Commun. Fac. Sci. Univ. Ank. Series A1 Vol. 51. (no.2) pp. 57 - 62 (2002)

IDEALIZATION OF PRZEMSKI'S DECOMPOSITION THEOREMS

E. HATIR

Dept. of Math., Selçuk University, Education Faculty, 42090, Konya, TURKEY e-mail: ehatir@selcuk.edu.tr

(Received Oct. 15, 2001; Revised Dec. 25, 2002; Accepted Dec. 30, 2002)

ABSTRACT

Przemski [5] introduced $D(c,\alpha)$ -set, D(c,p)-set, D(c,s)-set and $D(\alpha,p)$ -set to obtain several decompositions of continuity. In this paper, we extend these sets and obtain new decompositions of continuity via idealization.

Key words and phrases. $D(c,\alpha)$ -set, D(c,p)-set, D(c,s)-set, $D(c,\alpha)$ -continuity, D(c,p)-continuity, D(c,s)-continuity

1. INTRODUCTION AND PRELIMINARIES

In 1993, Przemski [5] introduced $D(c,\alpha)$ -set, D(c,p)-set, D(c,s)-set and $D(\alpha,p)$ set to obtain several decompositions of continuity. In [4], the authors introduce the notion of α -I-open, semi-I-open and β -I-open sets via ideal. In this paper, we extend Przemski's sets and obtain decompositions of continuity via idealization.

Throughout this paper, for a subset A of a topological space (X,τ) , Cl(A) and Int(A) denote the closure of A and the interior of A, respectively. Let (X,τ) be a topological space and I an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) if $A \in I$ and $B \subset A$, then $B \in I$; (2) if $A \in I$ and $B \in I$, then $A \cup B \in I$. An ideal topological space, denoted by (X,τ,I) , is a topological space (X,τ) with an ideal I on X. For a subset $A \subset X$, $A^*(\tau,I) = \{x \in X : U \cap A \notin I$ for each neighborhood U of x} is called the local function [1] of A with respect to I and τ . We simply write A* instead of $A^*(\tau,I)$ in case there is no chance for confusion. X* is often a proper subset of X. The hypothesis $X=X^*$ [9] is equivalent to the hypothesis $\tau \cap I=\emptyset$ [9]. For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$, finer than τ , generated by the base $\beta(I,\tau)=\{U \setminus I : U \in \tau$ and $I \in I\}$. However, $\beta(I,\tau)$ is not always a topology [9]. It is well known that $Cl^*(A)=A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(I)$. In 1992, Janković and Hamlett [3] introduced the notion of I-open sets in ideal topological spaces. For $A \subset (X,\tau,I)$, A is said to be I-open if $A \subset Int(A^*)$. In 1999, Dontchev [6] has introduced the notion of pre-I-open which is weaker than I-open. For $A \subset (X,\tau,I)$, A is said to be pre-I-open if $A \subset Int(Cl^*(A))$. Quite recently, Hatir and Noiri [4] have introduced the notion of α -I-open (resp. semi-I-open, β -I-open) as in the following; A subset A of a space (X,τ,I) is said to be α -I-open (resp. semi-I-open, β -I-open) if $A \subset Int(Cl^*(Int(A)))$ (resp. $A \subset Cl^*(Int(A))$, $A \subset Cl(Int(Cl^*(A)))$).

For a topological space (X,τ) , Przemski [5] defined the following sets;

a) $D(c,\alpha) = \{B \subset X : Int(B) = B \cap Int(Cl(Int(B)))\},\$

b) $D(c,p) = \{B \subset X : Int(B) = B \cap Int(Cl(B))\},\$

c) $D(c,s) = \{B \subset X : Int(B) = B \cap Cl(Int(B))\},\$

d) $D(\alpha,p) = \{B \subset X : B \cap Int(Cl(Int(B))) = B \cap Int(Cl(B))\},\$

e) $D(c,ps) = \{B \subset X : Int(B) = B \cap Cl(Int(Cl(B)))\}$ (Dontchev and Przemski [7]).

2. $D_I(c,p)$ -set, $D_I(c,\alpha)$ -set, $D_I(c,s)$ -set, $D_I(c,ps)$ -set, $D_I(\alpha,p)$ -set

Now, we can give the following definition via ideal.

 $\begin{array}{l} \textbf{Definition 2.1. For an ideal topological space (X,\tau,I), we define the following;} \\ \textbf{a)} \ D_{I}(c,p) = & \{A \subset (X,\tau,I) : Int(A) = A \cap Int(Cl^{*}(A))\}, \\ \textbf{b)} \ D_{I}(c,\alpha) = & \{A \subset (X,\tau,I) : Int(A) = A \cap Int(Cl^{*}(Int(A)))\}, \\ \textbf{c)} \ D_{I}(c,s) = & \{A \subset (X,\tau,I) : Int(A) = A \cap Cl^{*}(Int(A))\}, \\ \textbf{d)} \ D_{I}(c,ps) = & \{A \subset (X,\tau,I) : Int(A) = A \cap Cl^{*}(Int(Cl^{*}(A)))\}, \\ \textbf{e)} \ D_{I}(\alpha,p) = & \{A \subset (X,\tau,I) : A \cap Int(Cl^{*}(Int(A))) = A \cap Int(Cl^{*}(A)))\}. \end{array}$

Proposition 2.1. The following statements hold for an ideal topological space (X,τ,I) ,

a) Every D(c,p)-set is D_I(c,p)-set,,

b) Every $D(c,\alpha)$ -set is $D_I(c,\alpha)$ -set,

c) Every D(c,s)-set is $D_I(c,s)$ -set,

d) Every D(c,ps)-set is D_I(c,ps)-set.

Proof. a) Let A be a D(c,p)-set. Since $A \subset A^* \cup A = Cl^*(A)$,

 $Int(A) \subset A \cap Int(Cl^{*}(A)) = A \cap Int(A^{*} \cup A) \subset A \cap Int(Cl(A) \cup A) = A \cap Int(Cl(A)) = Int(A).$ Therefore, A is $D_{I}(c,p)$ -set.

b) Let A be a $D(c,\alpha)$ -set. Then

 $Int(A) \subset A \cap Int(Cl^{(Int(A))}) = A \cap Int((Int(A))^{*} \cup Int(A)) \subset A \cap Int(Cl(Int(A))) \cup Int(A))$ $= A \cap Int(Cl(Int(A))) = Int(A).$

This shows that A is $D_I(c,\alpha)$ -set.

c) Let A be a D(c,s)-set. Then

 $Int(A) \subset A \cap Cl^{(Int(A))=A \cap ((Int(A))^{*} \cup Int(A)) \subset A \cap (Cl(Int(A) \cup Int(A))=A \cap Cl(Int(A))^{*} \cup Int(A)) = Int(A).$

This shows that A is $D_I(c,s)$ -set.

d) Let A be a D(c,ps)-set. Then $Int(A) \subset A \cap Cl(Int(Cl^*(A))) = A \cap Cl(Int(A^* \cup A)) \subset A \cap Cl(Int(Cl(A) \cup A))$ $= A \cap Cl(Int(Cl(A))) = Int(A).$

This shows that A is $D_I(c,ps)$ -set.

Remark 2.1. None of them in the Proposition 2.1 is reversible as shown by examples below.

Example 2.1. Let X={a,b,c,d}, $\tau=\{\emptyset, X, \{a\}, \{b,d\}, \{a,b,d\}\}$ and I={ $\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Take A={a,b}. Since A*={a,b}*= \emptyset and Int(Cl*(A))={a}, A is D_I(c,p)-set and D_I(c,ps)-set, but not D(c,p)-set and D(c,ps)-set.

Example 2.2. Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a,c\}, \{a,c,d\}\}$ and I={ $\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Put A={b,d}. Since (Int(A))*=({d})*= \emptyset and Cl*(Int(A))={d}, A is D_I(c,s)-set, but not D(c,s)-set.

Example 2.3. Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{c\}, \{b,c\}, \{a,b,c\}, \{a,c,d\}, \{a,c\}\}$ and I={ \emptyset , {c}, {d}, {c,d}}. Take A={c,d}. Since (Int(A))*=({c})*= \emptyset and Int(Cl*(Int(A)))={c}, A is D₁(c, α)-set, but not D(c, α)-set. Furthermore, A is not D₁(c,ps)-set.

Example 2.4. Let X={a,b,c,d}, $\tau = \{\emptyset, X, \{d\}, \{a,d\}, \{b,c,d\}\}$ and I={ $\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Take A={b,d}. Since (Int(A))*=({d})*= \emptyset and Int(Cl*(Int(A)))={d}, A is D₁(c, α)-set, but not D₁(c,p)-set.

Example 2.5. Let X={a,b,c,d}, τ ={Ø, X, {b}, {c,d}, {b,c,d}} and I={Ø, {c}}. Then A={a,b} is D₁(c,\alpha)-set, but not D₁(c,s)-set. Because Int(Cl*(Int(A)))=Int(Cl*({b}))={b}, therefore A is D₁(c,\alpha)-set. Since Cl*(Int(A))={b}, A is not D₁(c,s)-set.

Proposition 2.2. The following statements hold for an ideal topological space (X,τ,I) ,

a) Every D_I(c,p)-set is D_I(c,p)-set,,
b) Every D_I(c,p)-set is D_I(c,α)-set,
c) Every D_I(c,s)-set is D_I(c,α)-set.
Proof. a) Let A be a D_I(c,p)-set. Since Int(A)=A∩Cl(Int(Cl*(A)))⊃A∩Int(Cl*(A))⊃Int(A),
we have Int(A)=A∩Int(Cl*(A)). This shows that A is D_I(c,p)-set.
b) Let A be a D_I(c,p)-set. Since Int(A)=A∩Int(Cl*(A))⊃A∩Int(Cl*(Int(A)))⊃Int(A),
we have Int(A)=A∩Int(Cl*(A)). This shows that A is D_I(c,p)-set.

c) Let A be a $D_I(c,s)$ -set. Since

Int(A)=A \cap Cl*(Int(A)) \supset A \cap Int(Cl*(Int(A))) \supset Int(A), we have Int(A)=A \cap Int(Cl*(Int(A))). This shows that A is D₁(c, α)-set.

According to the Examples and Proposition 2.2, we can give the following diagram:

$$D_{I}(c,ps)$$
-set \Rightarrow $D_{I}(c,p)$ -set \Rightarrow $D_{I}(c,\alpha)$ -set
 \uparrow

D_I(c,s)-set

Remark 2.2. a) Every open set is α -I-open, pre-I-open, semi-I-open and β -I-open, but not conversely (Remark 2.1 in [4]).

b) Every open set is $D_I(c,p)$ -set, $D_I(c,\alpha)$ -set, $D_I(c,s)$ -set and $D_I(c,ps)$ -set.

This fact follows from Proposition 2.1 since every open set is $D(c,\alpha)$ -set, D(c,p)-set, D(c,s)-set and D(c,ps)-set.

Proposition 2.3. For an ideal topological space (X,τ,I) , $A \subset X$ and $I = \emptyset$, we have **a**) A is $D_I(c,p)$ -set if and only if A is D(c,p),

b) A is $D_{I}(c,\alpha)$ -set if and only if A is $D(c,\alpha)$ -set,

c) A is $D_{I}(c,s)$ -set if and only if A is D(c,s)-set,

d) A is $D_{I}(c,ps)$ -set if and only if A is D(c,ps)-set.

Proof. Sufficiency is shown in Proposition 2.1. For necessity note that in case of the minimal ideal $A^*=Cl(A)$.

Theorem 2.1. For an ideal topological space (X,τ,I) , the following hold;

a) A is an open if and only if it is both α -I-open and $D_i(c,\alpha)$ -set,

b) A is an open if and only if it is both pre-I-open and $D_I(c,p)$ -set,

c) A is an open if and only if it is both semi-I-open and $D_I(c,s)$ -set,

d) A is an open if and only if it is both β -I-open and D_I(c,ps)-set.

Proof. Remark 2.2 gives the necessity.

For the sufficiency of (a); Suppose that A is both α -I-open and $D_I(c,\alpha)$ -set. Then A \subset Int(Cl*(Int(A))) and Int(A)=A \cap Int(Cl*(Int(A))). Since

 $A \subset A \cap Int(Cl^{*}(Int(A))) = Int(A),$

A is an open set.

(b), (c) and (d) are analogous with the Proof of (a) and are thus omitted.

3. DECOMPOSITIONS OF CONTINUITY

Definition 3.1. A function $f: (X,\tau,I) \to (Y,\sigma)$ is said to be pre-I-continuous [6] (resp. α -I-continuous [4], semi-I-continuous [4], β -I-continuous [4]) if for each open set V of (Y,σ) , the set $f^{-1}(V)$ is pre-I-open (resp. α -I-open, semi-I-open, β -I-open)

Definition 3.2. A function $f: (X,\tau,I) \to (Y,\sigma)$ is said to be $D_I(c,\alpha)$ -continuous (resp. $D_I(c,p)$ - continuous, $D_I(c,s)$ -continuous, $D_I(c,p)$ - continuous) if for each open set V of (Y,σ) , the set $f^{-1}(V)$ is a $D_I(c,\alpha)$ -set (resp. $D_I(c,p)$ -set, $D_I(c,p)$ -set, $D_I(c,p)$ -set, $D_I(c,p)$ -set, $D_I(c,p)$ -set).

By PIO(X) (resp. $\alpha IO(X)$), we denote the family of all pre-I-open (resp. α -I-open) sets of a space (X, τ ,I).

Theorem 3.1. $PIO(X) \cap D_I(\alpha, p) = \alpha IO(X)$. **Proof.** Let $B \in PIO(X)$ and $B \in D_I(\alpha, p)$. Then $B \subset Int(Cl^*(B))$ and $B \cap Int(Cl^*(B)) = B \cap Int(Cl^*(Int(B)))$. Since $B \subset Int(Cl^*(B))$, we have $B \subset Int(Cl^*(B)) \cap B = B \cap Int(Cl^*(Int(B))) \subset Int(Cl^*(Int(B)))$, that is, B is an α -I-open.

Conversely, Let B be an α -I-open and since B \subset Int(Cl*(Int(B))) \subset Int(Cl*(B)), B is pre-I-open. Moreover, B \subset B \cap Int(Cl*(Int(B))) \subset B \cap Int(Cl*(B)) \subset B, that is, B \in D_I(α ,p)-set.

It is known that α -continuous functions into a regular space are continuous [8]. Since every α -I-open set is an α -open set, the following corollary follows,

Corollary 3.1. If (Y,σ) is a regular space, $f: (X,\tau,I) \rightarrow (Y,\sigma)$ is continuous if and only if it is both pre-I-continuous and $D_I(\alpha,p)$ -continuous. **Proof.** It follows from Theorem 3.1 and since every α -I-open set is an α -open [4].

From Theorem 2.1 we can give the following theorem.

Theorem 3.2. For an ideal topological space (X,τ,I) , the following statement are equivalent

a) f is continuous,

b) f is α -I-continuous and $D_I(c,\alpha)$ -continuous,

c) f is pre-I-continuous and $D_{I}(c,p)$ -continuous,

d) f is semi-I-continuous and D_I(c,s)-continuous,

e) f is β -I-continuous and D_I(c,ps)-continuous.

Recall the following definition in [4].

Definition 3.3. A subset A of an ideal topological space (X,τ,I) is called a) t-I-set if Int(Cl*(A))=Int(A), b) α*-I-set if Int(Cl*(Int(A)))=Int(A), c) S-I-set if Cl*(Int(A))=Int(A).

E. HATIR

Note that every t-I-set is $D_I(c,p)$ -set, every S-I-set is $D_I(c,s)$ -set and every α^* -I-set is $D_I(c,\alpha)$ -set, but not conversely, see the following example.

Example 3.1. Let $X=\{a,b,c,d\}, \tau=\{\emptyset, X, \{b\}, \{d\}, \{b,d\}, \{a,b\}, \{c,d\}, \{a,b,d\}\}$ and $I=\{\emptyset, \{a\}, \{c\}, \{a,c\}\}$. Then $A=\{b,c\}$ is $D_I(c,p)$ -set, $D_I(c,s)$ -set and $D_I(c,\alpha)$ -set, but it is not t-I-set, S-I-set and α^* -I-set.

REFERENCES

- [1] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [2] P. Samuels, A topology formed from a given topological spaces, J. London Math. Soc., 10 (2) (1975), 409-416.
- [3] D. Janković and T.R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital., (7), 6-B(1992), 453-465.
- [4] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [5] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61 (1-2) (1993), 93-98.
- [6] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2(1996).
- [7] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71 (1-2) (1996), 109-120.
- [8] T. Noiri, On α-continuous functions, Casopis Pest. Mat., 109 (1984), 118-126.
- [9] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20(1945), 51-61.