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ABSTRACT

In this study we consider surfaces in the Euclidean space E*™  satisfying the conditions
R-h=L,0(g.h) and R-h=L, O(4,.h).

1. INTRODUCTION

Let M be an n-dimensional submanifold in (n + d)-dimensional Euclidean
space E™™. We denote the Euclidean metric on E™ by g and the Levi-Civita

connection of g by V . The induced metric on M is also denoted by g and the Levi-
Civita connection of (M, g) by V. Then the second fundamental form h of M in
E™? is defined by the formula of Gauss: v Y=V, Y+h(X,)Y), where X, Y are
vector fields tangent to M and h(X,Y) is the second fundamental form of M. Let §

be an arbitrary normal vector field on M. Then the shape operator Ay of M with
respect to & and the normal connection V' of M in E™ are defined by the formula

of Weingarten: V,&=~A4,X +V4&, where by —4.X and V& are respectively the

tangential and the normal components of V ,&. The second fundemental form h

and the shape operator A; are related by g(A:X, Y) = g(h(X, Y), &). If h=0 then
M is called totally geodesic. M is totally umbilical if all shape operators are
proportional to the identity map. M is an isotropic immersion if for each p in M,

Hh(X X )" is independent of the choice of a unit vector X in T,M. The mean
curvature vector H of M is given by H = -1—tr(h) and the mean curvature of M is
n

defined by @ :=/g(H,H) .Let X A Y denote the endomorphism Z — 2(Y,2)X -
g(X, Z)Y. Then the curvature tensor R of M is given by the equation of Gauss:
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ROXY)Z= S(4X A AY)Z, (L.1)

where A;:=Aéi and {;,...,&4} is a local orthonormal basis for the normal space
T*M. If M is a surface then the Gaussian curvature K of M at p € M is K(p) :=
gR(X,Y)Y, X), where {X, Y} form an orthonormal basis of the tangent space T,M.
The equation of Ricci becomes g(R*(X, Y), n) = g([As, A,JX, Y) for £ and 7
vectors normal to M, where R* is the curvature tensor of the normal connection V*,
If R* =0 then M is said to have trivial normal connection [1].

2. SEMIPARALLEL SURFACES

Let V be the connection of van der Waerden-Bortolotti of M, i. e., V is the

connection in TM @ T*M built with V and V. Denote the curvature tensor of V.
by R.

Definition 2.1. Let M be an n-dimensional submanifold in (n + d)-dimensional
Euclidean space E™*. M is called semiparallel if

R X,Y)h=V,Vh-VV h-V

3

0

penht =
that is,
(R(X,Y) ‘h)(U,V) = RYX,Y)h(U,V) - h(R(X, Y)U, V) - (U, R(X, Y)V) =0 (2.1)
for all vector fields X,Y,U,V tangent to M [2] (see also [4D.

. In the present section we consider that M is a surface in the Euclidean space

E™ ‘
Teorem 2.2. [2]. Let M be a surface in the Euclidean space E*®. Then M is

semiparallel if and only if locally

1) M is totally umbilical, i. e., M is an open part of a sphere S*in E*c E**Y, or

ii) M is a flat surface with trivial normal connection, or

1ii) M is an isotropic surface with codimension at least 3 and o = 3K.

Proposition 2.3. Let M be a surface in the Euclidean space E**Y. Then there is
an orthonormal basis {e, e;} of T,M such that

A0 a, b, a, b,
A{l = 0 i > Afz = b a ? Afs = b a ?
2 T 3 T %

where &, &, and &3 are vector fields normal to M.
Lemma 2.4. [2]. Let M be a surface in the Euclidean space E** and {e1, €3}
be an orthonormal basis of the tangent space T,M. Then
(R (e1,e2)h)(ey, €1) = [A-p][azhy + ashs]E, + [-A(A-Wwb, + 2Baz + 2Kb,] &,
_ + [-AM(A-p)b; - 2Ba, + 2Kbs] &, (2.2)
(R (er.e2)h)(er, €2) = [A-u][ & +b] - KIE, +2[Bbs - Kay] &, -2 [Bb, + Kas] &, (2.3)
and '



ON A CLASS OF SURFACES IN THE EUCLIDEAN SPACE 49

(R (ee2)h)(e2, €) = -[A-pl[asbs + asb3]E; + [-p(A-p)b, - 2Baz - 2Kb,] &,
+ [-u(A-p)bs + 2Pa; - 2Kb;] &3, (2.4)
where K is the Gaussian curvature of M in E**® and B = asb; — asbs.
Definition 2.5. Let M be a submanifold in the Euclidean space E™Y. We
define a tensor denoted by Q as
Q(g, h) (&5 € & &) = =-h((ex A e)) €, &) - h(e;, (ex  €) &) (2.5)
for vector fields e;, €;, €y, ¢ tangent to M (see [3]).
If the tensors R- h and Q(g, h) are linearly dependent then M is called
extended semiparallel, that is, the equality
R-h= LhQ(g’ h)
holding on the set
Uy, = {pe M : Q(g, h) # 0}
where L; is some function on Uy, .
Lemma 2.6. Let M be a surface in the Euclidean space E** and {ej, e,} be an
orthonormal basis of the tangent space T,M. Then

Q(g, h)(e1, e1; €1, €2) = 2(ba€s + b3&y), (2.6)

d Q(g, h)(ey, €2 €1, €2) = -(A-pE; - 28,8, - 22383 2.7
an

Q(g, h)(ey, €2; €1, €2) = -2(b2E; + b3&;). (2.8)

Proof. Let {e;, ;} be an orthonormal basis of the tangent space T,M. Since
the dimension of the first normal space N, (M) :=span{h(X,Y) | X,YeT M} is at

most 3 we can choose normal vectors &,....&4 such that 4, =..=4, = 0. Suppose

£, is in the direction of the mean curvature vector H. So by the use of Proposition
2.3, we have

h(ey, &) = A& + a6, + 38, (2.9
h(ey, €2) = by, + b€ (2.10)

and
h(e,, €5) = p€, - a8, - asks. (2.11)

Therefore using (2.5) and the symmetrization of the second fundamental form h we
get the result.

Lemma 2.7. Let M be a surface in the Euclidean space E** If M is extended
semiparallel then R*(e,, €,)H = 0 for all vectors ey, e, tangent to M.

Proof. Let £ be a normal vector at a point peM. Choose an orthonormal basis
{e}, €;} of T,M such that Age; = Aie; (1 < i <2)1i e, e, e, are eigenvectors of A
Since M is extended semiparallel, we can write

(R (er,e2)h)(e;, ) = LuQ(g, h)(e;, €55 €1,82)-

So using (2.1) we have
R‘L(e,,ez)h(ei,ei) = 2h(R(e|,ez)e;, Ci) - 2th(82, ei)h(e,,ei) +2 th(e,, e;)h(ez,ei). (212)
Since
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1 2
g(R'L(Cl,Cz)H, g) = _z'zg(Rl(el’ez)h(ei:ei)’é:) (213)
i=t
then substituting (2.12) into (2.13) we get
2
g(R-L(el,eZ)H’ g) = Z[g(h(R(elaez )eivei)az) .
i=!
- Lug(ez, eg(h(es,ei),.8) + Lug(es, e)g(h(ese)),&)]. (2.14)
Since g(Ace;, €;) = g(h(e;, €;), &), the equation (2.14) can be written as
g(R‘L(ebeZ)Ha é) = g( R(en e, )e1 > Aﬁel) + g( R(eu ez)ez > A§CZ)
- Lug(es, ergler, Arer) - Lig(e,, €2)g(ey, Ager)
+Lug(e, €1) glea, Ager) + Lyg(e,, €5) g(ez, Azey). (2.15)
So substituting Age; = Aie; into (2.15) we obtain g(Rl(el,ez)H, &) = 0. Since £ is an
arbitrary normal vector the last equality gives us R*(e;,e,)H = 0. This completes the
proof of the Lemma.[J

Theorem 2.8. Let M be a surface in the Euclidean space E**. If M is extended
semiparallel then locally

i) M is semiparalel, or

i) M is a surface in E** with trivial normal connection which has the Gaussian
curvature K =1, or

iii) M is an isotropic surface with codimension at least 3 and o = 3K - 2L,.

Proof. If M is 2-semiparallel then R -h = 0. Thus the condition R -h = L,Q(g,
h) is trivially satisfied. So we consider the case M is not 2-semiparallel.

Suppose R h# 0 and R -h = LyQ(g, h) are satisfied on M. So by the use of
(2.2)-(2.4) and (2.6)-(2.8), the conditions

(R (enexyh)(er, e1) = LiQ(g, h)(ey, e;; e1,c2),
(R (ei,e2)h)(es, €)) = LaQ(g, h)(ez, ; €1,¢2)

and
ve th (E(e,,ez)-h)(el, €2) = LyQ(g, h)(ey, ey; €1,€2)
give that
[A-p]lazb; + a3bs] =0, (2.16)
-MA-p)b, + 2Bay + 2by(K- Ly) = 0, (2.17)
-AMA-)bs - 2Ba, + 2by(K-Ly) =0, (2.18)
(A-pi[ b7 + b! -K+1,]=0, (2.19)
Bb;~ (K - Ly)a, =0, (2.20)
b, + (K - Ly)a; =0, (2.21)
-HA-Wb; - 2Ba; - 2by(K - Ly) = 0 (2.22)
and
-u(A-p)bs + 2Ba; - 2bs(K - Ly =0. (2.23)

Since &, is in the direction of the mean curvature vector H, by Lemma 2.7, we obtain
R'(e,e,)€, = 0 which gives
(A-wWb, =0 and (A-p)bs =0. (2.24)
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Firstly we consider the case A # p. So we have b, = b; = 0. By Proposition 2.3,
since the shape operators of M are diagonazible then R' =0, i.e., M has trivial

normal connection and so the equation (2.19) gives the Gaussian curvature of M is
K= Lh-

Now suppose A = . We can choose a basis of the tangent space T,M denoted
by {2, } such that 4.8 = A& and 4,¢= A¢,. That is, ¢ and ¢ are
eigenvectors of 4, and 4, . So by Proposition 2.3, b, = 0 and p = @, bs. Therefore
we can rewrite the equations (2.16)~(2.23) as

d,bsa; =0, (2.25)

[ + (K - Ly)lbs =0, (2.26)
(62 - (K-Lyld, =0, (2.27)
(K -Lyas=0, (2.28)

So we have the following cases:

a) Suppose b;= @, = a; = 0. Then by Proposition 2. 3, we get

20 0 0 00
4=lo 2 %o o) % |0 of

which gives M is totaly umbilical. But in this case R h = 0. This contradicts our
assumption R -h # 0. So this case cannot oceur.

b) Now suppose b; =0, @, # 0. Then by Proposition 2.3, we get

A0 a 0 a, 0
A4, = , A, = ~ | A= - -
10 A > |0 ~aq > 10 a,
Since the shape operators of M are diagonazible then R* = 0 and using (2.27) we

obtain K = Lj,.

¢) Now we consider by # 0. If @, =0 then by (2.26) we obtain K =L;. If @,# 0
then by (2.25), a; = 0. So by Proposition 2.3, we have

A0 a o0 0 4a
A = , A, = | A=~ )
10 A 10 -aq > la, 0

which gives K = A% - 2@?. By the use of (2.26) we obtain 3K — 2Ly = AZ. In this
case dim N (M) =3 and uh(X X )H is independent of the choice of a unit vector X
in T,M. It is easy to see that o = 3K - 2L, at p.Hence we get the result, as required.
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3. SURFACES SATISFYING THE CONDITION R -h= L ” Q(A,,,h)

Definition 3.1. Let M be a submanifold in the Fuclidean space E™Y, We define a
tensor denoted by Q as
Q(A, . B)(es &5 e ) =-h((e, A, €)e,, ) hley (e, n, e)e,  (.1)
where
(e A, €)e =8( 4, e, e)ec— g( 4, e, €)ey, (3.2)
(see [5] and [6]).

In the present section we consider surfaces in the Euclidean space E**
satisfying the condition

R-h=L, O(4,,h) (3.3)
holding on the set
U, ={pe M: O(4,,h) =0}
where L, is some function on U, cM.

Lemma 3.2. Let M be a surface in the Euclidean space E*** and {e1, e} be an
orthonormal basis of the tangent space T,M. If M satisfies the condition

R-h=L, O(4,,k) then

O (A4, )y, &5 e, €2) = 2M(A + W)(bsEs + bety), (34)
O (A, h)(ey, e e, €2) = (A + W(asks + asts) (3.5)

and
O (4, , h)(e, €5 €1, €2) = -2(A + )(bE, + bits). (3.6)

Proof. Using (3.1) and the symmetrization of the second fundamental form h
we get (3.4)-(3.6).

Lemma 3.3. Let M be a surface in the Euclidean space E**, If M satisfies the
condition R-h= L, Q(AH,h) then R'(e,, €;)H = 0 for all vectors e,, e, tangent to
M.

Proof. Similar to the proof of Lemma 2.7.

Theorem 3.4. Let M be a surface in the Euclidean space E**%, If M satisfies the
condition R-h= L, O(4,,k) then locally
i) M is semiparalel, or
ii) M is a surface in E*** with trivial normal connection which has the Gaussian

curvature K =20’ L, ,or
1ii) M is an isotropic surface with codimension at least 3 in E2*¢ satisfying

3K= (1+4L, )
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Proof. If M is 2-semiparallel then R -h = 0. Thus the condition R-h=

L A"Q(A,,,h) is trivially satisfied. So we consider the case M is not 2-semiparallel.

Suppose R-h#=0and R-h= L i O(A,,h) are satisfied on M. So by the use of
(2.2)-(2.4) and (3.4)-(3.6), the conditions

(E (61562)'h)(e|7 el) = L/("QA(AII 7h)(e17 € enez):
(R e b(en &) = L, 04, h)(e1. €5, 81581)s

and
(R (eneo)h)(er, e2) = L, O(4,.h)(e,, €5, €008,
give that

[A-p][asby +asbs] =0, (3.7
A(A-p)b, + 2Pas+ 2b,[K- L, AA+w)] =0, (3.8)
A(A-p)bs - 2Bay+ 205[K- L, A(A+w)] =0, (3.9)
[A-p][ b2 +b2 -K] =0, (3.10)
2Bb;— (2K ~ L, (A+p)*)a, =0, (3.11)
-2Bb, - (2K - (A+p)P)as = 0, (3.12)
-(A-p)b, - 2Baz— 2by(K - L, p(Atu)) =0 (3.13)

and
-p(A-p)bs + 2Bay - 2by(K - L, w(A+u)) =0. (3.14)

Since &, is in the direction of the mean curvature vector H, by Lemma 3.3, we obtain
Ri(ey,e,)€, =0 which gives
(A-by = 0 and (A-p)b; = 0. (3.15)
Firstly we consider the case A # p. So we have b, =b; = 0. By Proposition 2.3,
since the shape operators of M are diagonazible then R* =0, ie.,, M has trivial
normal connection and the equation (3.10) gives the Gaussian curvature of M isK=
0, which gives M is semiparallel. But this contradicts our assumption M is not
semiparallel. So this case can not occur.
Now suppose A = p. Similar to the proof of Theorem 2.8 we can choose a basis
of the tangent space T,M denoted by {¢,2,} such that 4. ¢ = Me ve 4=

A;€,.Thatis, ¢ and ¢, are eigenvectors of 4, and 4. Soby Proposition 2. 3, b,

=0and B = &,b;. Therefore we can rewrite the equations (3.7)-(3.14) as

52 b3a3 = 0, (316)
[-@ + K-2L, AJb;=0, (3.17)
(b7 -K+2L, May=0, (3.18)

[K-2L, \a;=0, (3.19)
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So we have the following cases:
a) Suppose b;= @,=a; =0, Then by Proposition 2.3, we get

A0 00 0 0
4, = , A, = , A, = :
Lo Al TE o o) o o

which gives M is totaly umbilical. But in this case R -h = 0. This contradicts our
assumption R -h#0.
b) Suppose b;=0, &, #0. Then by Proposition 2.3, we get

A0 a 0 a, 0
A: = 3 AK = ~ 3 A¢ = ~ N
10 A * 0 -gq ’ 0 a

Since the shape operators of M are diagonazible then R* = 0 and using (3.18) we
obtain K = 2 L, A* at p. Since A% = o2 , by the use of (3.17) we obtain K = 2¢® L, .

c¢) Now we consider b; = 0. If a@, = 0 then using (3.17) we obtain K = 2 L, A2
which gives K = 2% L -
If @, # 0 then by (3.16), a; = 0. So by Proposition 2.3, we have

A0 i o0 0 b
A, = , A, = _ |, 4, = ,
oAl TRl -g ) e 0

~2

which gives K = 4% - &} - 5. In this case dim N'(M)= 3 and Jn(x, X)) is
independent of the choice of a unit vector X in T,M. So using (3.17) and (3.18) it is
easy to see that 3K = (1 +4 L, o at p. This completes the proof of the theorem.,
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