Commun. Fac. Sci. Univ. Ank. Series Al V. 49. pp. 131 - 137 (2000)

DISCRETE SETS AND IDEALS

M. BAYRAKTAR

University ofUludağ, Faculty ofScience, Dept. ofMaths. Turkey.

(Received Oct. 17, 2000; Accepted Dec. 12, 2000)

ABSTRACT

In this paper, the discrete sets and corresponding dual ideals and principal maximal ideals in $B(X)$ are studied, where X is an n-dimensional complex manifold and $B(X)$ is a ring (algebra) of holomorphic functions defıned on X.

1. INTRODUCTION

a) Let us denote the open unit disc in C by U and the unit disc bounding U by T. Similary, in $Cⁿ$, the open unit disc and its boundary are defined by

$$
\mathbf{U}^{\mathbf{n}} = \{ z \in \mathbf{C}^{\mathbf{n}} : |z_i| < 1, 1 \le i \le n \}
$$

and

$$
T^n = \{ \ z \in C^n : \mid z_i \mid = 1, \ 1 \leq i \leq n \ \}
$$

respectively.

 $Uⁿ$ is the cartesian product of U by itself n times and $Tⁿ$ is the cartesian product of T by itself n times. For $n > 1$, Tⁿ is a subset of the topological boundary ∂U^n . If n=1, then U^{$=$}U and T^{$=$} ∂ T.

b) More generally, an open polydisc in $Cⁿ$ is the cartesian product of n open discs. The polydisc with radius $r = (r_1, r_2, ..., r_n)$ and center $z^0 = (z_1^0, z_2^0, ..., z_n^0)$ is

$$
P_r^n = \{ z \in C^n : |z_i - z_i^0| < r_i, 1 \le i \le n \}
$$

and the boundary of P_r^n is defined by

 $T_{r}^{n} = \{z \in C^{n} : |z_{i}-z_{i}^{0}|=r_{i}, 1 \leq i \leq n\}$

The closure of U^n defined by \overline{U}^n . Then $\overline{U}^n = U^n \cup T^n$. i.e.

$$
\overline{U}^n = \{ z \in C : \ |z_i - z_i^0| \le 1, 1 \le i \le n \}
$$

The problem of discarding the slower is of great importance in practice, [6].

1.1. Definition. Let X be a topological space and let $D \subset X$. If D has no limit points, then it is called a discrete subset (of X)

Let G be a region (open connected set) in C, and let $A(G)$ be the ring (or complev alcebra) of complex valued analytic functions in G. The set of zeros of f in G, $S(f)=\{z\in G: f(z)=0\}$ for $f\in A(G)$, is a discrete set.

Here $S(f)$ is thought algebraically. That is, the zeros are counted by multiplicity in $S(f)$ and also in the union and intersection. If K is a subset of $A(G)$, then $S(K)$ = | $S(f)$. The following lemmas are well-known from [3]. feK

1.2. Lemma. Let $\{\alpha_k\}_{k=1}^{\infty}$ be a discrete sequence, $\{m_k\}$ be a discrete sequence of positive integers and $\{\beta_{k,p} : p = 0,1, \ldots, m_{k-1} : k = 1,2, \ldots \}$ be a sequence of complex numbers. Then there exists an $f \in A(G)$ so that $f^{(p)}(\alpha_k) = \beta_{k,p}$. $(p = 0,1,...,m_{k-1}: k = 1,2,...).$

1.3. Lemma. Let $f_1, f_2 \in A(G)$ and let $S(f_1) \cap S(f_2) = \phi$. Then for every $h \in A(G)$, there exist $g_1, g_2 \in A(G)$ so that $h = f_1 g_1 + f_2 g_2$.

1.4. Lemma. If $f_1, f_2 \in A(G)$, then there exists $g_1, g_2 \in A(G)$ so that $S(f_1g_1 + f_2g_2) = S(f_1) \cap S(f_2)$.

2. **DUALIDEALS**

Let I be an ideal of A(G). If there exists a point $z_0 \in G$ so that $f(z_0)=0$ for every f \in I, then I is called an ideal of type I, and in general it is denoted by $I^{\ }_{z_0}$. Then

$$
I_{z_0} = \{ f \in A(G) : f(z_0) = 0 \}
$$

Other ideals of A(G) are called of type II.

2.1. Definition. Let us denote a family of nonempty discrete subsets of G by H. If the following conditions are satisfied, then H is called the dual ideal (of G).

1) If D_1 , $D_2 \in H$ then $D_1 \cap D_2 \in H$

2) If $D_1 \in H$ and D_2 is a discrete subset of G such that $D_1 \subset D_2$, than $D_2 \in H$.

By Zorn lemma there exists a maximal dual ideal. (Let B be a dual ideal of G. If there is not a dual ideal B^i of B so that B^i contains B as a proper subset then B is called maximal dual ideal.) If B is a maximal dual ideal, then there exists a discrete set D∈H such that D∩D¹= ϕ for every discrete subset D¹ not belonging to H.

Let B be the maximal dual ideal of discrete subsets of G. If there exists a point z_0 gG such that $z_0 \in D$ for every D \in H then B is called a maximal dual ideal of type I. All other maximal dual ideals of discrete subsets of G are called maximal dual ideals of type II.

2.2. Theorem. 1) For every maximal dual ideal B of discrete subsets of G I(B)={f: f \in A(G), S(f) \in B \emat} is a maximal dual ideal of A(G).

2) Conversely, for every maximal ideal I of A(G), B(I)= $\{S(f): f \in I\}$ is a maximal dual ideal of discrete subsets of G.

3) Let us denote the set of maximal ideals of A(G) by M and the set of maximal dual ideals of discrete subsets of G by N. Then the maps ϕ and ψ defined by $\phi: N \rightarrow M$, $\phi(B)=I(B)$ and $\psi: M \rightarrow N$, $\psi(I(B))=B$ are one to one and onto. B is a maximal dual ideal of type I or II according as the corresponding I(B) is a maximal ideal of type I or II [3].

2.3. Theorem. Let R be an open Riemann surface, $A(R)$ be ring of analytic functions defined on R and B be a dual ideal of R then $I(B)=\{f\in A(R): S(f)\in B\}$ is an ideal of $A(R)$.

Proof. If $f_1, f_2 \in I(B)$ then $S(f_1)$, $S(f_2) \in B$. Since B is a dual ideal $S(f_1) \cap S(f_2) \in B$. As $S(f_1) \cap S(f_2) \subset S(f_1 - f_2)$, $S(f_1 - f_2) \in B$ and therefore $f_1 - f_2 \in I(B)$.

Let f \in I(B) and g \in A(R) be arbitrary. As S(f) \in B and S(f) \subset S(fg) we have S(fg) \in B. Then fg=I(B) and therefore I(B) is an ideal of A(R). Also if $B_1 \subset B_2$ then I(B₁) \subset $I(B_2)$ is obvious.

2.4. Theorem. $A_D^1 = \{f \in A(G): \text{ for every } z \in D, f'(z) = 0\}$ is a subring of $A(G)$ for a discrete subset D of G. (Here f denotes the derivative of f)

Proof. If $f, g \in A_D^1$ then as $(f-g)'(z) = (f' - g')(z) = 0$ for every $z \in D$, $f-g \in A_D^1$. Similary as $(fg)'(z) = 0$ for every $z \in D$, A_D^1 is a subring of A(G).

Corollary. If $A^{(n)}_D = {g \in A^{(n-1)}_D : g^{(n)}(z) = 0 \ z \in D, n \ge 2}$ then $A^{(n)}_D$ is a subring of $A_D^{(n-1)}$. Further $\bigcap_{n=0}^{\infty} A_D^{(n)} = C$. N=1

Proof. If $f \in \bigcap_{n=0}^{\infty} A_n^{(n)}$ then $f^{(n)}(z)=0$ for n=1,2,.... ($z \in D$) This implies that f is a N=1

constant.

3. COVERING SPACES

3.1. Definition. Let *X* and \tilde{X} be two topological spaces and let p: $\tilde{X} \rightarrow X$ be a continuous map. If the following conditions are satisfied then \tilde{X} is called the covering space of X.

- l) For every $x \in X$, there exists an open neighbourhood W of x so that $p^{-1}(W)$ is union of some open sets W_{α} in \tilde{X} ($\alpha \in I$).
- 2) $p|W_\alpha|$ is a local homeomorphism of W_α onto W ($\alpha \in I$).

If \tilde{X} is a covering space of X, the map p is called a covering map. If $p(\tilde{X})=X$ then X is called the projection of \tilde{X} .

3.2. Definition. Let \tilde{X} be a covering space of X, p: $\tilde{X} \rightarrow X$ a covering map and g: $\widetilde{X} \to \widetilde{X}$ be a homeomorphism. If $p \circ g = p$ i.e. $p(g(\widetilde{X})) = p(\widetilde{X})$ then g is called a covering map of \tilde{X} .

Hence a covering map permutes the points with the same projections. The covering transformations form a group under combination. This group is called the group of covering transformations, [2], [4],

Let p: $\widetilde{X} \rightarrow X$ be a covering map and $x \in X$ where X is a Hausdorff space. Let W be a neighbourhood of x in the meaning of Definition 3.1. Let us take a neighbourhood U of x so that $\tilde{U} \subset W$. If we form a set $K = \{k_{\alpha}\}\$ for each W_{α} where $k_{\alpha} \in (W_{\alpha} \cap p^{-1}(U))$ then the following lemma can be given.

3.3. Lemma. K is a discrete set.

Proof. Conversely let us suppose k is a limit point of K. Let V be a neighbourhood of $p(k)$. Since p is continuous, there exists a neighbourhood V_1 of k so that $p(V_1) \subset V$. Let $k_\alpha \in (V_1-k) \cap K$ then $p(k_\alpha) \in U$. Hence $V \cap U \neq \emptyset$. That is the intersection of a neighbourhood of $p(k)$ with U is nonempty. Hence $p(k)$ is a limit point of U. That is $p(k) \in \overline{U}$. Since $\overline{U} \subset W$, there exists a W_{α} so that $k \in W_{\alpha}$. But there can only be k_{α} in W_{$_{\alpha}$} by hypothesis. Therefore k can not be a limit point of K

Notice that if \tilde{X} is a covering space of X and p: $\tilde{X} \rightarrow X$ is a covering map then $p^{-1}(x)$ has a discrete topology for every $x \in X$. Because the intersection of the open set W_{α} with $p^{-1}(x)$ consist of one point. Therefore this point is open in the subspace topology on $p^{-1}(x)$. Further for $x,y \in X$ the cardinalities of $p^{-1}(x)$ and $p^{-1}(y)$ are equal.

3.4. Definition. Let R be a Riemann surface and D be a discrete subset of R. The ideal $I_D=f{f\in A(R)}$: f(p)=0, for p $\in D$ } is called discrete ideal of A(R). For $I_q = \{ f \in A(R) : f(q) = 0 \}$ we can give the following theorem.

3.5. Theorem. Let R and \tilde{R} be two Riemann surfaces, \tilde{R} be a covering surface of R, $p: \widetilde{R} \to R$ be a covering map and g: $\widetilde{R} \to \widetilde{R}$ be a covering transformation. Then

a) Let $A = \{I_q : q_i \in p^{-1}(x)\}\$ for $x \in R$. Then the map $\phi : A \rightarrow A$, $\phi(q_i) = I_{g(q_i)}$ is one-to-one and onto.

b) Let B={ $I_{\mathfrak{p}^{-1}(x)}$: $x \in R$ }. Then $\psi : R \rightarrow B$, $\psi(x) = I_{\mathfrak{p}^{-1}(x)}$ is one-to-one and onto.

Proof. a) First we show that ϕ is a map. If $I_{q_1} = {f \in A(\widetilde{R}) : f(q_1) = 0}$ = $I_{q_2} = \{g \in A(\widetilde{R}) : g(q_2) = 0\}$ then there exists $f \in I_{q_1}$ so that $S(f) = \{q_1\}$ by [1] and $I_{q_1} = \langle f \rangle = \{gf : g \in A(\widetilde{R})\}$. Since $f \in I_{q_2}$, $f(q_2)=0$. Then $q_1 = q_2$. Therefore since $g(q_1)=g(q_2)$, $\phi(I_{q_1}) = \phi(I_{q_2})$. That is ϕ is a map. If $\phi(I_{q_1}) = \phi(I_{q_2})$, then $I_{g(q_1)} = I_{g(q_2)} \implies g(q_1) = g(q_2) \implies q_1 = q_2 \implies I_{q_1} = I_{q_2}$, i.e. ϕ is one-to-one. Finally let $I_{q_1} \in A$. Since g is onto there exists a $q_i \in p^{-1}(x)$ so that $g(q_i)=q_i$. Then $\phi(I_{q_i})=I_{q_i}$

b) It is easy to see that ψ is a map. To show that it is one-to-one let $\psi(x)$ = $\psi(y)$, i.e., $I_{\mathbf{p}^{-1}(x)} = I_{\mathbf{p}^{-1}(y)}$. Then since $\mathbf{p}^{-1}(x)$ is a discrete set, by generalized Weierstrass theorem there exists a $f \in A(R)$ so that $S(f) = p^{-1}(x)$ [5]. But since S(f)=p⁻¹(y). Let $x_i=y_i$ where $x_i \in p^{-1}(x)$ and $y_i \in p^{-1}(x)$. Then $f \in I_{p^{-1}(v)},$ $x=p(x_i)=p(y_i)=y$. This shows that ψ is one-to-one. By the definition ψ is onto.

4. n- DIMENSIONAL COMPLEX MANIFOLDS

4.1. Definition. Let X be a topological space, U be an open subset of X, and ψ be a topological map from U to Cⁿ. The pair (U, ψ) is called coordinate card or card in X. If $a \in U$ then (U, ψ) is said to contain a.

4.2. Definition. Let X be a connected Hausdorff space and $\phi = \{(U_i, \psi_i) : i \in I\}$ be set of cards in X. If the following conditions are satisfied then $X=(X,\phi)$ is called an n-Dimensional Complex Manifold.

- 1) Every $x \in X$ is in only one card. That is the family $\{U_i : i \in I\}$ forms an open cover of X
- 2) If (U_1, ψ_1) , $(U_2, \psi_2) \in \phi$ and $U_1 \cap U_2 \neq \phi$ then

 $\Psi_{12} = \Psi_1 o \Psi_2^{-1} : \Psi_2(U_1 \cap U_2) \rightarrow \Psi_1(U_1 \cap U_2)$

is a topological map.

When ψ_{12} is analytic, the manifold $X=(X,\phi)$ is called n- Dimensional Analytic Manifold. Here the family ϕ is called an analytic structure (or atlas) on X. Every $x \in U_i$ is determined uniquely by $\psi_i(x)$. These ψ_i 's are called local parameters or local variables, [7].

Let $X=(X, \phi)$ be an analytic manifold and $W\subset X$ be an open set. Further suppose that $x_0 \in W$ and f is a complex valued function on W. If there exists a neighbourhood $U_{(x_0)}$ of x_0 so that $U_{(x_0)} \subset W \cap U_i$ where fo ψ_i^{-1} is holomorphic in $\psi_i(U_i) \subset B_i$, then f is called holomorphic at x_0 . (B_i is an open set in Cⁿ) If f is holomorphic at every point of W then f is called holomorphic on W. In particular if $W=X$ then f is holomorphic on X.

4.3. Theorem. Let X be an analytic manifold of dimension n and $B(X)$ be a ring of bounded, holomorphic functions (or complex algebra) defined on X. Also suppose that

- 1) For every $x \in X$ there exists an $f \in B(X)$ having a simple zero at x and no other
- 2) For every discrete sequence (x_n) in X there exists $f \in B(X)$ so that $\lim_{n \to \infty} f(x_n)$ does not exist.

Then the necessary and sufficient contition for a maximal ideal in $B(X)$ to be essential is that it is of the first type.

Proof. First we suppose that $I \in B(X)$ is essential, i.e. $I = \{f \mid f : g \in B(X)\}$. f has a zero. Then inf $\{ | f(x) | : x \in X \} = 0$. In this case there exists a sequence (x_n) in X so that lim $f(x_n)=0$. If $g \in I$ then there exists $h \in B(X)$ so that $g=f$ h. Since h is bounded lim $g(x_n)=0$. Then for every $g \in B(X)$ lim $g(x_n)$ exists. By hypothesis (x_n) can not be discrete. That is $x_n \rightarrow x \in X$. Therefore the necessary and sufficient condition for geB(X) to be geI = < f > is that g(x)=0, i.e. I=I_x

Conversely let I \in B(X) be of the first type, i.e. $I=I_{x_0} = \{f \in B(X): f(x_0)=0\}$ then by hypothesis there exists an feB(X) having a simple zero at *xo* but no other zeros. Now let us think the essential ideal $\langle f \rangle$. It is clear that f is a proper ideal. If ϕ : B(X)- \rightarrow C, $\phi(g)=g(x_0)$ is defined then the kernel of ϕ is $\lt f$ > and the ideal $\lt f$ > is maximal. But as I_{x_0} is maximal, $I_{x_0} =$. That is the first type maximal ideal of $B(X)$ is essential maximal ideal.

REFERENCES

- [1] H. Florack , Regulare und Meromotphe Funktionen auf Nicht Geschlossenen Riemannschen Flachen Schr. Math.Univ. Münster 1, 1948.
- {2] O. Foster, Riemannschen Flachen, Spıinger Verlac, *Vill.*
- [3] S. Kakutani, Rings of Analytic Functions. Proc. Michigan Conference on Functions of a Complex Variable. pp 71-84, 1955.
- [4] S, Kinoshita, Notes on Covering Transformation Groups, Proc. Amer. Math. Soc. 19. pp.421-424, 1968
- [5] H.L. Royden, Rings of Analytic and Meromorphic Functions. Trans. Amer. Math. Soc. 128. pp 269-276,1956.
- [6] C. Uluçay, Characterization of n-dimensional manifolds, Jour. of the Fac. of K.T.Ü. Vol n. Fasc.l. pp.1-15,1978.
- [7] C. Uluçay, On the Homology Groups of The Complex Analytic Manifolds, Communications de la Faculte des Sciences de Üniversite ' d' Ankara Fas. 5 pp. 37-44, 1981.