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ABSTRACT

In this paper we have proved three theorems on generalized Nérlund summability factors of
infinite series which generalizes various known results.

1. INTRODUCTION

1. Definitions and Notations: Let Y a, be a given infinite series with

n=0

{s, }its n partial sum.

The (N, p,?\) transform' of s, = iav is defined by

v=0

n
Zopn‘V)\'VSV
T, =

where

n
Ty = anxn-v (p—l =A4 =1, =0)

20 for n>0.

o
The series Y.a, or the sequence {sn} is said to be summable (N A L) tos,
n=0

"BORWEIN [3], this is called the generalized Nérlund transform.
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if t, —>s as n— o, and is said to be absolutely summable (N ,Ds k) if 1, is
of bounded variation and when this happens, we shall write symbolically {sn} €
|N » Ds X' .

The method (N, p,A) reduces to the method (N,p,) when 4, =1([8]. p.64);
a,d, A,

to the Euler Knopp method (E, 8 ) when P, = =—" (a>0,5>0) ((8],

3 n'
p.178); to the method (C, o, B ) [2] when p, —(”+°‘ 1) =( E ) We write
€y = Pn— Ppa =Apn
Hp =G, —quy =Aqn

and
£, =8, furthermore 5, = YA, .
v=0
We note that
Ty = an—vxv = zsn-vsv
v=0 v=0
and
R
an—v}"vs Z(p n-y pn—v—l)z)"lst
v=0 i=0
= zsn—vtvsv
v=0
where
12
tV =6_§0)\.isi
1w
=5—Z(3)( i_si—l)ai

v i

Here {tv} is the (N_, 7&] mean ([8], p.57) which is equivalent to (R*,3,_, ,l)

mean ([8], p.113).
Rewriting 7,, in terms of the simplification, given above, we now have
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n
(pn—v"Pn—v—l )tvsv
0

— =
Tn" n

Y Pres Pt )8y

v=0

and this form suggests that we can have the following extension of the (N » Py k)
method.

We now write, for any {an}

n
Zgn—vtvss

LR = (1.1)
Se8

v=0

n
DI M

v=0

where

1 2
t'('a) = '6—4_ Z(Sv - 8v—l)mav

n v=0

we denote this mean by G(N, p,A) [7] when o =1.

9 = (N, p,A)(s,) the G(N, p,A) method reduces to (N, p,A) method.

We say that the G(&, p,A) method is applicable to the given infinite series Y. a, ,
if

® Ep_,a
p, Y —konTk 1.2)
k=n ¥
exists for each n2 0. If further, > b, =s, then we say that Y a,is summable by
G(N, p,A)method to the sum s, and if > |b,|< then Y a,is said to be
absolutely summable by GIN » D )»I method.

2. Concerning Nérlund summability factors of infinite series, DAS [6] has
proved the following theorem:



16 SATISH CHANDRA

THEOREM A: Let {p,}€ M, q, 20, then if } a,is summable [N, D, q|, it is

summable

A},ql.

In 2000 SINGH AND SHARMA [11] extended the theorem of DAS to

v, q'
summability. They established the following theorems:

THEOREM B: Let {p,} € M, q > 0, 9,20, and let {q,} be monotonic non-
increasing sequence for n= 0. The necessary and sufficient conditon that > a,¢€,

Should be summable N-, q|, whenever
2a, =0V, p,q) 2.1)
< 9n
£,[<®© 2.2)
Zo, ol
>dn e, | <o 2.3)
n==0Qn
& Qn+l 2
> =2 A%, [ <0 24)
n=09q n41

is that

Z%"—lsnnen|<oo

n=0 n

THEOREM C: Let {p.} € M, g > 0, q,=20 and let {q,} be monotonic non-
increasing sequence for n > 0. The necessary and sufficient conditon that ) a,g,

should be summable

N, q| , whenever

2a, =0, )N, p,q) (2.5)
where {u, } is positive and monotonic non-decreasing and {en} is such that

I lu, <0 26)

n=0 n

> Ae,lu, <o 2.7

n=0

i Qn+1 A28 2.8
/] njn <® ( . )

n=0q n41
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is that

i_‘IQ.n_|s”||s,,| < 29

n=0%p

The object of the present paper is to prove the above theorems for generalized
Norlund summability.

3. We shall prove the following theorems:

THEOREM 1: Suppose hat £, eM and p, #0 (n=0). Then G(N*,p,A) has an
inverse transformation, whose matrix is given by the transpose of the inverse of
G (N,p, 4), that is, if b,, is given by transformation (1.2), then

ay =r, 5. 26% G.1)
k=n Mg

THEOREM 2: Suppose &, €M and u, #0 and that |u,,| is non-decreasing. If
Z a,, is summable G(N*,p, 1) to s, then

G
a, =o| —
|“nl

If further r, 20, then

t =5+ o(@l"-J (3.2)

la

THEOREM 3: Suppose €, eM,p, is positive, {un }is non-decreasing and
{t, / r,, }is non-increasing. Then if ¥ a,, is summable G IN D )»I , then

t
(h_n_] € BV
rn
4. We need the following lemma for the proof of the theorems:
LEMMA: Let &, € M. Then

@ Ylea| < ,

n=0

(ii) ¢, >0,¢c, <0(nz1)
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(iii) >, 20,
(iv) >.c, =0,ifand only if (e*p), = was n—>
The proof of the lemma appears in HARDY [8], Theorem 22.

5. Proof of the Theorem 1: We know from the identity:

(Zc,,x"XZe,,x”)=1

that
k 1 (k=0)
= 5.1
'E)snck—n {0 (k > 0) ( )
Hence
N v
ch—nev—k == ch—nev—k (V)l’l). (52)
k=n k=N+1

Now for N >n and by (1.2) we have,

N b.c N ¢ *aE
k&k—n _ k-n ySk-v
"y z =t Z 1197 z
k=n M k=n My v=k r,

N N © a.ce,
8> ck-,,[2+ » )— e
-n

v=k v=N+1 Yy
N a, v
=Ty Z - ch—nsv-k
v=n rv =N

o0

a, N
+7, Z - ch—ngv—k
v=N+17, k=n

by (5.1). Thus the necessary and sufficient condition for the validity of (3.1) is that,
for each fixed n,
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0

a, ¥
> €y >0, asN> .,
v=N+1 ¥y k=n
which is the same thing as, for each fixed n,

o0 \4
Dy= 3 2 Y ¢804 —0, asNow®, (5.3)
v=N+1 1y k=N+l
in view of (5.2).
Let us write
® g .d
by = Lo zﬂ. (5.4
k=0 ¥
* €.a;
wv = MO Z £
k=v 1y

since G(N*,p, 4) method is applicable to Y a,, b, is finite and hence, w, is well
defined and tends to zero as v — o« . Now from (5.4)
a, = Wy — Wiy .

r HoE,y
Hence
1 & W, =Wy <
Oy =— " S ChonEyk
Ko v=N+1  Ho€y  k=N+1
Now for M >N,

1 4 w -w v 1 M
v v+l —
- Z ch—ngv—k - Zwv
Ho v=N+1 g, k=N-+1 Ko v=N+1 k=N+1 &y k=N+1 €y

€y—kCh-v Vi‘ sv-—k—lck—n]

1 Wh+1 Y ‘
— " Y e kChon
Lo Ep k=N+

Since €, € M (by lemma)

M
ZeM—kck-n = 0(1), asM -,
k=N+1

and by definition, Wy=0(1), asM — .

We see that
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Ko v=N+1 k=N+1 €,

1 & €, p
Oy == T, z( —-]
v

Since {w,} is an arbitrary sequence tending to 0, hence (5.3) is valid, that is,
@ — 0 if and only if (See Hardy [8], Theorem 8) for fixed n,

* vo (g, €4
Jy= 3 3 (_v_’f___#}k_n =0(1)
1 k=N+l €

v=N+ £, v-1

as N — oo . But by virtue of (5.1)

v (g € N €
v—k v—-k—1 _ v—k Zv=k-1
Z - Ck-n = Z - Ck—n
k=N+1\_ €, €1 k=n\_ €, €y1

for v >n and also

€,_ €y
ok vkl < fork <(v-1).
8v 8v—l
Hence
@ N g
Sv-k _ Eyk-1
Z z Ch-n
v=N+1 k=n\_ €, €,
o0
€yn €y k-1
s 3 oSkl
v=N+1 €, Eyq

+ Z Z ck—n[ v—k 8v—k—1J

v=N+k=n+l €, €1
(OO
=J N+ J N say.
Since €, € M, {z—:n /e, +1} is non —increasing and so,

m
Jy=0(1),asN 5o,

Since {s - +1}2 1and {sn e, H}is non-increasing, it follows that, lim {sn /e, +1}
exists and ‘
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Hence

i €k _Bykot | _ tim  Eyk  Enk
V>R T
gy En

V>0

_ lim [Sv-k Eyri-k sv—l\]_pn—k

Eyri—k Eyi2-k g, Py
= 4% _ Pr+k
Pn
therefore, by (5.1)
(2) N N
_ k. En-k
JN - Z ck—nA - Z Chn
k=n+1 k=n+1 Ex
N k 1 N
= ch—nA - ch—nsn—k ~Co€ N-p
k=n+1 En \k=n
N
€y
= zck—nAk +co _N_L
k=n+1 Ey
Since,
ud k
Y A¥ <0,
k=n+1
we get,

_]_(2_)_ < S08N-n
N €

n
=0(1), as N> w
This completes the proof of theorem 1.

6. Proof of the Theorem 2 : Since ¥ a, is G (N*,p, 1) summable, >b,
is convergent and hence b, =o(l). By using the inversion formula as given in
Theorem 1, we obtain, by using hypothesis,

2 b,
k“k-n
w2 ——
k=n

Ianl B Hg
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s rnl i Ibkck—nl
Iun|k=n

hle
iu |k nO( )Ick—nl
nl| k=

="L|t"'|J

since . |c,[(e0 and b, =o(1),

Next, suppose that ) b, =s. Since
(Lenx™ ) (Xrx" )= Xpax",

(ZeP ) (Trx")= Tiern),x",
it follows that

n

ZO 7yCroy = B (6.1)
y=
n
) reld, =(e*p),, (6.2)
y=I

Thus, when £, € M, we have ¢V >0 and if 7, >0, it follows from (6.2) that
(e*n), =0, whether or not p,, is positive.

mn m 0 b
-$a(E + § |
=0 \k=n k=m+1) Mg
m h k m © b
=Y EY ne, Y, ¥ K
k=0 k n=0 n=0  k=m+1 Mg

< , 2 bycin
k=0 n=0 k=m+l Mg
Hence, as by =0 (1),
el
<5n ¥ ol

n=0 k=m+l 297

Zbk
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23
=03 7 3 Jes|
| mI k=m+1
But when p, €M, we have
|ck NET. (6.3)
k=m+1
and hence, by identity (6.2)
Z by —o(l)—z Sl
m n=0
*®
_ o) &

[l
This completes the proof of Theorem 2.

7. Proof of Theorem 3: We have

i tn“n _ Los1b ot - i A Ll y
n= Tn L n=0 Ty
o«

=L +M,, (say).

By using (3.1), we get (as p, is non-decreasing)

L <3 Mo, $ belcina
n=0 Thi1 k=n+1 Mg

<3 3 plecn

since Y |b;[(o and ¥ |c, [ as €, e M.
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Since {un /1, }is decreasing we have.

0 o0
3 |ake] o5 (h-&&}sy_v_
n=v Ty n=v \ Tn T+l n
Hence,
< Hy d < bkck—v
M,=3 A= XY —
n=0 Val [v=0  k=v Ky
© n w b, llc,
SZ A“n erz Ik"kv'
n=0 Fyl v=0  k=v Hg

< o, by hypothesis.

Hence

z W)

and therefore

Lt eBV.
rn

This completes the proof of Theorem 3.

< L,+M,=0() as
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