Commun. Fac. Sci. Univ. Ank. Series A1 V. 52 (no.1) pp.27-31 (2003)

A SPECIAL NÖRLUND MEAN and ITS EIGENVALUES

C. COŞKUN

Ankara University, Faculty of Science, Department of Mathematics, 06100, Tandoğan, Ankara – TURKEY

(Received: April 5, 2003; Accepted : June 11, 2003)

ABSTRACT

In a series of paper, some authors have previously investigated the spectrum of weighted mean matrices considered as bounded operators on various sequence spaces [1]-[3], [5], [7]-[10]. As far as we know there is no investigation on the spectrum of Nörlund means. In this paper, we determine the set of eigenvalues of a special Nörlund matrix as a bounded operator over some sequence spaces.

1. INTRODUCTION

Nörlund mean matrix is an infinite triangular matrix $N = (q_{nk})$ with

$$q_{nk} = \begin{cases} \frac{q_{n-k}}{Q_n} , & 0 \le k \le n \\ 0 , & k > n \end{cases}$$

where $q_0 > 0$, $q_k \ge 0$ for $k \ge 1$ and $Q_n = \sum_{k=0}^n q_k$ ([5], p.9). It is well known that N is regular if and only if $q_n / Q_n \to 0$, as $n \to \infty$ ([5], p.10).

In this paper we define $q_k = r^k$, 0 < r < 1, and consider the operator N generated by

$$(Nx)_{n} = \frac{1-r}{1-r^{n+1}} \sum_{k=0}^{n} r^{n-k} x_{k}.$$
 (1.1)

Let $\pi(X)$ denote the point spectrum of N acting on X, where X is one of the following sequence spaces

$$\ell_{\infty} = \{ (x_n) : \sup_{n} |x_n| < \infty \} ,$$

$$\ell_p = \left\{ (x_n) : \sum_{n=0}^{\infty} |x_n|^p < \infty \right\} ,$$

$$c = \{ (x_n) : \lim_{n} x_n \text{ exists} \} ,$$

$$c_0 = \{ (x_n) : \lim_{n=0} x_n = 0 \} ,$$

$$bv = \left\{ (x_n) : \sum_{n=0}^{\infty} |x_n - x_{n+1}| < \infty \right\} ,$$

$$bv_0 = bv_0 c_0 .$$

The spectrum of weighted mean operators have been investigated on c, c_0 , bv and bv_0 by several authors [2]-[3], [5], [7]-[10]. In the second section, we show that N is bounded on sequence spaces ℓ_{∞} , ℓ_p , c, c_0 , bv and bv_0 . In the third section, we determine its set of eigenvalues on these sequence spaces.

1. BOUNDEDNESS

The following theorem shows that N is a bounded linear operator on some sequence spaces.

Theorem 2.1. N is a bounded linear operator on sequence spaces ℓ_{∞} , ℓ_p , c, c_0 , by and bv_0 .

Proof. From (1.1), N is given by $N = (q_{nk})$ where

$$q_{nk} = \begin{cases} \frac{(1-r)r^{n-k}}{1-r^{n+1}} & , & 0 \le k \le n \\ & & & \\ 0 & , & k > n \end{cases}$$
(2.1)

From (2.1) it is evident that

$$\sum_{k=0}^{\infty} |\mathbf{q}_{nk}| = \sum_{k=0}^{n} \frac{(1-r)r^{n-k}}{1-r^{n+1}} = 1$$
(2.2)

for all n. So N is a bounded on ℓ_{∞} . Since 0 < r < 1 we get

$$\lim_{n \to \infty} q_{nk} = \lim_{n \to \infty} \frac{(1 - r)r^{n-k}}{1 - r^{n+1}} = 0$$
(2.3)

for all k. Then (2.2) and (2.2) gives the boundedness of N on c and c_0 . (see, [10], p.116).

On the other hand, from (2.1) we have

$$\sum_{n=0}^{\infty} |q_{nk}| = \sum_{n=k}^{n} \frac{(1-r)r^{n-k}}{1-r^{n+1}} = \frac{1-r}{r^k} \sum_{n=k}^{n} \frac{r^n}{1-r^{n+1}}$$
$$\leq \frac{1-r}{r^k} \int_{k}^{\infty} \frac{r^t}{1-r^{t+1}} dt = \frac{1-r}{r^k} \frac{\ln(1-r^{k+1})}{r\ln r}$$

$$\leq \frac{(1-r)\ln(1-r)}{r\ln r} = O(1)$$
 (2.4)

From (2.4) we see that N is bounded on ℓ_1 and also from (2.2) and (2.4) it is clear that N is bounded on ℓ_p , l , ([4], p.174).

From (2.1) we find

$$Ne = e \tag{2.5}$$

where e = (1,1,1,...) and

$$\begin{split} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{m} (q_{nk} - q_{n-1,k}) \right| &= \sum_{n=0}^{m} \left| \sum_{k=0}^{m} (q_{nk} - q_{n-1,k}) \right| + \sum_{n=m+1}^{\infty} \left| \sum_{k=0}^{m} (q_{nk} - q_{n-1,k}) \right| \\ &= \sum_{n=0}^{m} \left| \sum_{k=0}^{n} q_{nk} - \sum_{k=0}^{n-1} q_{n-1,k} \right| + \sum_{n=m+1}^{\infty} \left| \sum_{k=0}^{m} \left[\frac{(1-r)r^{n-k}}{1-r^{n+1}} - \frac{(1-r)r^{n-k-1}}{1-r^{n}} \right] \right| \\ &= 0 + (1-r) \sum_{n=m+1}^{\infty} \left| \sum_{k=0}^{m} \left[\frac{r^{n-k}}{1-r^{n+1}} - \frac{r^{n-k-1}}{1-r^{n}} \right] \right| \\ &= (1-r) \sum_{n=m+1}^{\infty} \frac{1}{(1-r^{n+1})(1-r^{n})} \left| \sum_{k=0}^{m} \left[r^{n-k} - r^{n-k-1} \right] \right| \\ &= (1-r)^{2} \sum_{n=m+1}^{\infty} \frac{1}{(1-r^{n+1})(1-r^{n})} \sum_{k=0}^{m} r^{n-k-1} \\ &= (1-r)^{2} \sum_{n=m+1}^{\infty} \frac{1}{(1-r^{n+1})(1-r^{n})} \frac{r^{n}(1-r^{m})}{r^{m}(1-r)} \\ &= \frac{(1-r)(1-r^{m})}{r^{m}} \sum_{n=m+1}^{\infty} \frac{r^{n}}{(1-r^{n+1})(1-r^{n})} dt \end{split}$$

$$=\frac{(1-r^{m})}{r^{m}\ln r}\ln\left(\frac{1-r^{m+1}}{1-r^{m+2}}\right)=O(1)$$

for all m. Therefore we get

$$\sup_{m} \sum_{n=0}^{\infty} \left| \sum_{k=0}^{m} (q_{nk} - q_{n-1,k}) \right| = O(1).$$
(2.6)

Equations (2.5) and (2.6) are the necessary and sufficient conditions of boundedness of N on bv. Also equations (2.3) and (2.6) give the boundedness of N on bv_0 (see, [10], p.127).

2. EIGENVALUES

Let $Nx = \lambda x$ where $x \neq \theta = (0,0,...)$ and λ is a complex number. By (2.1) we get $x_0 = \lambda x_0$ and for $n \ge 1$

$$\frac{1-r}{1-r^{n+1}}\sum_{k=0}^{n}r^{n-k}x_{k} = \lambda x_{n} \quad . \tag{3.1}$$

If m is the smallest integer for which $x_m \neq 0$, then from (3.1) we have $\lambda = \frac{1-r}{1-r^{m+1}}$ and for n > m $x_n = r^{n-m} \left(\prod_{k=1}^{n-m} \frac{1-r^{m+k}}{1-r^{m+k+1}} \right) x_m.$ (3.2)

Using the above arguments we get following results about the set of eigenvalues of N.

Theorem 3.1. $\pi(c_0) = \pi(\ell_p) = \pi(bv_0) = \phi$.

Proof. If $x = (x_n)$ is a solution of the equation $Nx = \lambda x$ where $x \neq \theta$ and λ is a complex number then x_n is given by (3.2) and

$$\frac{x_n}{x_{n-1}} = \frac{1 - r^n}{r^m - r^n} \ge 1$$
(3.3)

is satisfied. The inequality (3.3) implies that $x = (x_n)$ does not belong to c_0 . On the other hand, c_0 contains ℓ_p and bv_0 and hence $x = (x_n) \notin \ell_p$ and $x = (x_n) \notin bv_0$. This completes the proof.

Theorem 3.2. $\pi(\ell_{\infty}) = \pi(c) = \pi(bv) = \{1\}.$

30

Proof. If the sequence $x = (x_n)$ is not a null sequences which satisfies the equation Nx = x then $x_n = x_0$ for all n. Since $x = (x_0, x_0, \cdots)$ is an element of ℓ_{∞} , c and by then $\lambda = 1$ is an eigenvalue of N.

Let us assume that the sequence $x = (x_n)$ is a solution of $Nx = \lambda x$ where $x \neq \theta$ and $\lambda \neq 1$. If we consider the equation (3.2) we have

$$x_{n} = r^{n-m} \left(\prod_{k=1}^{n-m} \frac{1-r^{m+k}}{r^{m+1}-r^{m+k+1}} \right) x_{m} = \frac{r^{n-m}}{r^{(n-m)(m+1)}} \left(\prod_{k=1}^{n-m} \frac{1-r^{m+k}}{1-r^{k}} \right) x_{m}$$

$$\ge \frac{r^{n-m}}{r^{(n-m)(m+1)}} \left(\prod_{k=1}^{n-m} \frac{1-r^{k}}{1-r^{k}} \right) x_{m} = \frac{1}{r^{m(n-m)}} x_{m}.$$
(3.4)

for n > m. Since $x_m \neq 0$, $x = (x_n)$ is unbounded. So $\lambda \neq 1$ is not eigenvalue of N. Therefore $\lambda = 1$ is the only eigenvalue of N acting on ℓ_{∞} , c and by.

REFERENCES

- [1] Cartlidge, J.M. "Weighted mean matrices as operator on ℓ_p " Ph.D. Thesis. Indiana University (1978).
- [2] Cass, F. P. Rasades, B.E. "Mercerian theorems via spectral theory" Pacific J. Math. 73(1977), 63-71.
- [3] Coşkun, C. "On the spectrum of weighted mean matrices on bv." Indian J. Pure Appl. Math. 28 (5) (1997), 671-677.
- [4] Maddox, I.I. Elements of Functional Analysis. Cambridge University Press (1970).
- [5] Okutoji, J. I. "On the spectrum of the Cesaro operators." Ph.D. Thesis Birmingham University (1986).
- [6] Petersen, G. M., Regular Matrix Transformation. Mc Graw-Hill Publishing Com. London (1966).
- [7] Rhoades, B. E., "The fine spectra for weighted mean operator," Pacific J. Math. 104 (1983), 219-230.
- [8] Rhoades, B. E., "The spectrum of weighted mean operators" Canad. Math. Bull. 30 (1987), 446-449.
- [9] Rhoades, B. E. "The spectrum of weighted mean operators on bv₀." J. Austral. Math. Soc. (Series A) 52(1992), 242-250.
- [10]Wilansky, A. Summability Through Functional Analysis. Elsevier Science Publishers B.V. Amsterdam (1984).