ON GENERALIZED NÖRLUND SUMMABILITY FACTORS OF INFINITE SERIES

Satish CHANDRA

Department of Mathematics, S.M. Post-Graduate College, CHANDAUSI-202412,INDIA

(Received Oct. 08, 2002; Accepted May 09,2003)

ABSTRACT

In this paper we have proved three theorems on generalized Nörlund summability factors of infinite series which generalizes various known results.

1. INTRODUCTION

1. Definitions and Notations: Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with $\{s_n\}$ its n^{th} partial sum.

The (N, p, λ) transform¹ of $s_n = \sum_{\nu=0}^n a_{\nu}$ is defined by

$$\tau_n = \frac{\sum_{\nu=0}^n p_{n-\nu} \lambda_{\nu} S_{\nu}}{r_n}$$

where

$$r_n = \sum_{\nu=0}^{n} p_n \lambda_{n-\nu} \quad (p_{-1} = \lambda_{-1} = r_{-1} = 0)$$

$$\neq 0$$
 for $n \ge 0$.

The series $\sum_{n=0}^{\infty} a_n$ or the sequence $\{s_n\}$ is said to be summable (N, p, λ) to s,

¹ BORWEIN [3], this is called the generalized Nörlund transform.

if $\tau_n \to s$ as $n \to \infty$, and is said to be absolutely summable (N, p, λ) if τ_n is of bounded variation and when this happens, we shall write symbolically $\{s_n\} \in |N, p, \lambda|$.

The method (N, p, λ) reduces to the method (N, p_n) when $\lambda_n = 1([8]p.64)$; to the Euler Knopp method (E, δ) when $P_n = \frac{\alpha_n \delta_n}{n!}$, $\lambda_n = \frac{\alpha_n}{n!}$ $(\alpha > 0, \delta > 0)$ ([8], p.178); to the method (C, α, β) [2] when $p_n = \binom{n+\alpha-1}{\alpha}$, $\lambda_n = \binom{n+\beta}{\beta}$. We write

$$\varepsilon_n = p_n - p_{n-1} = \Delta p_n$$

$$\mu_n = q_n - q_{n-1} = \Delta q_n$$

and

$$\xi_n = \delta_n^{\infty}$$
 furthermore $\delta_n = \sum_{\nu=0}^n \lambda_{\nu}$.

We note that

$$r_n = \sum_{\nu=0}^n p_{n-\nu} \lambda_{\nu} = \sum_{\nu=0}^n \varepsilon_{n-\nu} \delta_{\nu}$$

and

$$\begin{split} \sum_{\nu=0}^n p_{n-\nu} \lambda_{\nu} s_{\nu} &= \sum_{\nu=0}^n \left(p_{n-\nu} - p_{n-\nu-1} \right) \sum_{i=0}^{\nu} \lambda_i s_i \\ &= \sum_{\nu=0}^n \varepsilon_{n-\nu} t_{\nu} s_{\nu} \end{split}$$

where

$$t_{v} = \frac{1}{\delta_{v}} \sum_{i=0}^{v} \lambda_{i} s_{i}$$
$$= \frac{1}{\delta_{v}} \sum_{i=0}^{v} (\delta_{i} - \delta_{i-1}) a_{i}$$

Here $\{t_v\}$ is the (N, λ) mean ([8], p.57) which is equivalent to $(R^*, \delta_{n-1}, 1)$ mean ([8], p.113).

Rewriting τ_n in terms of the simplification, given above, we now have

$$\tau_n = \frac{\sum_{\nu=0}^{n} (p_{n-\nu} - p_{n-\nu-1}) \iota_{\nu} \delta_{\nu}}{\sum_{\nu=0}^{n} (p_{n-\nu} - p_{n-\nu-1}) \delta_{\nu}}$$

and this form suggests that we can have the following extension of the (N, p, λ) method,

We now write, for any $\{\varepsilon_n\}$

$$\tau_{n}^{(a)} = \frac{\sum_{\nu=0}^{n} \varepsilon_{n-\nu} t_{\nu} \delta_{\nu}^{\alpha}}{\sum_{\nu=0}^{n} \varepsilon_{n-\nu} \delta_{\nu}^{\alpha}}$$

$$= \frac{\sum_{\nu=0}^{n} \varepsilon_{n-\nu} t_{\nu}^{\alpha} \xi_{\nu}}{\sum_{\nu=0}^{n} \varepsilon_{n-\nu} \xi_{\nu}}$$
(1.1)

where

$$t_n^{(a)} = \frac{1}{\delta_n^a} \sum_{\nu=0}^n (\delta_{\nu} - \delta_{\nu-1})^{\alpha} a_{\nu}$$

we denote this mean by $G(N, p, \lambda)$ [7] when $\alpha = 1$.

 $\tau_n^{(1)} = (N, p, \lambda)(s_n)$ the $G(N, p, \lambda)$ method reduces to (N, p, λ) method.

We say that the $G(N, p, \lambda)$ method is applicable to the given infinite series $\sum a_n$, if

$$\mu_n \sum_{k=n}^{\infty} \frac{\varepsilon_{k-n} a_k}{r_k} \tag{1.2}$$

exists for each $n \ge 0$. If further, $\sum b_n = s$, then we say that $\sum a_n$ is summable by $G(N, p, \lambda)$ method to the sum s, and if $\sum |b_n| < \infty$ then $\sum a_n$ is said to be absolutely summable by $G[N, p, \lambda]$ method.

2. Concerning Nörlund summability factors of infinite series, DAS [6] has proved the following theorem:

THEOREM A: Let $\{p_n\} \in M$, $q_n \ge 0$, then if $\sum a_n$ is summable |N, p, q|, it is summable |N, q|.

In 2000 SINGH AND SHARMA [11] extended the theorem of DAS to N, q summability. They established the following theorems:

THEOREM B: Let $\{p_n\} \in M$, $q_0 > 0$, $q_n \ge 0$, and let $\{q_n\}$ be monotonic non-increasing sequence for $n \ge 0$. The necessary and sufficient condition that $\sum a_n \varepsilon_n$

Should be summable $\left| \overline{N,q} \right|$, whenever

$$\sum a_n = O(1)(N, p, q) \tag{2.1}$$

$$\sum_{n=0}^{\infty} \frac{q_n}{Q_n} \left| \varepsilon_n \right| < \infty \tag{2.2}$$

$$\sum_{n=0}^{\infty} \frac{q_n}{Q_n} \left| \Delta \varepsilon_n \right| < \infty \tag{2.3}$$

$$\sum_{n=0}^{\infty} \frac{Q_{n+1}}{q_{n+1}} \left| \Delta^2 \varepsilon_n \right| < \infty \tag{2.4}$$

is that

$$\sum_{n=0}^{\infty} \frac{q_n}{Q_n} \left| s_n \right| \left| \epsilon_n \right| < \infty$$

THEOREM C: Let $\{p_n\} \in M$, $q_0 > 0$, $q_n \ge 0$ and let $\{q_n\}$ be monotonic non-increasing sequence for $n \ge 0$. The necessary and sufficient conditon that $\sum a_n \varepsilon_n$

should be summable $\left| N, q \right|$, whenever

$$\sum a_n = O(\mu_n)(N, p, q) \tag{2.5}$$

where $\{\mu_n\}$ is positive and monotonic non-decreasing and $\{\varepsilon_n\}$ is such that

$$\sum_{n=0}^{\infty} \frac{q_n}{Q_n} |\varepsilon_n| \mu_n < \infty \tag{2.6}$$

$$\sum_{n=0}^{\infty} \left| \Delta \varepsilon_n \right| \mu_n < \infty \tag{2.7}$$

$$\sum_{n=0}^{\infty} \frac{Q_{n+1}}{q_{n+1}} \left| \Delta^2 \varepsilon_n \right| \mu_n < \infty \tag{2.8}$$

is that

$$\sum_{n=0}^{\infty} \frac{q_n}{Q_n} |s_n| |\varepsilon_n| < \infty \tag{2.9}$$

The object of the present paper is to prove the above theorems for generalized Nörlund summability.

3. We shall prove the following theorems:

THEOREM 1: Suppose hat $\varepsilon_n \in M$ and $\mu_n \neq 0$ $(n \geq 0)$. Then $G(N^*, p, \lambda)$ has an inverse transformation, whose matrix is given by the transpose of the inverse of $G(N, p, \lambda)$, that is, if b_n is given by transformation (1.2), then

$$a_n = r_n \sum_{k=n}^{\infty} \frac{b_k c_{k-n}}{\mu_k} \tag{3.1}$$

THEOREM 2: Suppose $\varepsilon_n \in M$ and $\mu_n \neq 0$ and that $|\mu_n|$ is non-decreasing. If $\sum a_n$ is summable $G(N^*, p, \lambda)$ to s, then

$$a_n = o\left(\frac{|r_n|}{|\mu_n|}\right)$$

If further $r_n \ge 0$, then

$$t_n = s + o\left(\frac{(\varepsilon * \mu)_n}{|\mu_n|}\right) \tag{3.2}$$

THEOREM 3: Suppose $\varepsilon_n \in M$, μ_n is positive, $\{\mu_n\}$ is non-decreasing and $\{\mu_n/r_n\}$ is non-increasing. Then if $\sum a_n$ is summable $G[N^*, p, \lambda]$, then

$$\left(\frac{\mu_n t_n}{r_n}\right) \in BV$$

4. We need the following lemma for the proof of the theorems:

LEMMA: Let $\varepsilon_n \in M$. Then

(i)
$$\sum_{n=0}^{\infty} \left| c_n \right| < \infty ,$$

(ii)
$$c_o > 0, c_n \le 0 (n \ge 1)$$

(iii)
$$\sum c_n \ge 0,$$

(iv)
$$\sum c_n = 0$$
, if and only if $(\varepsilon * \mu)_n \to \infty$ as $n \to \infty$

The proof of the lemma appears in HARDY [8], Theorem 22.

5. Proof of the Theorem 1: We know from the identity:

$$\left(\sum c_n x^n\right) \left(\sum \varepsilon_n x^n\right) = 1$$

that

$$\sum_{n=0}^{k} \varepsilon_n c_{k-n} = \begin{cases} 1 & (k=0) \\ 0 & (k>0) \end{cases}$$
 (5.1)

Hence

$$\sum_{k=n}^{N} c_{k-n} \varepsilon_{\nu-k} = -\sum_{k=N+1}^{\nu} c_{k-n} \varepsilon_{\nu-k} \left(\nu \rangle n \right). \tag{5.2}$$

Now for N > n and by (1.2) we have,

$$r_{n} \sum_{k=n}^{N} \frac{b_{k} c_{k-n}}{\mu_{k}} = r_{n} \sum_{k=n}^{N} \frac{c_{k-n}}{\mu_{k}} \mu_{k} \sum_{\nu=k}^{\infty} \frac{a_{\nu} \varepsilon_{k-\nu}}{r_{\nu}}$$

$$= r_{n} \sum_{k=n}^{N} c_{k-n} \left(\sum_{\nu=k}^{N} + \sum_{\nu=N+1}^{\infty} \right) \frac{a_{\nu} \varepsilon_{k-\nu}}{r_{\nu}}$$

$$= r_{n} \sum_{\nu=n}^{N} \frac{a_{\nu}}{r_{\nu}} \sum_{k=n}^{\nu} c_{k-n} \varepsilon_{\nu-k}$$

$$+ r_{n} \sum_{\nu=N+1}^{\infty} \frac{a_{\nu}}{r_{\nu}} \sum_{k=n}^{N} c_{k-n} \varepsilon_{\nu-k}$$

$$= a_{n} + r_{n} \sum_{\nu=N+1}^{\infty} \frac{a_{\nu}}{r_{\nu}} \sum_{k=n}^{N} c_{k-n} \varepsilon_{\nu-k}$$

by (5.1). Thus the necessary and sufficient condition for the validity of (3.1) is that, for each fixed n,

$$\sum_{\nu=N+1}^{\infty} \frac{a_{\nu}}{r_{\nu}} \sum_{k=n}^{N} c_{k-n} \varepsilon_{\nu-k} \to 0, \text{ as } N \to \infty.$$

which is the same thing as, for each fixed n,

$$\Phi_N = \sum_{\nu=N+1}^{\infty} \frac{a_{\nu}}{r_{\nu}} \sum_{k=N+1}^{\nu} c_{k-n} \varepsilon_{\nu-k} \to 0, \text{ as } N \to \infty,$$
 (5.3)

in view of (5.2).

Let us write

$$b_0 = \mu_0 \sum_{k=0}^{\infty} \frac{\varepsilon_k a_k}{r_k}$$

$$w_v = \mu_0 \sum_{k=v}^{\infty} \frac{\varepsilon_k a_k}{r_k}$$
(5.4)

since G(N*,p, λ) method is applicable to $\sum a_n$, b_0 is finite and hence, w_v is well defined and tends to zero as $v \to \infty$. Now from (5.4)

$$\frac{a_{\nu}}{r_{\nu}} = \frac{w_{\nu} - w_{\nu+1}}{\mu_0 \varepsilon_{\nu}}.$$

Hence

$$\Phi_{N} = \frac{1}{\mu_{0}} \sum_{\nu=N+1}^{\infty} \frac{w_{\nu} - w_{\nu+1}}{\mu_{0} \varepsilon_{\nu}} \sum_{k=N+1}^{\nu} c_{k-n} \varepsilon_{\nu-k}$$

Now for M > N,

$$\frac{1}{\mu_0} \sum_{\nu=N+1}^{M} \frac{w_{\nu} - w_{\nu+1}}{\varepsilon_{\nu}} \sum_{k=N+1}^{\nu} c_{k-n} \varepsilon_{\nu-k} = \frac{1}{\mu_0} \sum_{\nu=N+1}^{M} w_{\nu} \left(\sum_{k=N+1}^{\nu} \frac{\varepsilon_{\nu-k} c_{k-\nu}}{\varepsilon_{\nu}} - \sum_{k=N+1}^{\nu-1} \frac{\varepsilon_{\nu-k-1} c_{k-n}}{\varepsilon_{\nu-1}} \right) - \frac{1}{\mu_0} \frac{w_{M+1}}{\varepsilon_M} \sum_{k=N+1}^{M} \varepsilon_{M-k} c_{k-n}$$

Since $\varepsilon_n \in M$ (by lemma)

$$\left|\sum_{k=N+1}^{M} \varepsilon_{M-k} c_{k-n}\right| = O(1), \text{ as } M \to \infty,$$

and by definition, $W_M = o(1)$, as $M \to \infty$.

We see that

$$\Phi_N = \frac{1}{\mu_0} \sum_{\nu=N+1}^{\infty} w_{\nu} \sum_{k=N+1}^{\nu} c_{k-n} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right).$$

Since $\{w_v\}$ is an arbitrary sequence tending to 0, hence (5.3) is valid, that is, $\Phi_N \to 0$ if and only if (See Hardy [8], Theorem 8) for fixed n,

$$J_N = \sum_{\nu=N+1}^{\infty} \sum_{k=N+1}^{\nu} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) c_{k-n} = O(1)$$

as $N \to \infty$. But by virtue of (5.1)

$$\sum_{k=N+1}^{\nu} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) c_{k-n} = -\sum_{k=n}^{N} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) c_{k-n}$$

for v > n and also

$$\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \le 1, \text{ for } k \le (\nu-1).$$

Hence

$$\begin{split} J_N &= \sum_{\nu=N+1}^{\infty} \sum_{k=n}^{N} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) c_{k-n} \\ &\leq \sum_{\nu=N+1}^{\infty} c_O \frac{\varepsilon_{\nu-n}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \\ &+ \sum_{\nu=N+1}^{\infty} \sum_{k=n+1}^{N} c_{k-n} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) \end{split}$$

$$=J_{N}^{(1)}+J_{N}^{(2)}$$
, say.

Since $\varepsilon_n \in M$, $\{\varepsilon_n / \varepsilon_{n+1}\}$ is non-increasing and so,

$$J_N^{(1)} = O(1)$$
, as $N \to \infty$.

Since $\{\varepsilon_n / \varepsilon_{n+1}\} \ge 1$ and $\{\varepsilon_n / \varepsilon_{n+1}\}$ is non-increasing, it follows that, $\lim \{\varepsilon_n / \varepsilon_{n+1}\}$ exists and

$$A = \lim \frac{\varepsilon_n}{\varepsilon_{n+1}} \ge 1.$$

Hence

$$\begin{split} \sum_{\nu=N+1}^{\infty} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{\nu-k-1}}{\varepsilon_{\nu-1}} \right) &= \lim_{\nu \to \infty} \frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu}} - \frac{\varepsilon_{N-k}}{\varepsilon_{N}} \\ &= \lim_{\nu \to \infty} \left(\frac{\varepsilon_{\nu-k}}{\varepsilon_{\nu+1-k}} \frac{\varepsilon_{\nu+1-k}}{\varepsilon_{\nu+2-k}} ... \frac{\varepsilon_{\nu-1}}{\varepsilon_{\nu}} \right) - \frac{p_{n-k}}{p_{N}} \\ &= A^{k} - \frac{p_{N+k}}{p_{N}} \end{split}$$

therefore, by (5.1)

$$\begin{split} J_{N}^{(2)} &= \sum_{k=n+1}^{N} c_{k-n} A^{k} - \sum_{k=n+1}^{N} c_{k-n} \frac{\varepsilon_{N-K}}{\varepsilon_{N}} \\ &= \sum_{k=n+1}^{N} c_{k-n} A^{k} - \frac{1}{\varepsilon_{N}} \left(\sum_{k=n}^{N} c_{k-n} \varepsilon_{n-k} - c_{0} \varepsilon_{N-n} \right) \\ &= \sum_{k=n+1}^{N} c_{k-n} A^{k} + c_{0} \frac{\varepsilon_{N-n}}{\varepsilon_{N}} \end{split}$$

Since.

$$\sum_{k=n+1}^{N} c_{k-n} A^k \leq 0,$$

we get,

$$J\frac{(2)}{N} \le \frac{c_0 \varepsilon_{N-n}}{\varepsilon_n}$$

$$= O(1)$$
, as $N \rightarrow \infty$

This completes the proof of theorem 1.

6. Proof of the Theorem 2: Since $\sum a_n$ is $G(N^*, p, \lambda)$ summable, $\sum b_n$ is convergent and hence $b_n = o(1)$. By using the inversion formula as given in Theorem 1, we obtain, by using hypothesis,

$$\left|a_{n}\right| = \left|r_{n} \sum_{k=n}^{\infty} \frac{b_{k} c_{k-n}}{\mu_{k}}\right|$$

$$\leq \frac{|r_n|}{|\mu_n|} \sum_{k=n}^{\infty} |b_k c_{k-n}|$$

$$= \frac{|r_n|}{|\mu_n|} \sum_{k=n}^{\infty} o(1) |c_{k-n}|$$

$$= o\left(\frac{|r_n|}{|\mu_n|}\right)$$

since $\sum |c_n| \langle \infty \text{ and } b_n = o(1) ,$

Next, suppose that $\sum b_n = s$. Since

$$\left(\sum c_n x^n\right)\left(\sum r_n x^n\right) = \sum \mu_n x^n,$$

$$\left(\sum c_n^{(1)}\right)\left(\sum r_n x^n\right) = \sum (\varepsilon * \mu)_n x^n,$$

it follows that

$$\sum_{\nu=0}^{n} r_{\nu} c_{n-\nu} = \mu_{n}, \tag{6.1}$$

$$\sum_{\nu=0}^{n} r_{\nu} c_{n-\nu}^{(1)} = \left(\varepsilon * \mu\right)_{n}, \tag{6.2}$$

Thus, when $\varepsilon_n \in M$, we have $c_n^{(1)} \ge 0$ and if $r_n \ge 0$, it follows from (6.2) that $(\varepsilon * \mu)_n \ge 0$, whether or not μ_n is positive.

$$t_{m} = \sum_{n=0}^{m} r_{n} \sum_{k=n}^{\infty} \frac{b_{k} c_{k-n}}{\mu_{k}}$$

$$= \sum_{n=0}^{m} r_{n} \left(\sum_{k=n}^{m} + \sum_{k=m+1}^{\infty} \right) \frac{b_{k} c_{k-n}}{\mu_{k}}$$

$$= \sum_{k=0}^{m} \frac{b_{k}}{\mu_{k}} \sum_{n=0}^{k} r_{n} c_{k-n} + \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k} c_{k-n}}{\mu_{k}}$$

$$= \sum_{k=0}^{m} b_{k} + \sum_{n=0}^{m} r_{n} \sum_{k=m+1}^{\infty} \frac{b_{k} c_{k-n}}{\mu_{k}}$$

Hence, as $b_k = o(1)$,

$$\left| t_m - \sum_{k=0}^m b_k \right| \le \sum_{n=0}^m r_n \sum_{k=m+1}^\infty o(1) \frac{\left| c_{k-n} \right|}{\mu_k}$$

$$= o(1) \frac{1}{|\mu_m|} \sum_{n=0}^{m} r_n \sum_{k=m+1}^{\infty} |c_{k-n}|$$

But when $p_n \in M$, we have

$$\sum_{k=m+1}^{\infty} \left| c_{k-n} \right| \le c_{m-n}^{(1)} \tag{6.3}$$

and hence, by identity (6.2)

$$\left| t_m - \sum_{k=0}^m b_k \right| = o(1) \frac{1}{\mu_m} \sum_{n=0}^m r_n c_{m-n}^{(1)}$$

$$= o(1) \frac{(\varepsilon * \mu)_m}{|\mu_m|}$$

This completes the proof of Theorem 2.

7. Proof of Theorem 3: We have

$$\sum_{n=0}^{\infty} \frac{t_n \mu_n}{r_n} - \frac{t_{n+1} \mu_{n+1}}{r_{n+1}} = \sum_{n=0}^{\infty} \Delta \left(\frac{t_n \mu_n}{r_n} \right)$$

$$\leq \sum_{n=0}^{\infty} |a_{n+1}| \frac{\mu_{n+1}}{r_{n+1}} + \sum_{n=0}^{\infty} |t_n| \Delta \left| \frac{\mu_n}{r_n} \right|$$

$$= L_n + M_n, \text{ (say)}.$$

By using (3.1), we get (as μ_n is non-decreasing)

$$L_{n} \leq \sum_{n=0}^{\infty} \frac{\mu_{n+1}}{r_{n+1}} r_{n+1} \sum_{k=n+1}^{\infty} \frac{\left|b_{k}\right| \left|c_{k-n-1}\right|}{\mu_{k}}$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} \left|b_{k}\right| \left|c_{k-n-1}\right|$$

$$= \sum_{k=0}^{\infty} \left|b_{k}\right| \sum_{n=0}^{k-1} \left|c_{k-n-1}\right|$$

$$= O(1),$$

since $\sum |b_k| \langle \infty \text{ and } \sum |c_n| \langle \infty \text{ as } \varepsilon_n \in M.$

Since $\{\mu_n / r_n\}$ is decreasing we have.

$$\sum_{n=v}^{\infty} \left| \Delta \frac{\mu_n}{r_n} \right| = \sum_{n=v}^{\infty} \left(\frac{\mu_n}{r_n} - \frac{\mu_{n+1}}{r_{n+1}} \right) \leq \frac{\mu_v}{r_v}$$

Hence,

$$\begin{split} M_n &= \sum_{n=0}^{\infty} \left| \Delta \frac{\mu_n}{r_n} \right| \left| \sum_{\nu=0}^n r_{\nu} \sum_{k=\nu}^{\infty} \frac{b_k c_{k-\nu}}{\mu_k} \right| \\ &\leq \sum_{n=0}^{\infty} \left| \Delta \frac{\mu_n}{r_n} \right| \sum_{\nu=0}^n r_{\nu} \sum_{k=\nu}^{\infty} \frac{\left| b_k \right| \left| c_{k-\nu} \right|}{\mu_k} \\ &= \sum_{\nu=0}^{\infty} r_{\nu} \sum_{n=\nu}^{\infty} \left| \Delta \frac{\mu_n}{r_n} \right| \sum_{k=0}^{\infty} \frac{\left| b_k \right| \left| c_{k-\nu} \right|}{\mu_k} \\ &= \sum_{\nu=0}^{\infty} r_{\nu} \sum_{k=\nu}^{\infty} \frac{\left| b_k \right| \left| c_{k-\nu} \right|}{\mu_k} \sum_{n=\nu}^{\infty} \left| \Delta \frac{\mu_n}{r_n} \right| \\ &\leq \sum_{\nu=0}^{\infty} \frac{r_{\nu}}{\mu_{\nu}} \sum_{k=\nu}^{\infty} \left| b_k \right| \left| c_{k-\nu} \right| \frac{\mu_{\nu}}{r_{\nu}} \\ &= \sum_{\nu=0}^{\infty} \sum_{k=\nu}^{\infty} \left| b_k \right| \left| c_{k-\nu} \right| \\ &= \sum_{k=0}^{\infty} \left| b_k \right| \sum_{\nu=0}^{\infty} \left| c_{k-\nu} \right| \\ &< \infty, \quad \text{by hypothesis.} \end{split}$$

Hence

$$\sum \left| \Delta \left(\frac{t_n \mu_n}{r_n} \right) \right| \le L_n + M_n = O(1) \quad \text{as} \quad n \to \infty,$$

and therefore

$$\left\{\frac{t_n\mu_n}{r_n}\right\} \in BV.$$

This completes the proof of Theorem 3.

REFERENCES

- [1] Borwein, D. (1958), A logarithmic method of summability, J. London Math.Soc.,33,212-220.
- [2] Borwein, D. (1958) On products of sequences, J. London Math. Soc., 33, 352-357.
- [3] Borwein,D. (1960) On strong and absolute summability, Proc.Glasgow Math.Assoc.4, 122-139.
- [4] Chandra,S. (1984), On absolute summability fields of infinite series. Ph.D thesis, Rohilkhand University.
- [5] Chandra, S. (2001), A criterion for generalised Nörlund summablity of double Fourier series. Acta Ciencia Indica, Vol XXVII M.No.3, 365-368.
- [6] Das, G. (1966). On some method of summability. Quart. Jour. of Math. Oxford, 17, 244-256.
- [7] Dhal,N,B. (1971). The generalised (N, p, q) summability. Sambalpur University Journal Vol.IV December.
- [8] Hardy.G.H. (1949). Divergent Series. Oxford University Press.
- [9] Kuttner, B. (1960). On quasi-Cesaro summability. J.I.M.S., 24, 319-341.
- [10] Singh,N and Sharma,N. (2000). On (N, p_n^{α}) summability factor theorems of infinite series. Bull.Cal.Math.Soc.,92, (1) 25-38.
- [11] Singh, N and Sharma, N. (2000). On |N, p, q| summability factors of infinite series. Proc.Indian Acad.Sci.(Math.Sci.). Vol.110. No 1, pp.61-68, February.
- [12] Sinha, R. and Chandra, S. (1985). On (N,p,q) summability of Jacobi and Laguerre series. Tamkang Journal of Mathematics, Vol 16, No 1, pp 83-90.
- [13] Thorpe, B. (1970). Nörlund and related summability methods. Ph.D.Thesis Birmingham University.
- [14] Zygmund, A. (1959). Trigonometric Series. Cambridge University Press.