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ABSTRACT
İn this paper, Ihe discrd;e sds and correspondmg dual ideals and principal maximal ideals in B(X) 

are studied, vvhere X is an n-dimensional complex manifold and B(X) is a ring (algebra) of holomorphic 
functions defıned on X.

1. INTRODUCTION

a) Let us denote tlıe öpen unit disc in C by U and Üre unit disc bounding U by T. 
Similary, in C", the öpen unit disc and its boundary are defıned by

U” ={zeC” .(Zj |<1, l<i<n )
and

T- ={zeC“;lZi|=l, l<i<n }
respectively.

U” is the cartesian product of U by itself n times and T" is the cartesian product 
of T by itself n times. For n > 1, T" is a subset of the topological boundary SU". If 
n= 1, then U-U and T' = 5T.

b) More generally, an öpen polydisc in C“ is llıc cartesian product of n öpen 
discs. The polydisc with radius r = (r],r2. ,r„) and çenter =(z°,z2. ) İS

P“={zeC“: lZi-z?l<ri,l<i<n}

and the boundary of P“ is defıned by
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T” ={zeC" : [zj-z? |=ii,lSi5ıı}

The closure of U" dcfıned by U” . Then U” = i.e.

U” ={zeC: |Zi -zp |<], l<i<n}

The problem of discarding the slovver is of great importance in practice, [6],

1.1. Definition. Let X be a topological space and let DcX. If D has no limit 
points, then it is called a discrete subset (of X)

Let G be a region (öpen connected set) in C, and let A(G) be the ring (or 
complev alcebra) of complex valued analytic functions in G. The set of zeros of f 
in G, S(f)={zeG; f(z)=0} forfeA(G), is a discrete set.

Here S(f) is thought algebraically. That is, the zeros are counted by multiplicity 
in S(f) and also in the unıon and intersection. If K is a subset of A(G), then 
S(K)= Us(f). The following lemmas are well-known from [3J

feK

1.2. Lemma. Let be a discrete sequence, {mk} be a discrete sequence

of positive integers and (Pj, p :p = 0,1, } be a sequence ofann : k = 1,2„

complex numbers. Then there exists an feA(G) so that f^'’\at) = Pk, 

(p = 0,l,...,ni(,„j : k=l,2,..)-
.p •

1.3. Lemma. Let fı,f2eA(G) and let SÇfıloStfı) =<(). Then for every heA(G), 
there exist gı,g2e A(G) so that h = fıgı+fzg: •

1.4. Lemma.
S(fıgı + f2&) = S(fı)nS(f2) .

If fı, f2 e A(G), then there exists gı, gz e A(G) so that

2. DUALIDEALS

Let 1 be an ideal of A(G). If there exists a point ZoeG so that f(zo)=O for every
fel, then I is called an ideal of type I, and in general it is denoted by I^^ . Then

={feA(G): f(zo)=O}
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Other idcals of A(G) are called of type II.

2.1. Defînition. Let us denote a family of nonemptj' discrete subsets of G by 
H. If the following conditions are satisfîed, then H is called tire dual ideal (of G).

1)If DuDzeHthenDınDzeH
2)IfDıeH aadD2İsa discrete subset of G suchthatDıcD^, thanD2eH.

By Zom lenuna there exists a ınaximal dual ideal. (Let B be a dual ideal of G. 
If there is not a dual ideal B‘ of B so that B‘ contains B as a proper subset then B is 
called nıaximal dual ideal.) If B is a nıaximal dual ideal, then there exists a discrete 
set DgH such that DnD‘ = <j) for every discrete subset D‘ not belonging to H.

Let B be the maximal dual ideal of discrete subsets of G. If there exists a point 
zoçG such tliat ZogD for every DeH thcıı B is called a maximal dual ideal of 
type 1. Ali other maxımal dual ideals of discrete subsets of G are called maxinıal 
dual ideals of type II.

2.2. Theorem. 1) For every maximal dual ideal B of discrete subsets of G 
I(B)={f: feA(G), S(I)eB} is a nıaxinıal dual ideal of A(G).

2) Conversely, for every' maximal ideal I of A(G), B(I)={S(f): fel} is a 
maximal dual ideal of discrete subsets of G.

3) Let us denote the set of maximal ideals of A(G) by M and the set of 
nıaxinıal dual ideals of discrete subsets of G by N. Then the ınaps <() and 14/ defined 
by (j)(B)=I(B) and v|/(I(B))=B are one to one and onto. B is a
maxinıal dual ideal of type I or II according as the corresponding I(B) is a maxunal 
ideal of type I or II [3] .

2.3. Theorem. Let R be an öpen Rieınaıuı sıuface, A(R) be ring of analytic 
fimctions defıned on R and B be a dual ideal of R then I(B)={fGA(R): S(f)eB} is an 
ideal of A(R).

Proof. If fı,f2eI(B) then S(fı), S(f2)eB. Since B is a dual ideal S(fı)<~>S(f2)eB. 
As S(fı)nS(f2) c S(fı-£3), S(f|-f2)eB andtherefore fı-f2eI(B).
Let f€l(B) and ge A(R) be arbitrary. As S(f)eB and S(f) c; S(fg) we have S(fg)eB. 
Then fgel(B) and therefore I(B) is an ideal of A(R). Also if Bıc:B2 then I(Bı) c 
I(B2) İs obvious.

2.4. Theorem. Ad ={feA(G): for every zeD, f (z) = 0} is a subring of

A(G) for a discrete subset D of G. (Here f denotes the derivative of f)
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Proof. If fjgeAp then as (f-g)'(z) = (f' -g')(z)=O for every zeD,

f-ge Ap . Similary as (fg) (z) = 0 for every zeD, A^ is a subring of A(G).

Corollary. If A^,"’

subringof .Further nA^">

= {geA^^’^ g^“\z) = 0 zeD, n > 2} then A^’ İsa
00

= C.
N=1

Proof. If fe p|A^’ then l^"\z)=O for n=l,2,.... (zeD) Tlüs implies that f is a
N=1

constant.

3. COVERING SPACES

3.1. Defınition. Let X and X be two topological spaces and let p: X be a 
continuous map. If tlıe following conditions are satisfied then X is called the 
covering space of X.

l)For every xeX, tiıere exists an öpen neighbourhood W of x so that p '(W) is 
Union of some öpen sets Wa in X (ael).

2) PİWa is a local homeomorphism of Wn, onto (ael).

If X is a covering space of X, the map p is called a covering map. If p( X )=X 
then X is called the projection of X .

3.2. Defînition. Let X be a covering space of X, p. X ->X a covering map 
and g: X -> X be a homeomorphism. If pog - p i.e. p(g(x)) = p(x) then g is called 

a covering map of X .
Hence a covering map permutes the points with the same projections. The 

covering transformations form a group under combination. This group is called the 
group of covering transformations, [2], [4],

Let p: X ->X be a covering map and xeX where X is a Hausdorff space. Let 
W be a neighbourhood of x in the meaning of Defınition 3.1. Let us take a 
neighbourhood U of x so that U cW. If we form a set K={ka} for each W„ where 
kae(Wanp ‘(U)) then tlıe following lemma can be given.

3.3. Lemma. K is a discrete set.
Proof. Conversely let us suppose k is a limit point of K. Let V be a 

neighbomhood of p(k). Since p is continuous, there exists a neighbourhood V] of k 
so that p(Vı) cV. Let L^e(Vı-k)nK then p(ka)eU. Hence VnıU^i^ıi). That is the 



discrete SETS and IDEALS 135

intersection of a neighbourhood of p(k) with U is nonempty. Hence p0t) is a limit 

point of U. That is p(k) e U . Since U c W, there exists a Wa so that keWa.. But 
tilere can only be k» in Wa by hy-polhesis. Therefore k can not be a limit point of K

Notice that if X is a covering space of X and p; X -^X is a covering map then 
p ’(x) has a discrete topology for every xeX. Because the intersection of the öpen 
set Wa with p ’(x) consist of one point. Therefore this point is öpen in the subspace 
topology on p'’(x). Further for x,yeX the cardinalities of p ’(x) and p‘’(y) are equal.

3.4. Definition. Let R be a Riemann surface and D be a discrete subset of R. 
The ideal lD={fGA(R): f(p)=O, for peD} is called discrete ideal of A(R). For 
Iq={ feA(R): f(q)=O} we can give the following theorem.

3.5. Theorem. Let R and R be two Ricmann surfaces, R be a covering
surface of R,
transformation. Then

p:R->R be a covering map and g: R->R be a covering

a) Let A={Iq. ; qiep’(x)} for xeR. Then the map <() : A-»A <j>(qi) ~ is 

one-to-one and onto.
b)LetB={ I 

onto.
P '(x) ; xeR}. Then v)/ ; R->B, vk(^) ~ is one-to-one and

Proof. a) First we show that (j» is a map. If I„ ={feA(R);f(q,) = 0} =

Iq2 = {g A(R) : g(q2) = 0} then there exists fe I Sı so that S(f)={qı} by [1] and

I, =< f >= {gf: g e A(R)}. Since felqj, f(q2)=0 . Then qı=q2. Therefore since 

g(qı)=g(q2) , <t>(Iq,) = <t>(Iq2) • That is 4> ıs a map. If ı)>(Iqj ) = <t)(Iq2), t^en

ig(qi) =ig(q2) => g(qi)=g(q2) => qi=q2 Iqı -T , i.e. <}> is one-to-one. Finallyq2
let e A. Since g is onto there exists a qiep ’(x) so that g(qj)=qi. Then

<t>CIqP=I.Si

b) It is easy to see that >(/ is a map. To show that it is one-to-one let m/(x)=
V(y), i.e. , IP *(x) ^p '(y) . Then since p’'(x) is a discrete set, by generalized

Weierstrass theorem there exists a feA(R) so that S(f)= p ’(x) [5]. But since
S(f)=p'(y). Let x,==y, where x,ep''(x) and yiep'’(x). Then

x=p(xi)=p(yı)=y. This shows that vy is one-to-one. By the definition vy is onto.
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4. n- DIMENSIONAL COMPLEX MANIFOLDS

4.1. Defînition.. Let X be a topological space, U be an öpen subset of X, and 
t)/ be a topological map fiom U to C“. The pair (U, vp) is called coordinate card or 
card in X. If a eU then (U, vj/) is said to contanı a.

4.2. Defînition. Let X be a connected Hausdorff space and <j) = {(Uj, v)/;): i e 1} 
be set of cards in X If the folloıving conditions are satisfied then X=(X,(İ>) is called 
an n-Dimensional Complex Manifold.

1)Every xeX is in only one card. That is the family {U,: iel} fornıs an öpen 
coverofX

2)If (Uj,v|/j), (U2,\(/2) eıj) andUı/nU2î^ then
1^12 =1>1OV2 :V2(UınU2)-»Vı(U, nUJ

is a topological map.
When v|/i2 is analytic, the manifold X=(X,<j>) is caUed n- Dimensional Analytic 

Manifold. Here the family <j) is called an analytic structure (or atlas) on X. Every 
xeUi is determined uniquely by 'p,(x). These s are called local parameters or 
local variables, [7].

Let X=(X, ())) be an analytic manifold and WcX be an öpen set. Further 
suppose that xoeW and f is a complex valued function on W. If there exists a

neighbourhood U(xo)Of so that ciVnUj where fovjZ;’ is holomorphic in

\i/ı(Ui) cfi„ then f is called holomorphic at Xo. ( Bı is an öpen set in C®) If f is 
holomorphic at eveıy point of W then f is called holomorphic on W. In parti cular if 
W=X then f is holomorphic on X.

4.3. Theorem. Let X be an analytic manifold of ditneıısion n and B(X) be a 
ring of boundcd. holomorphic functions (or complex algebra) defined on X. Also 
suppose that

1) For eveıy xeX there exists an feB(X) having a simple zero at x and no other 
zeros.

2) For every discrete sequence (xn) in X there exists fGB(X) so that hm f(xn) 
does not exist.

Then the necessary and sufficient contition for a maximal ideal in B(X) to be 
essential is that it is of the first type.

Proof. First we suppose that IeB(X) is essential, i.e. l =< f >= {gf -. g e B(X)}. 
f has a zero. Then inf {| f(x)l :xeX} = 0. İn this case there exists a sequence (x„) in
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X so that lim f(Xn)=0. If gel then there exists heB(X) so that g=fh. Since h is 
bounded lim g(x„)=0. Then for every g€B(X) lim g(Xn) exists. By hypothesis (Xn) 
can not be discrete. That is Xn-> xeX. Therefore the necessary and sufBcient 
condition for geB(X) to be gel =< f > is that g(x)=0, i.e. I=Ix

Conversely let IeB(X) be of the first type, i.e. 1= 1 x,, = {feB(X): f(xo)=O} then 

by hypothesis there exists an feB(X) having a simple zero at xo but no other zeros. 
Now let us think the essential ideal <f >. It is clear that f is a proper ideal. If <(); 
B(X)-4C, <(>(g)=g{xo) is defıned then the kemel of <)) is <f > and the ideal <f > is
maximal. But as I■Xo is maxiıııat =<f >. That is the first type maxiınal ideal of

B(X) is essential maKİınal ideal.
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