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ABSTRACT

In this paper, we give some results on the spectral decomposition and generalized inverse of the
matrix A which is the coefficient matrix of the axial three-index assignment problem and investigate
relations between eigenvalues and eigenvectors of the matrices AA” and I-A"A where AT is the transpoze
and A" is the generalized inverse of A. It has been shown that the feasible directions of the axial three-
index assignment problem can be mvestigated in terms of the eigenvectors of the matrix AA™.

1. INTRODUCTION

Axial three-index assignment problem (AP) is a special case of general linear
programming problem. AP is a close relative of the (axial) 3-dimensional
transportation problem (TP). TP were first studied by Schell in [11] For further
references concerning these problems see {1,4,6,8]. Application of AP was
mentioned in [8,9] and also among the early algorithms and heuristics or this
problem are those of [8,9].

In this study, we investigate algebraic characterizations of the singular value
decompositions in the AP using the paper which was applied to the transportation
problem by Bulut in 1991 [4]. 1t is also shown that the feasible directions of AP can
be investigated in terms of the eigenvectors of the matrix AA” and is obtained
further results among the eigenvectors of this matrix.

AP can be stated as

. . . nn 1
Minimize ryy Ciik Xk
i=1 j=1 k=1
. n n
subjectto ¥ ¥ xy =L i=1..n
k=1
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n n .

Z z Xijk =1, _]21,...,11
i=1k=1

n n

Z ZXijk =1, k ‘—‘1,“‘.,11

-
1t

1 =1
where xi =1 or 0 for all 1,j.k=1,....n.
This problem can be formulated in the matrix form
Min{ch I Ax = 13Tﬂ, x 2 0}

where

1, ®1,®I,

A=|1, ®I, ®1,

I, ®1, ®1,
X° =[X111.X112,--Xemn]s € =[C111.C112,..-.Conn] and I, is nxn identity matrix, 1, is the
1xn vector whose all entries are 1 and ® is the Kronecker product.

2. BASIC DEFINITIONS AND THEOREMS
In this section, we give the basic definitions and theorems without proof.

Definition 2.1. (The Moree-Penrose inverse) The generalized inverse [3,4,5,6]
A" of an arbitrary mxn matrix A, is uniquely determined as that matrix which
simultancously satisfies the following system of four matrix equations:

AATA =A, ATAAT =AY, (AAT) =AAT, (ATAY = ATA

Theorem 2.1. [3,4,5] Any mxn matrix A, of rank r, can be written as
A = i)"iEi (2 l)

i=1

where A, 2%, 2.2 A, >0 are the singular values of A, i.e., positive square roots of
the positive eigenvalues of A'A and AA” and the matrices

Ei=wyv;,1=12,.1 2.2)
satisfy
EE;" =0, E'E;=0, 1<i=j<r 2.3)
EETE, =E;, vi
and where
AAT = pu;, Vi 2.4
Alu, = pv;, Vi (2.5)

The matrices E; in Theorem 2.1 are partial isometries [3,4,7] and Eq.(2.1) is the
singular value decomposition of the matrix A. Furthermore
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A = Z%Ef .6)
i=1/
AAT = iuu-T and AYA = iv‘v-T Q27
- 11 - 171 *
i=1 i=1

Theorem 2.2.[4,7] Consider the partitioned matrix A=[B,C] and let
N=(I-BB")C and K=(I+C"(B")"B'C)" then
R [B* -B*CKCT(B*)TE»*}
N* +KCT(BH B
if and only if N"NCT(B*)I'B*C =0.
Definition 2.2. [2.10] Consider the linear programming problem
Mink"x | Ax=b, x>0}
where A is mxn matrix, b is an mx1 vector. Let x, be a basic feasible solution.
Then a nonzero vector d is a feasible direction at x,, if and only if
Ad=0and d; >0, if x;=0
where xo; is the jth component of x, and d;is the j-th component of d.

Corollary 2.3, [2,10] For the linear programming problem
Min!(:Tx | Ax=b, xZO} the feasible direction at a . feasible point x, can be

investigated in terms of the eigenvectors corresponding to zero eigenvalues of the
matrix [-ATA.

3. SINGULAR VALUE PECOMPOSITION OF THE MATRIX A AND SOME
RESULTS

In this section we obtain some results about spectral decomposition of the
3nxn® matrix A, of rank 3n-2, given in (1.2).
Using the matrices A and A, we compute the matrices AA” and A"A as follows
n*l, oJ, nJ,
AAT =0y, 2%, nJ, 3.1
nJ, nJ, 0’

ATA=],07,®1,+],01,®],+,®J, ®J, (3.2)
where T, is nxn matrix whose all entries are 1.

The characteristic equations of the matrices AA™ and A"A are obtained as
follows

det(AAT —AI) = 220 -1)** 330 -A) =0 (3.3)
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3
det(ATA - D) = A% 31+ 2(n? _ 330332 — 1) =0 G4
Let f{u;,...,us, ,} and {v,...,vs, ,} the sets of eigenvectors corresponding to nonzero

eigenvalues of the matrices AAT and ATA, respectively.

p

Corollary 3.1. The unit eigenvector corresponding to eigenvalue 3n> of AAT
is
T 1
L —[111 111 11]

- Ve
Proof. Let uf = lxlT,le,le J Using AATw, =3n%n;, we obtain
J.%; =nx, 1.y, =ny,, J,z, = nz,. Hence the proof is easily completed.

Corollary 3.2. The orthonormal eigenvectors corresponding to eigenvalues
n? of AAT are
u,T =[xT 0707}, for i=2,..n
uT =[07,y;T.07], for i=n+1,..2n-1
w,t =[07,0",2,T], for i=2n,.3n-2
where x; , v; and z; , Vi, are the linearly independent solutions of the J,x=0 and
J,¥=0 and J,.z=0 respectively.

Proof. Let u' =[x",y",z7]. From the equality AATu=n%u, we have
I,x=0,Jy=0 and Iz =0, and the corollary is trivial

Corollary 3.3. The eigenvectors corresponding to eigenvalues 3n° and n’ of
the matrix ATA defined in (3.2) are as follows, respectively

1 7 T T
n=—l @1, e,

and
v, = l(lnT ®1,  ®1, )y, fori=2,..n
n

vi= %(1,1T ®1," ®1, "y, fori=n+l,...2n-1

v = %(InT ®1," ®1,")z; fori=2n,...3n-2

where x; , y; and z are the linearly independent solutions of the egs.
Jux=0,J,y=0 and Jz =0.
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Proof. Using the Eq.(2.5) Corollary 3.1 and Corollary 3.2 it can be easily

proved.

Corollary 3.4. Let u; and v; for i=1,...,3n-2, be eigenvectors of AA™ and ATA

respectively. Then
1, ®1, ®(—1—Jn +XxX")
n

A=l ®(%Jn +YYhHel,
(%Jn +727")®1, ®1,
where X = [xz,x3,.“,xu], Y= [yz,y3,...,yn] and Z = [22,23,4..,2,1]

Proof. Using the Corollaries 3.1, 3.2 and 3.3 and Eq. (2.2) we get

[l ®1,®7,
By =—=—{1, ®7, ®1
V3o’ ’
1, ®1, 81,
and
X% (1, ®1, ®1I,)
Ej=— ] ,for 1=2...,n
n
0
0
E; =1 yiy0, ®1, ®1,) |, for i=n+L,..20-1
. 0
1 0
E=— 0 , for i=2n,..,3n-2
n
2z, (1, ®1, ®1,)

and hence the matrix A can be easily obtained using the Eq. (2.1).
If we compare the matrices given in (1.2) and (3.5) we have

1

xxT=yy' =277 =1, -=7J,.
n

4. THE CHARACTERIZATION OF THE FEASIBLE DIRECTIONS

(3.5)

Using Theorem 2.2, the Moore-Penrose inverse A™ of A given in (1.2) is

obtained in the form
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A =21 T@1 T@GEn, -25,)1.T @ (3al, - 27, ) @1, (3n, —27,)®1,T (4.1)
3n3 n n n n n n n

Thus we have
1 2
AtA = n—Z(J,1 R, L +J, QL ®J, +1, ®T, ®In)—n—3Jn ®J1,®71, 42

2
I-A"A =1, ®I, @I, ——15(1,1 ®J, ®I, +], ®L, ®J, +I, ®J, ®1n)+§1n ®J1,®J, (4.3)
n

and
det(A*A - 3I) = 3302y, _qyin-2 (4.4)
Corollary 4.1. The eigenvectors corresponding to cigenvalues 1 of the matrix
I-A*A arein the form
W =x;®y, ®z, fori=12,..(n-1)
u =x®y, ®z,, fori=@m-1°+1..,(n-1)°+(@-1)> 4.5)
w=x;®y®z, fori=m-1°+@-D*+L..0-1°+2m-1)
W =X;®y, ®z, fori=(n -’ +2m-172 +1,..0° =30 +2
where x; , yc and z, , 2<j,k,t<n, are the ecigenvectors corresponding to

eigenvalues 0 of the matrix J, and x, y and z are the eigenvectors corresponding to
eigenvaluenof J, .

Proof. Since rank(A*A)=rank(A)=3n-2 and A*A has size n’xn’ the Eq.
A"A=0 has n’-3n+2 linearly independent solutions. It can be shown that the linearly
independent eigenvectors as in (4.5) satisfy the eq. A" Au=0.

Corollary 4.2. The feasible directions of the problem given in (1.2) can be
investigated in terms of the ¢igenvectors of the matrix I;.

Proof. Using Theorem 2.3 and Corollary 4.1, it is easily seen.
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