SPECTRAL DECOMPOSITION OF DISPERSION MATRIX FOR THE MIXED ANALYSIS OF VARIANCE MODEL

B. GÜVEN

Department of Statistics, Middle East Technical University 06531, Ankara Turkey.
(Received June 27, 2000; Accepted Oct. 11, 2000)

Abstract

The spectral decomposition of the variance-covariance matrix for a balanced mixed analysis of variance model is presented. The model consists of crossed and/or nested factors with either replicated or nonreplicated.

1. INTRODUCTION

The spectral decomposition of a variance-covariance matrix (dispersion matrix) \mathbf{V} is useful for finding its powers \mathbf{V}^{α} where α is any real number. In particular, $\alpha=-1, \quad V^{-1}$ is useful for estimation or $\alpha=-\frac{1}{2}, V^{-1 / 2}$ is useful for the transforming a linear model to a model with i.i.d. error terms.

The problem has been discussed before by Searle and Henderson [1] and Wansbeek and Kapteyn [2]. In both studies, it is supposed that the form of the spectral decomposition of V is of the same form of \mathbf{V}. Then they obtained idempotent matrices in the spectral decomposition of \mathbf{V} by equating \mathbf{V} and its assumed spectral decomposition.

However our solution is based on deriving an idempotent matrix from eigenvectors for the corresponding eigenvalue in the spectral decomposition of \mathbf{V} without assuming any form of the spectral decomposition of \mathbf{V}.

2. THE DISPERSION MATRIX

The variance-covariance matrix \mathbf{V} for a balanced k-factor mixed analysis of variance model is of the following structure

$$
\begin{equation*}
V=\sum_{\mathbf{d}} \lambda_{\mathbf{d}} \mathbf{N}_{\mathbf{d}} \tag{1}
\end{equation*}
$$

where d is a k-vector of zeros and ones. The summation is taken over 2^{k}-elements. The λ_{d} are nonnegative parameters. Let $d=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with i_{r} or 1 for $=1,2 \ldots k$. Then the matrix $\mathbf{N}_{\mathbf{d}}$ in (1) are defined as

$$
\mathbf{N}_{\mathbf{d}}=\mathbf{J}_{1}^{\mathrm{i}_{1}} \otimes \mathbf{J}_{2}^{\mathrm{i}_{2}} \otimes \ldots \otimes \mathbf{J}_{\mathbf{k}}^{\mathrm{i}_{\mathrm{k}}}
$$

with $\mathbf{J}_{\mathbf{x}}^{0}=\mathbf{I}_{r}$, where $\mathbf{J}_{\mathbf{x}}$ and \mathbf{I}_{x} are respectively a matrix of ones and an identity matrix of order a_{r} for $\mathrm{r}=1,2, \ldots, \mathrm{k}$, the symbol \otimes denotes the Kronecker product of matrices.

The full rank of (1), leading that all eigenvalues of (1) are nonzero, is provided by $\mathbf{N}_{0 \theta \ldots 0 \theta}=\mathbf{I}_{12 \ldots k}$ where $\mathbf{I}_{12 \ldots k}$ is an identity matrix of order $\prod_{r=1}^{k} n_{r}$. A linear space generated by the columns of (1) is the sum of linear subspaces generated by the columns of 2^{k} matrices of order $\prod_{r=1}^{\mathbb{K}} n_{r}$ given by $I_{12 \ldots k}, \mathbf{N}_{00 \ldots 01}, \ldots, \mathbf{N}_{11 \ldots 11}$ and then is spanned by the set of basis $I_{12 \ldots k}, N_{00 \ldots 01}, \ldots, \mathbf{N}_{11 \ldots 11}$. However the basis for any $\mathbf{N}_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathbf{k}}}$ are the linear combination of the basis for $\mathrm{I}_{12 \ldots k}$. As a result, a linear space generated by the columns of (1) is spanned by the set of basis for $\mathbf{I}_{12 \ldots \mathrm{k}}$.

3. THE SPECTRAL DECOMPOSITTYON

Let $t_{1}, t_{2}, \ldots, t_{k}$ be denoted by t with $t_{t}=0$ or 1 . The 2^{k} (possibly) distinct eigenvalues of (1) given by [1] are:

$$
\begin{equation*}
\phi_{\mathbf{t}}=\sum_{\mathbf{d}} \lambda_{d} x_{t_{1}}^{i_{1}} x_{t_{2}}^{i_{2}} \ldots x_{t_{k}}^{i_{k}} \tag{2}
\end{equation*}
$$

with multiplicity $\prod_{r=1}^{k}\left(n_{r}-1\right)^{1-t_{r}}$ and where $x_{t_{r}}^{i_{r}}$ is the eigenvalue of the matrix $J_{r}^{i_{r}}$ given by

$$
x_{t_{t_{r}}}^{i_{r}}=\left\{\begin{array}{lll}
0 & \text { if } & t_{r}=0 \\
n_{r} & \text { if } & t_{r}=1
\end{array}\right.
$$

with multiplicity $\left(n_{r}-1\right)^{1-t_{r}}$ if $i_{r}=1$. $x_{t_{r}}^{i_{r}}=1$ for $t_{r}=0,1$ with multiplicity n_{r} if $i_{r}=0$. An eigenvector $v_{t_{r}}$ for $x_{t_{r}}^{i_{r}}$ will be:

$$
v_{t_{r}}=\left\{\begin{array}{llll}
\xi_{n_{r} k} & k=1,2, \ldots, n_{r}-1 & \text { if } & t_{r}=0 \tag{3}\\
\frac{1}{\sqrt{n_{r}}} \mathbf{1}_{r} & & \text { if } & t_{r}=1
\end{array}\right.
$$

and $\xi_{n_{r} 1}, \xi_{n_{r}} 2, \ldots, \xi_{n_{r} n_{r}-1}, \frac{1}{\sqrt{n_{r}}} 1_{r}$ is an orthonormal set, 1_{r} is a $n_{r} \times 1$ vector of ones.
Let

$$
\begin{equation*}
v_{t}=v_{t_{1}} \otimes \mathbf{y}_{t_{2}} \otimes \ldots \otimes v_{t_{k}} . \tag{4}
\end{equation*}
$$

Then v_{t} is an eigenvector for ϕ_{d} in (2) since $J_{r}^{i_{r}} \mathbf{v}_{t_{r}}=X_{t_{r}}^{i_{r}} \mathbf{v}_{t_{r}}$ and

$$
\begin{aligned}
& \mathbf{N}_{d^{\prime}}{ }_{\mathbf{t}}=\left(\mathbf{J}_{1}^{\mathbf{i}_{1}} \otimes \mathbf{J}_{2}^{\mathbf{i}_{2}} \otimes \ldots \otimes \mathbf{J}_{k}^{\mathbf{i}_{k}}\right)\left(\mathbf{v}_{\mathrm{t}_{1}} \otimes \mathbf{v}_{\mathrm{t}_{2}} \otimes \ldots \otimes \mathbf{v}_{\mathrm{t}_{\mathrm{k}}}\right) \\
& =J_{1}^{i_{1}} \mathbf{v}_{\mathbf{t}_{1}} \otimes \mathbf{J}_{2}^{i_{2}} \mathbf{v}_{\mathrm{t}_{2}} \otimes \ldots \otimes J_{k}^{i_{k}} \mathbf{v}_{\mathrm{t}_{\mathrm{k}}} \\
& =x_{t_{1}}^{i_{1}} \mathbf{v}_{t_{1}} \otimes x_{t_{2}}^{i_{2}} \mathbf{v}_{t_{2}} \otimes \ldots \otimes x_{t_{k}}^{i_{k}} \mathbf{v}_{t_{k}}=\left(x_{t_{1}}^{i_{1}} x_{t_{2}}^{i_{z}} \ldots x_{t_{k}}^{i_{k}}\right)\left(\mathbf{v}_{t_{1}} \otimes v_{t_{2}} \otimes \ldots \otimes v_{t_{k}}\right) .
\end{aligned}
$$

Consequently,

$$
V_{y_{t}}=\sum_{d} \lambda_{d} N_{d} v_{t}=\phi_{t} \nu_{t} .
$$

Let $P_{t_{r}}=v_{t_{r}} \mathbf{v}_{\mathrm{t}_{\mathrm{r}}}^{\prime}$ for $\mathrm{r}=1,2, \ldots, \mathrm{k}$ where $\mathbf{v}_{\mathrm{t}_{\mathrm{r}}}$ in (3) is an eigenvector of $\mathbf{J}_{\mathbf{r}}^{\mathrm{i}_{\mathbf{r}}}$ and $\mathbf{M}_{t}=v_{t} v_{t}^{\prime}$ where v_{t} in (4) is an eigenvector of (1). Then both $\mathbf{P}_{t_{r}}$ and \mathbf{M}_{t} are idempotent matrices and the spectral decomposition of (1) is:

$$
V=\sum_{t} \phi_{t} \mathbf{M}_{t}
$$

where

$$
\begin{equation*}
\mathbf{M}_{\mathbf{t}}=\mathbf{P}_{\mathbf{t}_{1}} \otimes \mathbf{P}_{\mathbf{t}_{2}} \otimes \ldots \otimes \mathbf{P}_{\mathbf{t}_{\mathbf{r}}} \tag{5}
\end{equation*}
$$

with

$$
q_{t_{\mathrm{r}}}=\left\{\begin{array}{lll}
\sum_{\ell=1}^{n_{\mathrm{r}}-1} \xi_{\mathbf{n}_{\mathrm{r}}} \xi_{\mathbf{n}_{\mathrm{r}} \ell}^{\prime} & \text { if } & \mathrm{t}_{\mathrm{r}}=0 \tag{6}\\
\frac{1}{\mathbf{n}_{\mathrm{r}}} J_{\mathrm{r}} & \text { if } & \mathbf{t}_{\mathrm{r}}=1
\end{array}\right.
$$

Constuer a matrix $\mathbf{I}_{\mathbf{r}}+\mathbf{J}_{\mathbf{r}}$ having eigenvalues 1 with multiplicity $n_{r}-1$ and $1+y_{n_{\mathrm{I}}}$ and the respective orthonormal eigenvectors $\xi_{n_{\mathrm{r}} \ell} \ell=1,2, \ldots, \mathrm{n}_{\mathrm{r}}-1$ for 1 and $\sqrt{a_{q}} \mathbf{i}_{\mathrm{r}}$. Then the spectral decomposition of $\mathbf{I}_{\mathrm{r}}+\mathrm{J}_{\mathrm{r}}$ is:

$$
\begin{equation*}
\mathbf{I}_{\mathrm{r}}+\mathbf{J}_{\mathrm{r}}=\sum_{\ell=1}^{\mathrm{n}_{\mathrm{r}}-1} \xi_{\mathrm{n}_{\mathrm{r}}} \xi_{\mathrm{n}_{\mathrm{r}} \ell}+\left(1+\mathrm{n}_{\mathrm{r}}\right) \frac{1}{\mathbf{n}_{\mathrm{r}}} J_{\mathrm{r}} \tag{7}
\end{equation*}
$$

Using (7),(6) can be rewritten as:

$$
\mathbf{P}_{\mathrm{t}_{\mathrm{r}}}=\left\{\begin{array}{lll}
\mathbf{I}_{\mathrm{r}}-\frac{1}{n_{\mathrm{r}}} \mathbf{J}_{\mathrm{r}} & \text { if } & \mathrm{t}_{\mathrm{r}}=0 \tag{8}\\
\frac{1}{n_{r}} \mathbf{J}_{\mathrm{r}} & \text { if } & \mathbf{t}_{\mathrm{r}}=1
\end{array}\right.
$$

where the rank of $P_{t_{r}}$ is $\left(n_{r}-1\right)^{1-t_{T}}$. From (5) with (8), it can be seen that M_{t} has $\operatorname{rank} \sum_{r=1}^{k}\left(n_{k}-1\right)^{1-t_{r}}$ and $M_{\mathbf{t}^{2}} \mathbf{M}_{\mathbf{t}^{*}}=0$ for $\mathbf{t} \neq \mathbf{t}^{*}$.
Consider a mixed model representing an experiment that is replicated $\mathbf{n}_{\mathbf{k}}$-imes. (1) can be rewritten as

$$
\begin{equation*}
\mathbf{V}=\lambda_{00 \ldots 00} \mathbf{I}_{\mathbf{I}}+\sum_{\mathbf{d}} \lambda_{\mathbf{d}} \mathbf{N}_{\mathbf{d}} \tag{9}
\end{equation*}
$$

since $\lambda_{00 \ldots 00}$ is positive and $\lambda_{t_{1} t_{2} \ldots t_{k-1} 0}$ is zero for at least one of nonzero t_{r} where $r=1,2, \ldots, k-1$. Here $d=\left(i_{1} i_{2} \ldots i_{k-1}\right)$ with $i_{r}=0$ for $r=0,1, \ldots k-1$, the summation on the right hand side of (9) is taken over $2^{\mathrm{k}-1}$-elements and

$$
\mathbf{N}_{\mathbf{d}}=\mathbf{J}_{1}^{\mathrm{i}_{1}} \otimes \mathbf{J}_{2}^{\mathrm{i}_{2}} \otimes \ldots \otimes \mathbf{J}_{\mathbf{k}-1}^{\mathrm{i}_{\mathrm{k}-1}} \otimes \mathbf{J}_{\mathbf{k}}
$$

It follows that (2) can be:

$$
\begin{equation*}
\phi_{\mathbf{t}}=\lambda_{00 \ldots 00} \sum_{\mathbf{d}} \lambda_{\mathbf{d}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{\mathbf{k}-1}^{i_{k}-1} x_{\mathbf{k}} \tag{10}
\end{equation*}
$$

From (10), $\phi_{\mathbf{t}_{1} t_{2} \ldots \mathrm{t}_{\mathrm{k}-1} 0}=\lambda_{00 \ldots 00}$ with multiplicity

$$
\left(n_{k}-1\right) \sum_{t_{1} t_{2} \ldots t_{k-1}=0}^{1} \prod_{r=1}^{k-1}\left(n_{r}-1\right)^{1-t_{r}}=\left(n_{k}-1\right) \prod_{z=1}^{k-1} n_{r}
$$

So 2^{k-1}-eigenvalues of (9) are the same and equal to the smallest eigenvalue $\lambda_{00 \ldots 00}$. The corresponding idempotent matrix for $\lambda_{00 \ldots 00}$ will be

$$
\mathbf{M}_{\mathbf{k}-1} \otimes\left(\mathbf{I}_{\mathbf{r}}-\frac{1}{\mathbf{n}_{\mathbf{r}}} \mathbf{J}_{\mathbf{r}}\right)
$$

where a matrix \mathbf{M}_{k-1} of order $\prod_{r=1}^{k-1} n_{r}$ is:

$$
\mathbf{M}_{\mathrm{k}-1}=\sum_{\mathrm{t}_{1} \mathbf{t}_{2} \ldots \mathrm{t}_{\mathrm{k}-1}=0}^{1} \mathbf{P}_{\mathbf{t}_{1}} \otimes \mathbf{P}_{\mathbf{t}_{2}} \otimes \ldots \otimes \mathbf{P}_{\mathbf{t}_{\mathrm{k}}-\mathbf{1}}
$$

with

$$
\begin{aligned}
\operatorname{rank}\left(\mathbf{M}_{\mathbf{k}-1}\right) & =\sum_{\mathbf{t}_{1} t_{2} \ldots t_{k-1}=0}^{1} \operatorname{rank}\left(\mathbf{P}_{\mathbf{t}_{1}}\right) \operatorname{rank}\left(\mathbf{P}_{\mathbf{t}_{2}}\right) \cdot \operatorname{rank}\left(\mathbf{P}_{\mathbf{t}_{k}-1}\right) \\
& =\sum_{t_{1} t_{2} \ldots t_{k-1}=0}^{1} \prod_{r=1}^{k-1}\left(n_{r}-1\right)^{1-t_{r}}=\prod_{r=1}^{k-1} \sum_{t_{r}=0}^{1}\left(n_{k}-1\right)^{1-t_{r}}=\prod_{r=1}^{k-1} n_{r} .
\end{aligned}
$$

Then \mathbf{M}_{k-1} is an identity matrix since the full rank idempotent matrix is unique and equal to an identity matrix.

The eigenvalue of (9) is of the form

$$
\begin{equation*}
\phi_{t_{1} t_{2} \ldots t_{k-1}}^{*}=\phi_{t_{1} t_{2} \ldots t_{k-1}}=\lambda_{00 \ldots 00}+n_{k} \sum_{d} \lambda_{d} x_{t_{1}}^{i_{1}} x_{t_{2}}^{i_{2}} \ldots x_{t_{k-1}}^{i_{k-1}} \tag{11}
\end{equation*}
$$

Then the spectral decomposition of (9) according to $2^{\mathrm{k}-1}+1$ (possibly) distinct eigenvalues of (9)is:

$$
\begin{align*}
V= & \lambda_{00 \ldots 00} I_{12 \ldots k-1} \otimes\left(I_{k}-\frac{1}{n_{k}} J_{k}\right) \\
& +\sum_{t_{1} t_{2} \ldots t_{k}-1}^{1} \phi_{t_{1} t_{2} \ldots t_{k-1}}^{*} P_{t_{1}} \otimes P_{t_{2}} \otimes \ldots \otimes P_{i_{k-1}} \otimes \frac{1}{n_{k}} J_{k} \tag{12}
\end{align*}
$$

where $\mathbf{I}_{12 \ldots k-1}$ is an identity matrix of order $\prod_{r=1}^{k-1} n_{r}$ and $\mathbf{P}_{t_{r}}$ is in (8).

4. CONCLUDING REMARKS

The spectral decomposition of \mathbf{V} provides easily the computation of \mathbf{V}^{α} for any real α since

$$
\mathbf{V}^{\alpha}=\sum_{t} \phi_{t}^{\alpha} \mathbf{M}_{t}
$$

where ϕ_{t} and $\mathbf{M}_{\mathbf{t}}$ are defined in (2) and (5) respectively.
The nonnegative parameters λ_{d} in (1) correspond to variance components. From (2), the eigenvalues of the variance-covariance matrix is the finear combination of variance components. It is not necessary to recompute the spectral decomposition of \mathbf{V}^{*} where a new variance-covariance matrix \mathbf{V}^{*} is obtained by removing some λ_{d} 's from V. It can be obtained by removing the corresponding λ_{d} 's from the spectral decomposition of V.

A half number of eigenvalues of \mathbf{V} are same and equal to the smallest eigenvalue when there is a replication. In this case, the summations in both (11) and (12) are taken over $2^{\mathrm{k}-1}$, instead of 2^{k}. This facilitates the computation of the spectral decomposition of V.

5. AN EXAMPLE

Consider the two-way random effect model $y_{i j k}=\mu+a_{i}+b_{j}+c_{i j}+e_{i j k}, i=1,2, \ldots, n_{1}$, $\mathrm{j}=1,2, \ldots, \mathrm{n}_{2}, \mathrm{k}=1,2, \ldots, \mathrm{n}_{3}$ where

$$
\mathrm{a}_{\mathrm{i}} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{a}}^{2}\right), \mathrm{b}_{\mathrm{j}} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{b}}^{2}\right), \mathrm{c}_{\mathrm{ij}} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{c}}^{2}\right), \mathrm{e}_{\mathrm{ijk}} \sim \mathrm{~N}\left(0, \sigma_{\mathrm{e}}^{2}\right)
$$

and they are independent. The variance-covariance matrix for this model is:

$$
V=\sigma_{a}^{2} \mathbf{I}_{1} \otimes \mathbf{J}_{2} \otimes \mathbf{J}_{3} \otimes \sigma_{b}^{2} \mathbf{J}_{1} \otimes \mathbf{I}_{2} \otimes \mathbf{J}_{3} \otimes \sigma_{\mathrm{c}}^{2} \mathbf{I}_{1} \otimes \mathbf{I}_{2} \otimes \mathbf{I}_{3} \otimes \sigma_{\mathrm{e}}^{2} \mathbf{I}_{1} \otimes \mathbf{I}_{2} \otimes \mathbf{I}_{3}
$$

where I_{r} and J_{r} for $=1,2,3$ are a $n_{r} \times n_{r}$ identity matrix and a $n_{r} \times n_{r}$ matrix of ones respectively.

Define $\lambda_{000}=\sigma_{\mathrm{e}}^{2}, \lambda_{001}=\sigma_{\mathrm{c}}^{2}, \lambda_{011}=\sigma_{\mathrm{a}}^{2}, \lambda_{101}=\sigma_{\mathrm{b}}^{2}$ and the other λ_{d} 's are zero. The 2^{3} eigenvalues of V are:

$$
\begin{aligned}
\phi_{t_{1} t_{2} t_{3}} & =\sum_{i_{1} i_{2} i_{3}=0}^{1} \lambda_{i_{1} i_{2} i_{3}} x_{t_{1}}^{i_{1}} x_{t_{2}}^{i_{2}} x_{t_{3}}^{i_{3}} \\
& =\lambda_{000}+\lambda_{001} x_{t_{3}}+\lambda_{011} x_{t_{2}} x_{t_{3}}+\lambda_{101} x_{t_{1}} x_{t_{3}}
\end{aligned}
$$

where $x_{t_{r}}=0$ if $t_{r}=0, x_{t_{r}}=n_{r}$ if $t_{r}=1$ for $r=1,2,3$. Then

$$
\begin{aligned}
& \phi_{000}=\phi_{010}=\phi_{100}=\phi_{110}=\lambda_{000}, \phi_{001}=\lambda_{000}+n_{3} \lambda_{001}, \phi_{011}=\lambda_{000}+n_{3} \lambda_{001}+n_{2} n_{3} \lambda_{011}, \\
& \phi_{101}=\lambda_{000}+n_{3} \lambda_{001}+n_{1} n_{3} \lambda_{101}, \phi_{111}=\lambda_{000}+n_{3} \lambda_{001}+n_{1} n_{3} \lambda_{101}+n_{2} n_{3} \lambda_{011} .
\end{aligned}
$$

The spectral decomposition of V is:

$$
\begin{aligned}
& \mathbf{V}=\phi_{000} \mathbf{I}_{12} \otimes\left(\mathbf{I}_{3}-\frac{1}{n_{3}} \mathbf{J}_{3}\right)+\phi_{001} \mathbf{I}_{1} \otimes \mathbf{I}_{2} \otimes \frac{1}{n_{3}} \mathbf{J}_{3} \\
&+\phi_{011}\left(\mathbf{I}_{1}-\frac{1}{n_{1}} \mathbf{J}_{1}\right) \otimes \frac{1}{n_{2}} \mathbf{J}_{2} \otimes \frac{1}{n_{3}} \mathbf{J}_{3} \\
&+\phi_{101} \frac{1}{n_{1}} \mathbf{J}_{1} \otimes\left(\mathbf{I}_{2}-\frac{1}{n_{2}} \mathbf{J}_{2}\right) \otimes \frac{1}{n_{3}} \mathbf{J}_{3} \\
&+\phi_{111} \frac{1}{n_{1}} \mathbf{J}_{1} \otimes \frac{1}{n_{2}} \mathbf{J}_{2} \otimes \frac{1}{n_{3}} \mathbf{J}_{3} .
\end{aligned}
$$

Acknowledgment

The author thanks the referee for making comments which clearify the paper.

REFERENCES

[1] R. SEARLE, and H. V. HENDERSON. Dispersion Matrices for Variance Components Models, Journal of American Statistical Association, 74 (1979), 465-470
[2] T. WANSBEEK and A. KAPTEYN, A Note on Spectral Decomposition and Maximum Likelihood Estimation-in ANOVA Models with Balanced Data, Statistics 4 \& Probability Letters, 1 (1983), 213-215.

