculations. If we choose a homology basis on the
hypermap we are let to a matrix representation p, under the action of the

automorphism group on this homology basis. Then we can find corresponding
homology character 7, of G which is faithful character.

In [2] Azevedo and Jones showed that all hypermaps of genus 2 are reflexible,
that is, each has an additional orientation-reversing automorphism ¢ . This allows

us to choose a reflection line on the hypermap, so we obtain a matrix representing &
with respect to a chosen homology basis on the hypermap. One can use these

* This work is originated from the Author’s Ph.D. thesis.
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representations and characters to work on finite abelian coverings and reflexibility of
regular hypermaps of genus 2.

2. REGULAR HYPERMAPS OF GENUS 2

In this chapter, we will give a brief summary of the regular hypermaps of genus
2. The regular hypermaps on the sphere and torus have been determined by Corn and
Singerman in [5]; in each case there are infinitely many regular hypermaps. On the
other hand, it is known that the number of regular hypermaps of genus g > 2 is
finite [15]. Moreover, all regular hypermaps H of genus 2 are known. If H is a map
then the possibilities for its type { m, n } and automorphism group Aut H are given
by Coxeter and Moser in [6, p-140]. If H is not a map then the possibilities for its
type { I,m,n } and automorphism group Aut H are given by Corn and Singerman in
[5]. In fact, Azevedo and Jones in [2], have completed full results by enumerating,
describing and constructing all these hypermaps and specifying their full
automorphism groups Aut” H (including orientation-reversing automorphisms).

Table 1 shows the regular maps My, My, My, M3, My, M5 of genus 2 together with
the duals of M;, M3, M, and Ms which are denoted by My j=1,3,4,5 (to indicate a
transposition of vertices and faces) [2].

The entries in each of the six rows are explained as follows: the first two
columns give our notation for M and that in [6, Table 9]. The third column gives the
type { [, m,n } of M as a hypermap. The next column gives the number & of non-

isomorphic associates M* of M (7eS,, Machi’s group of hypermap operations
which transforms one hypermap H to another, called an associate H® of H). The
fifth column gives the number n ; (i=0,1,2) of hypervertices, hyperedges and

hyperfaces, respectively. The sixth column describes the orientation-preserving
automorphism group Aut M, and the final colurnn gives the full automorphism group
Aut’ M of order 2 |AutM |, since each hypermap M is reflexible.
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Table 1: The regular maps of genus 2.

Map Type o n, n n, AutM Aut’ M
Mo {8, 8}]]0 8 2 8 3 1 4 1 Cg Dg
M (10,5}, |5 2 10 2 5 1
6 Cio Dy
v @ | (5,105, |10 25 15 2
1
My 6,6}, |6 2 6 3 2 6 2 Csx C; Dgx C,
M, (8,4}, |4 28 4 8 2
6 <2,412> Hol(Cyg)
1, (92 4,8, |8 2 4 2 8 4
M 6,412} |4 26 6 12 4
6 (4,6>22) | DyxD,
w, O 4,612) |6 2 4 412 6
Ms (4+4,3} |3 2 8 16 24 6
6 GL,(3) |GL3)OcC
M) | 3,4+4F 18 23 6 24 16 )
5 .

The regular maps Mg, M;, My, M3, M, Msare illustrated in Figure 1.

Figure 1: The regular maps of genus 2.
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In each case we have indicated a pair of sides to be identified; the remaining
identifications can be deduce by symmetry about the centre, since the maps are
regular. For a more detailed account of these hypermaps, their orientations—
preserving automorphism and full automorphism groups, see [2].

The remaining 13 regular hypermaps are described in Table 2, each row
describes a representative H.(r = 1,...,5) of an § ;-orbits of lengths o

Hypermap  Type o o n; N> AutH Aut*H
H, 555 3 111 Cs Ds
H, 6 6 3 3 112 Cs D¢
H, 4 4 41 1 222 Qs QsYCs
H, 4 43 3 33 4 53 (4,612,2)
Hs 33 4 3 8 8 6 SL,(3) GL,(3)

Table 2: The regular hypermaps of genus 2.

We note that in the table, Q3Y C, shows a central productof Qg by C.,.
The hypermaps H,, ..., Hs are illustrated in the following figure, Figure 2.

Figure 2: The regular hypermaps of genus 2.

Here we use the James model [13] of a hypermap: this is a trivalent graph
imbedded in a surface, with hypervertices, hyperedges and hyperfaces represented
by the regions labelled 0, 1 and 2 respectively. By contracting each edge separating
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hypervertices and hyperedges to a point, we obtain the Cori model [5] of a
topological hypermap.

3. INCLUSIONS OF AUTOMORPHISM GROUPS OF GENUS 2

In [22] Singerman gave all possible inclusions A, <A, between pairs of
triangle groups. If A, is normal in A, then Table 3 gives all possible inclusions
between hyperbolic triangle groups (they can arise for genus 2 regular hypermaps).

A A [Ar: A ]
A(3,3,0), t>4 AL, 1, 1) 3
A2, 3,20, t>4 At 8, 1) 6
AR, 4 2u), 124, t+u>T AL, 1, 1) 2

Table 3: Ay A,
If A, isnotnormalin A,, then it follows from the results of Singerman that

there are 3 cases which can arise for genus 2 regular hypermaps, these cases are
given in Table 4:

A] A% [A] . AO ]
A2,3,4n), n=22 A(n, 4n, 4n) 6
AQ2,4,2n), n>3 A(n, 2n, 2n) 4
A2,3,2n), n>4 A2, n, 2n) 3

. Table 4: Ag £ A,

Now if A, < A, then every subgroup M <A, is also in A, so every
hypermap of type {lo,mo,no} gives rise to another hypermap of type {lo,mo,no} of
the same genus (since M is the same group). Moreover, if M < A, (so M A,) then
we obtain all possible inclusions between pairs of automorphism groups,

AutHy, = A, /M <A//M =AutH,.

Thus from tables 1, 2, 3 and 4 we deduce all possible inclusions between
triangle groups corresponding to genus 2 hypermaps:
A(2,8,8)< A(2,4,8) <A(2,38), A(4,4,4)< A(2,48)<(238),
A(4,4,4)< A(3,3,4) 2 A(2,3,8);

A(3,3,6)< A(2,6,6)< A(2,4,6), A(4,4,3)< A(2,4,6);
A(5,5,5) < A(2,5,10),

so we get three possible lattices of triangle groups, and hence of autormnorphism
groups of genus 2, namely;

I il III
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GLy(3) Cio (4,6 12,2)
A2,3,8) A2, 5, 10) A2,4,6)

Qs G Cs A3, 6,6)
A4,4,4)  NQ2,8,8) A, 5, 5)

Figure 3: Lattices of Automorphism Groups and Triangle Groups.

These groups have the following relationships:
LATTICE I:

2 1
(L1). C, =<c|c’ =1>, where C:[l OJ in GL,(3).

2 2 0 2
X2). Oy =<kI|k'=1L, K =1*, klk=1>, where k =c = J= )
’ 21 1 0

2 1 . 10

(L3). <-2,4{2>=<gq,h|g’ =h* =1, hgh=¢g’ >, g= , h=c'l= .
1 0 12
2 3 8 452 O 1

(X4). GL,(3)=<a,b,c|a*=b"=¢ = abc =(ac*)’ =1>, where a = ) ,

0
11 21
b= ,and ¢ = .
01 10

(I.5). SL,(3)=<d,e|d’ =¢* =1, ed’e = ded >, where
2

0 1 2 2
d =(ac®y 5:( J,e=02=[ J
2 2 2 1

LATTICE II:

(L1). C, =<ala’ =1>.
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(I1.2). C, =<b|b" =1>, where b’ =a.
LATTICE III:

(IL1). C, =<a|a® =1>.

(IIL.2). C,xC, =<a,b|a® =b" =1, ab=ba>.

(IL3). (4,6]2,2) =<a,d |a® = d* =(da)’ =(d'a)* =1>.

(IIL4). D, =<c,d|c* =1,d’ =c*,d'cd =c’ >, where c= a’d* with ¢* =b.

4. HOMOLOGY REPRESENTATIONS AND CHARACTERS

We will find the representations p, and characters 7, on the first integer
homology group H (S, 0) of the orientation-preserving automorphism groups G
of regular hypermaps of genus 2.

If H is a regular hypermap of type {ko,k,,kz} with hypermap subgroup
N < A=A(k,,k,,k,), then G= AutH=A/N [5]. The natural action of G on the
first integer homology group H, = H(S,Z)=N/N'= Z?%9 corresponds to the
action (induced by conjugation) of A/N on N/N’. Thus we have a representation

of G on the first homology group, i.e. we simply choose a homology basis on the
hypermap and look at the action of G on this basis (or one can use the
Reidemeister-Schreier method [14] to find a presentation for N, then work out the
matrix representation of G on H,(S,0)). On the other hand, the homology
character 7, is equal to
2—¢(x), if x#1,
7(x)= . 6]
2g . if x=1,
where ¢(x) is the total number of hypervertices, hyperedges and hyperfaces
invariant under x [16]. Let A(k,,k,k,) be the triangle group corresponding to a
hypermap of type {ko,kl,kz}, then in [18] Macbeath proved that
2 g,(x)
0 =N (< xS 22
i=0 i
for x#1, where £(x)=1 or 0 as x is not conjugate to a power of one of the
generators x, of G. Moreover, he also showed that if G is a cyclic group of order

n and x has order d , then

#(x) = ndZ\k:_ k! @
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Furthermore, 7, =d, y, +...+d, X, for some non-negative integers d,,...,d
where y,...., 7, are the irreducible complex characters of G and

,%Z L0720,

xeG
the multiplicity of each irreducible character %, of G in 7,. For more details about
the action on the first homology group, we refer to [1], (3], [4], [8], [16], [18], [19],
[20].
From the previous chapter we have three lattices of automorphism groups of
regular hypermaps of genus 2, so we will consider these lattices.

ko

d, =< ThX >=

LATTICEI:

(L1). Let G=<c| c®=1> be the cyclic group of order 8 (the automorphism
group of the map M, ), where ¢ is the rotation in the anticlockwise direction by
27 /8 about the central face. If we choose a homology basis e, e,,e,,e, on the map,
see Figure 4, then ¢ sends ¢, to —e,, ¢, to ¢, ¢, to e,, and e, to e,.

Y2
e
e
€4 €9
c
€3 “ €3
€2 €4
e
Figure 4 Figure 5

Thus we get the following matrix as a representation of G on the homology
group H,(S,0)=0*:
-1

—_— 0 O
O O O

pickH =CeGL,(2).

(=
(=]

1 0
If we apply the formula (2) to C,, we see that #(x)=2,2,6 as x € C, has order
8, 4, 2 (for example, the vertex and face of M, are invariant under the elements
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x=c,c’,c* and ¢’ of order 8, so ¢(x)=2). Then (1) gives the character-values
7,(x) =4,0,0,—4 as x € C; has order 1, 8, 4, 2 (as we can see from the trace tr
(p,) of p,). Thenwe get 7, =1, + X, + X + 2, with values in the cyclotomic field
0(e™*), where ., x:, Xs» X, are irreducible (faithful) complex characters of G(
ie. x,(c)=w,w=e").

On the other hand, if we choose a reflection line £ on the map, see Figure 4, we
see that the matrix o, of the orientation-reversing automorphism ¢ with respect to

the chosen homology basis is

1000
1o 001
“Zlo 010
0 100

(12). Let G=Q, =<k,l|k* =1, k’I*, klk =1 >be the quaternion group of order 8
(the automorphism group of the hypermap Hs), where k and [ are the rotations by
/2 about the central face and the other face, respectively. Hence the six elements
of order 4 in Q, are the quarter-turns fixing the centres of the two hypervertices,
hyperedges, and hyperfaces, respectively, so the element k’ rotates each of these

through a half-turn.
We choose a homology basis {e,,ez,ea,e,,} on H; (see Figure 5), then k sends

e —e, e, > —e,etr>e, and e ey and [ sends e > -e, —e —ée,
e, e +e, t+e, e > —e —e —+e, and e, e —e —e,.
Thus we obtain the following homology representation of G

00 -1 0 0 -1 -1 -1

00 0 -1 1 1 1 0
P,k =K; I =1L.

10 0 O -1 -1 0 1

01 0 0 1 0 -1 -1

Furthermore, it is not difficult to see from Figure 5 that @(x)=2,6 as xe @,
has order 4, 2, respectively. Then (1) gives 7, (x) =4,0,~4 as x has order 1, 4, 2,
(also from the representation p,), respectively. Thus we have 7, = 2%, where ¥, is
an irreducible complex character of @, given by 2. (D=2, x,(k*)=-2,
2s(k)= x,() = x,(k)=0. Here 1,k%, k1 kI are the representatives of conjugacy

classes of G .
If we choose a reflection line ¢ on the hypermap (see Figure 5) then we get the
same matrix @, with respect to chosen homology basis as in (I.1).



10 M. KAZAZ

(I.3). Let G=<-24{2>=<g h|g’ =i’ = 1, hgh =g’ >, of order 16 (the orientation-
preserving automorphism group of M;), where g is a rotation through 27 /8 about
the central face and / is a rotation about the midpoint of an edge, see Figure 6.

As usual, we choose a homology basis on this map, then we find the action of
the automorphism group on these basis elements. It follows immediately from
Figure 6 that g sends e, - 6 & e, e e, and e, - e, and similarly A
sends e, > —e +e —e,, € f>e-ete~e,e e -e+e, and e >

e—e +e,.

Figure 6 Figure 7

Then the homology representation p, of G follows:

00 0 -1 -1 0 1 =

1 00 -1 1 .
£ g- =G h = HeGL,(D)

010 -1 1

001 o 1 -1 0

Moreover, the homology character is equal to 7, = y, + 7,, where y, and y

are irreducible complex characters of G given by y()=2, z.(g")=-2
2:8)=0, x,(9)=v-2, 2,(0")=—/-2, z,(0)=0, X(gh)=0, and z,(1)=2,
17(94):_29 17(92):01 17(9):_\1_2’ /1,7(95): V_z’ Z7(h): 2,’7(9’1):0’

where 1,9*,9°,9,9°, 4,94 are the representatives of conjugacy classes of G .

On the other hand, if we choose a reflection line £ on the map, see Figure 6, we
find that the matrix o corresponding to this reflection line and the homology basis
is
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0 -1 00
|-1 0 00
“Zlo 0 01
0 0 10

(1.4). Let G=GL,(3)=<a,b,c|a"=b"=c¢ =abc =(ac*)’ =1> of order 48,

the automorphism group of Ms.
From Figure 7, we get the homology representation and character of G as
follows:

-1 -1 0 1 -1 -1 -1 0
0 0 -1 -1 1 0 0 -1
pia =A4d; b =B,

0 0 1 0 0 0 o0 1
0 -1 -1 O 0 0 -1 -1
0 0 0 -1

_ 100 0

il P =C e GL,(0),
0 01 0

and 7, = ¥, + 2, , where x, and y, are irreducible complex characters of G given
by =2 1) =2 1) =0 1,O=V-2, 1,)=--2, z,@=0
2.(B)=-1, z,(c*b)=1, and (D=2, r(c')=-2, 2:.(c) =0, x(c)= -2,
z.(c) = V=2, 7(a)=0, x,(b)=-1 x(c'b)=~1 (where 1,¢*,c%, e’ a,b,c'b
are the representatives of conjugacy classes of G).

Moreover, if we choose a reflection line £ on the map ( see Figure 7 ), then it is
not difficult to see that the matrix a, of the orientation-reversing automorphism «

is the same as in (1.1 ).

(I5) Let G=SL,(3)=<d,e d'=e'=1,ed’e=ded > be the special linear
group of order 24, the automorphism group of Hs, where d = (ac’)’c’ and e = c.
Then it is easily verified from Figure 8 that the homology representation of G is

0 1 0 0 00 -1 0

-1 -1 0 0 00 0 -1
pde= =D; e =F,

1 0 -1 -1 10 0 O

0o 1 1 0 01 0 O
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and then 7,=2y,, where Xs 18 an irreducible complex character of G given by
Z5(1)=27 Zs(ez)=_2> ls(e)=0’ Zs(d)z—L xs(d2)=_'1’Zs(dzez)=l’
xs(de’) =1, (where 1,¢*,e,d,d?, d ’e’, de’ are the representatives of conjugacy
classes of G).

It can be seen that the matrix a, of the orientation-reversing automorphism o

corresponding to a chosen reflection line ¢ (see Figure 8) on the hypermap with
respect to the homology basis is the same as in (L3).

Figure 8 Figure 9

LATTICE II:

(IL1). Let G = < a, a’=1> be the cyclic group of order 5, the automorphism
group of the hypermap H,, where « is a rotation through 27/5 about the centre.

Let ¢ =x+x,e=-x+x,¢ = -x,—x, and e, =x,+x, be a chosen

homology basis on the hypermap, see Figure 9. Then we obtain the homology
representation as

0 0 1 0
0 0 0 1
Ca e = 4 e GL,(0)
pca -1 -1 -1 -1 S M
1 0 0 0

and then the homology character as n=XtX 2+, where y,, 7, ,%, and
X, are irreducible (faithful) complex characters of G .
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Furthermore, if we choose a reflection line ¢ on the hypermap, see Figure 9,
then we see that the matrix @, of the orientation-reversing automorphism a with
respect to the homology basis is

0 1 0 0
1 0 0 0

i ISR R
0 0 0 1

(I1.2). Let G =< bl b"°=1> be the cyclic group of order 10, the automorphism
group of the map M, where b is a rotation through 27 /10 about the centre.
Let us choose a homology basis on the map, see Figure 10, such as ¢, = x, +x,,
e, =—X +x,,¢ =—x,—% and e, =x, +x,. Then it is not difficult to sce that the
homology representation of G is

0 -1 0 O
0 0 -1 0
p b - B eGL,(0)>
0 0 0 -1
i1 1 1

and 7,=y,+ 1, + X, + X,» Where z,, z,,%, and y,are irreducible (all faithful)
complex characters of G.
The matrix ¢, of the orientation-reversing automorphism « corresponding to

the chosen reflection line £ with respect to the homology basis is the same as n
(IL.1).

LATTICE III:

(IIL1). Let G=C,=<a|a*=1> be the cyclic group of order 6, the

automorphism group of the hypermap H,, where a is a rotation through 27/6
about the central hyperface, see Figure 11.
Let us choose a homology basis on the hypermap such as

e=X+X,6=X—X, &=—X,—X,€ ==X~ X;.
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Figure 10 Figure 11
Then it follows that
010
pla 0 001 = 4eGL,(0)
-1'100 *
-1 0 00

and
Tl =ZI+XZ+Z4+/‘KS7
where ., 7,, 7, and y, are irreducible complex characters of G .
Moreover, the matrix «, of the orientation-reversing automorphism o with

respect to the chosen reflection line £ and the homology basis is
0 0 01

010
1 00|
000

(IIL2). Let G=C,xC, =<a,b|a®=b>=1, ab=ba > be the abelian group of
order 12, the automorphism group of the map M,, where a is a rotation of Figure 12
by 27/6 and b is a half-turn reversing each edge and transposing the two faces and

the vertices.
Let us choose a homology basis on the map as e =X ~X,,6 =X —X,,

0
a,:o
1

e =X,—X,,e =X, —Xx,, see Figure 12.
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ik;
21 = %% oa T4

« - »/_
\
zs A b/ b , 2
a
/
16/ b _b).ﬂ\“
o - -
21 g, \\./
W

Figure 12
Then we get the following homology representation for G:
0 010 -1 0 0 O
0 0 01 0 -1 0 0
pram =A; b =B,
-11 00 0 0 -1 0
-1 0 00 0 0 0 -1

and then 7, = ¥, + Xo, + Xas + Xsu» WheTe 2.\, %15 Xy and g, are irreducible

complex characters of G given by

2 3

ab a’b a’b a'b a’b

Q
Q
Q
£
2
"
o

g; 1 a
X 1w w -1 w W -1 -w w 1 —w -
X2 1w w1 W oW -1 WP -t -1 W W
Xa 1w w1 w W -l - —w -1 v -
Xs s 1 W w -1 w w -1 =W —w 1 -w -w

w143 0

where w=e¢e¢ ¢ = 5

If we choose a reflection line ¢, see Figure 12, it can be seen that the
corresponding matrix «, is the same as in (II1.1).

(IL3) Let G=(4,6]|2,2)=<a,d | a° =d* =(da)’ =(d"a)' =1> of order
24, the automorphism group of the map M,.
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Figure 13

We choose a homology basis on the map as e =X —X,—X,—X,,

€, =X =X, ~X~X,, e =X —Xx,—x,~x; and e, = x, —x, —x, —x,, see Figure 13.
Then the matrix representation p, of G with respect to the chosen basis is

0 010 0 0 01

0 0 01 0 010
pooa = 4; d = = D

-1'1 00 0 -1 00

-1 000 -1 0 00

and 7, = y, + x,, where y, and , are irreducible complex characters of G given
by 16(1)22! Zs(b2)='_2, Z6(a)= V=3, Xﬁ(aa)z()’ 16(‘15):_51_3’
Zs(a2)=_1’ le(azbz)zl’ Zs(b)=0’ Xs(ab)=0, and xD=2, X7(b2)=_2’
17(‘1):_\‘“31 Z7(a3)=07 ,1’7(05)= V—3’ 17(‘12):_1’ /’{7(021)2):1,

Z,(b)=0, x,(ab)=0, where 1,d*,a,a’,a’,a’,a’d*,d,ad are the representatives
of conjugacy classes of G .

If we choose a reflection line £ on the map, see Figure 13, we see that the matrix
a, of the orientation-reversing automorphism « is the same as in case (IIL1).

(IIL4). Finally, let G=D,=<c,d|c*=1,d*=¢*,d"cd =c* > be the binary
dihedral group of order 12, the automorphism group of the hypermap H,.
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4
.

Figure 14
Since 533(4,6|2,2) with ¢=a’d’ and ¢>=b, then the homology
representation follows:

1 -1 0 0 0 0 01

1 0 0 0 0 10
picH =C;, d— =D,

0 0 1 -1 0 -1 00

0 0 1 0 -1 0 00

and 7, =2y, where y, is an irreducible complex character of G given by,

z(1)=2, 15(c3)= 2, z(c)=-1, ls(cz)= -1, z,(d)=0, 2(cd)=0, where
1,¢%, ¢, ¢*, d, cd are the representatives of conjugacy classes of G .

Let us choose a homology basis such as e =x-X,—X

s — X,

69
€y =X, =X, — X, m X, @ =X =Xy~ X,— X, € = X~ X~ X, "X, and a reflection line
¢ on the hypermap, see Figure 14. Then the matrix @, corresponding to this
orientation-reversing automorphism « is the same as in case (IIL.1).
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