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ABSTRACT

In this paper, we give some results on the spectral deconposition and generalized inverse of the 
matrİK A whidı is the coeffident maJrix of the axial three-index assignment problem and investigate 
relations between eigenvalues and eigenvectors of the matrices and I-A' A where A’^ is the transpoze
and A^ is the generalized inverse of A. It has been shown that the feasible directions of the axial three- 
index assignment problem can be investigated in terms ofthe eigenvectors of the matrix AA7

1. INTRODÜCTION

Axial three-mdex assignment problem (AP) is a special case of general linear 
programming problem. AP is a close relative of the (axial) 3-dimensional 
transportation problem (TP), TP were first studied by Schell in [11] For further 
references conceming these problems see [1,4,6,8]. Application of AP was 
mentioned in [8,9] and also among the early algorithms and heuristics or this 
problem are those of [8,9],

In this study, we investigate algebraic characterizatioas of the singular value 
decompositions in the AP using the paper which was appUed to the transportation 
problem by Bulut in 1991 [4]. It is also shown that the feasible directions of AP can 
be investigated in terms of the eigenvectors of the nıatrix AA^ and is obtained 
further results among the eigenvectors of this nıatrix.

AP can be stated as
n n n

Minimize 2 S Z
İ=I j=ı k=l 

nn
subject to Z Z ’iijk = 1. i = E --41

j=lk=l
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n n
S ZXijk =1, j =
i=l k=l

nü
Z Z^ijk =1, k =l,...,n 
i=l j=l

where Xijk =1 or 0 for ali i,j,k=l,...,n.
This problem can be formulated in the nıatrix form

Min{c^x j Ax = 1J„, x>0}

where

■n ■n
A = û

n
T X [^11 !2î...7Xnnn]î [Cl]]?l^ll2?...îCnnn.,] and In is nxn i denli ty matrix, is the

1X n vector whose ali entries are 1 and ® is Üıe Kronecker product.

2. BASIC DEFINITIONS AND THEOREMS

In this section, we give tlıe basic definitions and llıeorems without proof.

Definition 2.1. (The Moree-Penrose inverse) The generalized inverse [3,4,5,6] 
A^ of an arbitrary mxn nıatrix A, is uniquely detennined as tliat matrix which 
simultaneously satisfıes the following system of four matrix equations;

AA^"A = A, A^AA* = A*, (AA* )'^ = AA*, (A*A)’^' = A*A

Theorem 2.1. [3,4,5] Any m x n matrix A, of rank r, can be written as

A = İZiE; (2.1)
i=l

o are the singular values of A, i.e., positive square roots of
the positive eigenvalues of and AA^ and the matrices

E; =UiVi, i = l,2,...,r (2.2)

where Zj > Zj >... >

satisfy

EjEj^ = 0, e/Ej =0, l<i*j<r 

EjEJE; = Ej , Vi
and where

AA^U; = ZjU;, Vi 

A^Uj = A-jV;, Vi

(2.3)

(2.4)

(2.5)
The matrices E, in Theorem 2.1 are partial isometries [3,4,7] and Eq.(2.1) is the 
singular value decomposition of the matrix A. Furthermore
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JL 1A* = 
i=l

T (2.6)

I
AA* =

i=l
and A^A= EvjV;

i=l
T

Theorcm 2.2. [4,7] Consider the partitioned matrix A=[B,C] 
N=(I-BB*)C andK=(l+C^(B*)^B*C) ‘ then

and let

A-" =
B* -B*CKC^(B*)'^B* 

N*+KC’^(B*)'^B*

if andonly if N NC'dS' (' iS'C = 0.
Definition 2.2. [2.10] Consider the linear programming problem

Mm|:^x [ Ax = b, x>oj

where A is mxn matrix, b is an mxl vector. Let xo be a basic feasible solution. 
Then a nonzero vector d is a feasible direction at xo if and only if

Ad=O and dj > 0, if Xoj = 0

where xoj is the jth component of Xo and d , is the j-th component of d.

Corollary 2.3.
Minjc^s I

[2,10] For the linear programming problem
Ax = b, X S o| the feasible direction at a feasible point X(j can be

investigated in terms of the eigenvectors corresponding to zero eigenvalues of the 
matrix I-A^A.

3. SINGULAR VALUE DECOMPOSITION OF THE MATRK A AND SOME 
RESULTS

İn this section yve obtain some results about spectral decomposition of the 
3n X n^ matrix A, of rank 3n-2, given in (1.2).
Using tlıe matrices A and A\ we compute the ınatrices AA^ and A^A as follows

aaT =
nJ,

nJn

nJn

nJ, 

nJ, (3.1)n

n

n

n

A^A = J„ ® 01„ 0 +1„ ® ® J„ (3.2)
where J„ is nxn matrixwhosealientriesare 1.

The characteristic equations of the matrices AA'^ and A^A are obtained as 
follows

dct(AA''' -U) = (3n2-Z) = 0 (3.3)



126 Y. ÇEVEN

Let {uj,...

,3
det(A'^A-XI) = X” ,3n-3 (3n^ - X) = 0 (3.4)

{vj, .,V3^ 2} the sets of eigenvectors corresponding to nonzero

eigenvalues of the matrices AA * and A^A, respectively.

TCorollary 3.1. The unit eigenvector corresponding to eigenvalue 3n^ of AA
is

TU]
1

Proof. Let T I T T ■ «I = p, ,yı ,zı,T J. Using T, 2,AA U] = 3n Uı we obtain
JnXl = nx,, J„yj = nyp = nz). Hence the proof is easily completed.

T T T

n'

Corollary 3.2. Tlıe orthonormal eigenvectors corresponding to eigenvalues 
of AA^ are

«iJ =[x/,0’^,0'^], for i = 2,...,n

where s; yi and Zj

uj = [0^,y/,0^], for i = n + l,...2n-1

U;^ =[0^,0^,zJ], for i = 2n,...3n-2
Vi, are the linearly independent Solutions of the JnX=0 and

Jny=O and JnZ=0 respectively.

Proof. Let u^ = |x’,y',z^]. Froın tlıe equahty AA^u = ıı^u, we have 
J„x = 0, J^y = 0 and J^z = 0, and the corollary is trivial.

Corollary 3.3. The eigenvectors corresponding to eigenvalues 3n" and 1? of 
the matrix A^A defined in (3.2) are as follows, respectively

2

T 
n

T 
n

T 
n,,3/2 f' 01,

11'
and

1 TVi = -(1/®1. 
n

T 
n , for i=2,...,n

''i = ®®ln^)yi for i=n+l,...,2n-l 
n
1

Vj = — 
n
(l/®l/®l/)Zi fori=2n,...,3n-2

where s; , jı and z, are tlıe linearly independent Solutions of tlıe eqs. 
J„x = o, J^y = 0 and J„z = 0.
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Proof. Using the Eg.(2.5) Corollary 3.1 and Corollary 3.2 it can be easily 
proved.

Corollary 3.4. Let u, and Vi for i=l,...,3n-2, be eigenvectors of AA^ and A^A 
respectively. Then

1,®1„®(İJ„+XXT) 
n

A = 1„®(1J„+YYT)01„ 
n

(3.5)

(İJ„+ZZT)®1„®1, 
n 41

where X = [x2,x3,.. Iy = Iy2>y3v-yn ] and Z = [z2,z3,...,z„]

Proof. Using Üıe Corollaries 3.1, 3.2 and 3.3 andEq. (2.2) we get
nD

Eı =
1

a û

nJn®ln®f
and 

Ei=- n

XixJ(ln®ln®In)
, for i = 2,...,n

Ei=- n yiY;’J(1„®I„®1„) , for i = n + l,...,2n-l

Ei=- n
, for i =2n,...,3n-2

0 
o

0

o

0
0

ZizJ(I„®l„®l„)

and hence the matnx A can be easily obtained using the Eq. (2.1).
If we compare the matrices given in (1.2) and (3.5) we have

XX’' = yy’’ = zz’’ = i„ - - j„.n n

4. THE CHARACTERIZATION OF THE FEASİBLE DİRECTİONS

Using Theorem 2.2, tlıe Moore-Penrose inverse of A given in (1.2) is 
obtained in tlıe form
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A 1
Sn^

01/ ®(3nl„ -2JJ1/® (3nl„ -2JJ01/(3nI„ -2J„)01j] (4.1)

Thus we have
O

(4.2)
n'n

a

1 2
I-A^A = U ®In ®In ® Jn ®In +Jn ®I« ® Jn +Iu ® Ju ®In)+^Jn ® Jn ® Jn (4-3)

n^ n
and

.3det(A+A-XI) = Z“ "^“+2 3n-2 (4.4)(X.-l)-
Corollary' 4.1. The eigenvectors corresponding to eigenvalues 1 of tlıe matrix 
I - A^A are in the form

where x,

Ui =Xj®yk®z,,

Uj = X 0 yj; 0 z

Uj = Xj ®y ®z t5

Uj = Xj ®y\ 0 z.

t»

for i = 1,2,...,(n-1)3

for i = (n-l)3 4-l,...,(n-l)3 4-(n-l)2

for i = (n -1)^ + (n -1)2 -t 1,...,(n -1)3 -t 2(n -1)^ 

for i = (n-l)3 4-2(11-1)2 -3n-ı-2

(4.5)

v'k and Zt , 2 < j, k,t < n, are the eigenvectors corresponding to
eigenvalues 0 of the matrix J„ and x, y and z are the eigenvectors corresponding to
eigenvalue n of J,'n •

Proof. Since rank(A^A) = rank(A) = 3n-2 and AA lıas size n^ X n' the Eq.
A’ A=0 has n^-3n+2 linearly independent Solutions. It can be shown that the İmearly 
independent eigenvectors as in (4.5) satisfy the eq. A^Au=0.

Corollary 4.2. The feasible directions of the problem given in (1.2) can be
investigated in terms of the eigenvectors of the matrix 1,'n •

Proof. Using Theorem 2.3 and Corollary 4.1, it is easily seen.
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