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ABSTRACT

In this paper, the discrete sets and corresponding dual ideals and principal maximal ideals in B(X)
are studied, where X is an n-dimensional complex manifold and B(X) is a ring (algebra) of holomorphic
functions defined on X.

1. INTRODUCTION

a) Let us denote the open unit disc in C by U and the unit disc bounding U by T.
Similary, in C", the open unit disc and its boundary are defined by

U? ={zeC"|z L 1l<i<n}
and
T ={zeC"|z =1, 1<ign}
respectively.
U" is the cartesian product of U by itself n times and T" is the cartesian product
of T by itself n times. For n > 1, T" is a subset of the topological boundary 8U". If
n=1, then U=U and T'= &T.

b) More generally, an open polydisc in C" is the cartesian product of n open
discs. The polydisc with radius r = ( 1,1>.......1,,) and center z° =(z0,23,.....,z0) is

PP ={zeC": |z, -2 |<5, 1<i<n}

and the boundary of P is defined by
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TP ={zeC": |z; -2 l=r;, 1<i<n}
The closure of U” defined by U™ . Then U™ = U"UT". ie.

U ={zeC: |z; -z0|<1, 1<i<n}

The problem of discarding the slower is of great importance in practice, [6].

1.1. Definition. Let X be a topological space and let DX If D has no limit
points, then it is called a discrete subset (of X)

Let G be a region (open connected set) in C, and let A(G) be the ring (or
complex alcebra) of complex valued analytic functions in G. The set of zeros of f
in G, S()={zeG: f(z)=0} for fe A(G), is a discrete set.

Here S(f) is thought algebraically. That is, the zeros are counted by multiplicity
in S(f) and also in the union and intersection. If K is a subset of A(G), then

S(K)= | JS(f) . The following lemmas are well-known from [3]
feK

1.2. Lemma. Let {xk }::1 be a discrete sequence, {my} be a discrete sequence
of positive integers and {fy, :p=0l...m ;:k=12,...} be a sequence of

complex numbers. Then there exists an feA(G) so that f®(oy)=Py,.
(p=0l,..my_;: k=12.).

1.3. Lemma. Let f,£,€ A(G) and let S(f;)~S(f>) =¢. Then for every heA(G),
there exist g;,2.€A(G) so that h=fig;+hg, .

1.4. Lemma. If f;, f, € A(G), then there exists g;, g € A(G) so that
S(fig + fg) = S(f) S(fy) .

2. DUAL IDEALS

Let I be an ideal of A(G). If there exists a point z,eG so that f(zo)=0 for every
fel, then 1 is called an ideal of type I, and in general it is denoted by IZO . Then

I, ={feA(G): f(z0)=0}
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Other ideals of A(G) are called of type I1.

2.1. Definition. Let us denote a family of nonempty discrete subsets of G by
H. If the following conditions are satisfied , then H is called the dual ideal (of G).

1) If D], DQEH then D1F\D2€H
2)IfDyeH and D, is a discrete subset of G such that D, D», than D,eH.

By Zorn lemma there exists a maximal dual ideal. (Let B be a dual ideal of G.
If there is not a dual ideal B' of B so that B' contains B as a proper subset then B is
called maximal dual ideal.) If B is a maximal dual ideal, then there exists a discrete
set DeH such that D~D'=¢ for every discrete subset D' not belonging to H.

Let B be the maximal dual ideal of discrete subscts of G. If there exists a point

zo6G such that zeeD for every DeH then B is called a maximal dual ideal of
type 1. All other maximal dual ideals of discrete subsets of G are called maximal
dual ideals of type II .

2.2. Theorem. 1) For every maximal dual ideal B of discrete subsets of G
I(B)={f: fe A(G), S(HeB} is a maximal dual ideal of A(G).

2) Conversely, for every maximal ideal 1 of A(G), BO)={S{f): fel} isa
maximal dual ideal of discrete subsets of G.

3) Let us denote the set of maximal ideals of A(G) by M and the set of
maximal dual ideals of discrete subsets of G by N. Then the maps ¢ and y defined
by ¢:N->M, ¢(B)=I(B) and y:M—N, w(I(B))=B are one to one and onto. B is a
maximal dual ideal of type I or II according as the corresponding I(B) is a maximal
ideal of type Lor I [3] .

2.3. Theorem. Let R be an open Riemann surface, A(R) be ring of analytic
functions defined on R and B be a dual ideal of R then I(B)={fe A(R): S(HeB} is an
ideal of A(R).

Proof. If f,.f,1(B) then S(f}), S(f,)eB. Since B is a dual ideal S(f))~S(f,)eB.
As S(f)nS(E) < S(f1-5) , S(fi-f,)eB and therefore f;-f,€I(B).

Let fel(B) and ge A(R) be arbitrary. As S(f)eB and S(f) < S(fg) we have S(fg)eB.
Then fgel(B) and therefore I(B) is an ideal of A(R). Also if BB, then I(B,) ¢
I(B,) is obvious.

2.4. Theorem. AL ={f € A(G): for every zeD, f'(z)=0} is a subring of
A(G) for a discrete subset D of G. (Here f " denotes the derivative of f)
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Proof. If fge Al then as (f-g)(z)=(f -g' Xz)=0 for every zeD,
f-ge AL, . Similary as (fg) (z)=0 for every zeD, AL, isa subring of A(G).

Corollary. If A([;l) ={ge Ag‘gl) :g™W(2)=0 zeD,n>2} then Ag) is a
o
subring of AS™ . Further (A =C.
N=1

Proof. If fe ﬂAg) then f(z)=0 for n=1.2,.... (zeD) This implies that {is a
N=1
constant.

3. COVERING SPACES

3.1. Definition. Let X and X be two topological spaces and let p: X —>X be a
continuous map. If the following conditions are satisfied then X is called the
covering space of X.

1)For every xeX, there exists an open neighbourhood W of x so that p'(W)is
union of some open sets W, in X (ael).
2) p|W,, - is a local homeomorphism of W,, onto W (a€1).

If X is a covering space of X, the map p is called a covering map. If p(X )=X
then X is called the projection of X .

3.2. Definition. Let X be a covering space of X, p: X —X a covering map
and g: X — X be a homeomorphism, If pog =p i.e. pe®)=p) then g is called
a covering map of X .

Hence a covering map permutes the points with the same projections. The
covering transformations form a group under combination. This group is called the
group of covering transformations, [2], [4].

Let p: X =X be a covering map and xeX where X is a Hausdorff space. Let
W be a neighbourhood of x in the meaning of Definition 3.1. Let us take a
neighbourhood U of x so that U cW. If we form a set K={k,} for each W, where
kqe(Wonp'l(U )) then the following lemma can be given.

3.3. Lemma. K is a discrete set.

Proof. Conversely let us suppose k is a limit point of K. Let V be a
neighbourhood of p(k). Since p is continuous, there exists a neighbourhood V; of k
so that p(V;) cV. Let k,e(Vi-k)~K then p(k,)eU. Hence VU=$. That is the
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intersection of a neighbourhood of p(k) with U is nonempty. Hence p(k) is a limit
point of U. That is p(k) € U . Since U < W, there exists a W, so that keW,. But
there can only be k, in W, by hypothesis. Therefore k can not be a limit point of K

Notice that if X is a covering space of X and p: X —X is a covering map then
p'(x) has a discrete topology for every xeX. Because the intersection of the open
set W,, with p(x) consist of one point. Therefore this point is open in the subspace
topology on p’ (x). Further for x,yeX the cardinalities of p”(x) and p (y) are equal.

3.4. Definition. Let R be a Riemann surface and D be a discrete subset of R.
The ideal Ip={feA(R): f(p)=0, for peD} is called discrete ideal of A(R). For
I={ fe A(R): f(q)=0} we can give the following theorem.

3.5. Theorem. Let R and R be two Riemann surfaces, R be a covering
surface of R, p:R »R be a covering map and & R >R be a covering
transformation. Then

a) Let A={1 : qiep’(x)} for xeR. Then the map ¢ : A>A, Hq) =Iy,) i
one-to-one and onto.

b) Let B={ IP_, ) xeR}. Then v : R—B, w(x) = I, _ is one-to-one and

(x p{x)

onto.

Proof. a) First we show that ¢ is a map. If I, ={feAR):f(q)=0}=
Iy, ={8 € A(R):g(q,) =0} then there exisis fe I, so that S()={q:} by [1] and
Iy, =<f>={gf: g A(R)}. Since fel, , f(q)=0 . Then qi=qo. Therefore since
g@)=g(@ , ¢y )=¢1Ig,). That is ¢ is a map. I ¢(y)=9(,,), then
L) =lay = g@)rgl@) = q=¢ = Iql = qu, i.e. ¢ is one-to-one. Finally
let Iql € A . Since g is onto there exists a qjep"(x) so that g(g)=q. Then
‘b(I‘lj):I‘li

b) It is easy to see that y is a map. To show that it is one-to-one let W(x)y=
y(y), ie. , Ip_1 . Ip‘l W Then since p‘l(x) is a discrete set, by generalized

Weierstrass theorem there exists a fe A(R) so that S(D= p"(x) [5]. But since
fe Ip,l W’ SH=p'(y). Let x=y; where xiep'(x) and yiep'(x). Then

x=p(x;)=p(y)=y. This shows that y is one-to-one. By the definition v is onto.
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4. n- DIMENSIONAL COMPLEX MANIFOLDS

4.1. Definition. . Let X be a topological space, U be an open subset of X, and
y be a topological map from U to C°. The pair (U, y) is called coordinate card or
cardin X, If a €U then (U, ) is said to contain a.

4.2. Definition. Let X be a connected Hausdorff space and ¢ = {(U;,y;):iel}

be set of cards in X. If the following conditions are satisfied then X=C{¢) is called
an n-Dimensional Complex Manifold.

1)Every xeX is in only one card. That is the family {U;: icl} forms an open
cover of X

2 If Uy, (Uz,\yz)_ecb and U;nU,#p then

Viz =wiow3' 1y, (U AU, ) = wi (U A U,)
is a topological map.
When 1, is analytic, the manifold X=(X,9) is called n- Dimensional Analytic
Manifold. Here the family ¢ is called an analytic structure (or atlas) on X. Every

xel; is determined uniquely by wi(x). These ;s are called local parameters or
local variables, [7].

Let X=(X, ¢) be an analytic manifold and WcX be an open set. Further
suppose that xoeW and f is a complex valued function on W. If there exists a

neighbourhood U, yof X, so that U,y cWAU; where fow;" is holomorphic in

yi(U;) B, then f is called holomorphic at x,. ( B; is an open set in C) If { is
holomorphic at every point of W then f is called holomorphic on W. In particular if
W=X then f is holomorphic on X.

4.3. Theorem. Let X be an analytic manifold of dimension n and B(X) be a
ring of bounded, holomorphic functions (or complex algebra) defined on X. Also
suppose that

1) For every xeX there exists an fe B(X) having a simple zero at x and no other
ZE10S.

2) For every discrete sequence (x,) in X there exists feB(X) so that lim f(x,)
does not exist.

Then the necessary and sufficient contition for a maximal ideal in B(X) to be
essential is that it is of the first type.

Proof. First we suppose that IeB(X) is essential, i.e. I=<f >={gf:geBX)}.
fhas a zero. Then inf {| f{x)| :xeX} = 0. In this case there exists a sequence (X,) in
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X so that lim f(x,)=0. If gel then there exists heB(X) so that g=fh. Since h is
bounded lim g(x,)=0. Then for every geB(X) lim g(x,) exists. By hypothesis (x;)
can not be discrete. That is x,—> xeX. Therefore the necessary and sufficient
condition for geB(X) to be gel=<Tf > is that g(x)=0, i.e. =1,

Conversely let IeB(X) be of the first type, i.e. I= I, = {feB(X): f(x0)=0} then
by hypothesis there exists an feB(X) having a simple zero at x, but no other zeros.
Now let us think the essential ideal <f>. It is clear that f is a proper ideal. If ¢:
BX)—C, ¢(g)=g(xo) is defined then the kernel of ¢ is <f > and the ideal <f> is
maximal. But as IXO is maximal, Ix0=<f>‘ That is the first type maximal ideal of
B(X) is essential maximal ideal.
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