SOME APPLICATIONS OF FRACTIONAL CALCULUS OPERATORS TO A NEW CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

E. KADIOĞLU

Atatürk University, Science and Art Faculty, Department of Mathematics, 25240 Erzurum, Turkey.

(Received Sep. 17, 1999; Revised Feb.2, 2000; Accepted Feb. 7, 2000)

ABSTRACT

The object of the present paper is to prove various distortion theorems for the fractional calculus of the functions in the class $P(n,\lambda,\alpha,r)$ consisting of analytic functions with negative coefficients in the unit disk.

1. INTRODUCTION

Let A(n) denote the class of functions of the form

$$f(z)=z-\sum_{k=n+1}^{\infty}\alpha_kz^k(\alpha_k\geq 0;n\in N=\left\{l,2,...\right\})$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. A function $f(z) \in A(n)$ is said to be in the class $P(n, \lambda, \alpha, r)$ if it satisfies

$$Re\left\{z\frac{(\lambda rz^{r-1} + 1 - \lambda)f'(z) + \lambda z^{r}f''(z)}{\lambda z^{r}f'(z) + (1 - \lambda)f(z)}\right\} > \alpha, \ (r = 1, 2, ...)$$

For some α $(0 \le \alpha < 1)$, λ $(0 \le \lambda \le 1)$ and for all $z \in U$. Some properties of the class $P(n, \lambda, \alpha, r)$ were investigated by Kamali and Kadioglu [3].

Lemma 1. If a function $f(z) \in A(n)$ is in the class $P(n,\lambda,\alpha,r)$ then

$$\sum_{k=n+1}^{\infty} [(k-\alpha)(\lambda k - \lambda + 1) + \lambda k(r-1)] a_k \le (1-\alpha) + \lambda(r-1).$$
 (1)

Proof. Let $f(z) \in P(n, \lambda, \alpha, r)$. We can write

$$\operatorname{Re}\left\{z\frac{(\lambda rz^{r-1}+1-\lambda)f'(z)+\lambda z^{r}f''(z)}{\lambda z^{r}f'(z)+(1-\lambda)f(z)}\right\}>\alpha.$$

Then

$$\begin{split} & \frac{[\lambda r z^{r-l} + (l-\lambda)][z - \sum_{k=n+l}^{\infty} k a_k z^k] + \lambda z^{r+l}[-\sum_{k=n+l}^{\infty} k (k-l) a_k z^{k-2}]}{\lambda z^r [1 - \sum_{k=n+l}^{\infty} k a_k z^{k-l}] + (l-\lambda)[z - \sum_{k=n+l}^{\infty} a_k z^k]} \\ & = \frac{\lambda r z^r + (l-\lambda)z - \sum_{k=n+l}^{\infty} [\lambda r k + \lambda k^2 - \lambda k] a_k z^{k+r-l} - \sum_{k=n+l}^{\infty} (l-\lambda)k a_k z^k}{\lambda z^r + (l-\lambda)z - \sum_{k=n+l}^{\infty} [\lambda k a_k z^{k+r-l} - \sum_{k=n+l}^{\infty} (l-\lambda) a_k z^k} \end{split}$$

If we choose z real and let $z \rightarrow 1^-$, we get

$$\sum_{k=n+1}^{\infty} [(k-\alpha)(\lambda k - \lambda + 1) + \lambda k(r-1)] a_k \le (1-\alpha) + \lambda (r-1).$$

2 Fractional Calculus

I begin with the statements of the following definitions of fractional calculus (that is, fractional derivatives and fractional integrals) which were defined by Owa ([4],[5]) and were used recently by Srivastava and Owa, Altintas, and Cho and Auof ([1],[2],[6]).

Definition 2. The fractional integral of order δ is defined, for a function f(z), by

$$D_{z}^{-\delta}f(z) = \frac{1}{\Gamma(\delta)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\delta}} d\zeta \quad (\delta > 0),$$

where f(z) is an analytic function in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\delta-1}$ is removed by requiring $\log(z-\zeta)$ to be real when $z-\zeta>0$.

Definition 3. The fractional derivative of order δ is defined, for a function f(z), by

$$D_{z}^{\delta}f(z) = \frac{1}{\Gamma(1-\delta)} \frac{d}{dz} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\delta}} d\zeta \quad (0 \le \delta < 1),$$

where f(z) is constrained, and the multiplicity of $(z-\zeta)^{-\delta}$ is removed, as in Definition 2.

Theorem 4. Let the function f(z) be in the class $P(n, \lambda, \alpha, r)$. Then we have

$$\left|D_z^{-\delta}f(z)\right| \geq \frac{\left|z\right|^{\delta}}{\Gamma(2+\delta)} \left\{ \left|z\right| - \frac{\left[(1-\alpha) + \lambda(r-1)\right]\!\Gamma(n+2)\Gamma(2+\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)\right]\!\Gamma(n+2+\delta)} \left|z\right|^{n+1} \right\}$$

and

$$\left|D_z^{-\delta}f(z)\right| \leq \frac{\left|z\right|^{\delta}}{\Gamma(2+\delta)} \left\{\left|z\right| + \frac{\left[(1-\alpha)+\lambda(r-1)\right]\!\Gamma(n+2)\Gamma(2+\delta)}{\left[(n+1-\alpha)(\lambda n+1)+\lambda(n+1)(r-1)\right]\!\Gamma(n+2+\delta)} \left|z\right|^{n+1}\right\}$$

for $\delta > 0$ and $z \in U$. The result is sharp.

Proof. It is easy to see that

$$\Gamma(2+\delta)z^{-\delta}D_{z}^{-\delta}f(z) = z - \sum_{k=n+1}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\delta)}{\Gamma(k+\delta+1)} a_{k}z^{k} = z - \sum_{k=n+1}^{\infty} \psi(k)a_{k}z^{k}$$

where

$$\psi(k) = \frac{\Gamma(k+1)\Gamma(2+\delta)}{\Gamma(k+\delta+1)} \quad (k \ge n+1).$$

Noting that $\psi(k)$ is a decreasing function of k, we have

$$0 < \psi(k) \le \psi(n+1) = \frac{\Gamma(n+2)\Gamma(2+\delta)}{\Gamma(n+2+\delta)}.$$

Using Theorem 1, we have

$$[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)] \sum_{k=n+1}^{\infty} a_k \le \sum_{k=n+1}^{\infty} [(k-\alpha)(\lambda k - \lambda + 1) + \lambda k(r-1)] a_k$$

$$\le (1-\alpha) + \lambda(r-1).$$

or

$$\sum_{k=n+1}^{\infty} a_k \le \frac{(1-\alpha) + \lambda(r-1)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-)\right]}.$$

We can see that

$$\begin{split} \left|\Gamma(2+\delta)z^{-\delta}D_z^{-\delta}f(z)\right| &\geq \left|z\right| - \psi(n+1)\left|z\right|^{n+1}\sum_{k=n+1}^{\infty}\alpha_k\\ &\geq \left|z\right| - \frac{\left[(1-\alpha) + \lambda(r-1)\right]\Gamma(n+2)\Gamma(2+\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)\right]\Gamma(n+2+\delta)}\left|z\right|^{n+1} \end{split}$$

and

$$\begin{split} \left|\Gamma(2+\delta)z^{-\delta}D_z^{-\delta}f(z)\right| &\leq \left|z\right| + \psi(n+1)\left|z\right|^{n+1}\sum_{k=n+1}^{\infty}a_k\\ &\leq \left|z\right| + \frac{\left[(1-\alpha) + \lambda(r-1)\right]\!\Gamma(n+2)\Gamma(2+\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)\right]\!\Gamma(n+2+\delta)}\left|z\right|^{n+1} \end{split}$$

which prove the inequalities of the theorem. Further, equalities are attained for the function f(z) defined by

$$D_z^{-\delta}f(z) = \frac{z^\delta}{\Gamma(2+\delta)} \left\{ z - \frac{\left[(1-\alpha) + \lambda(r-1) \right] \Gamma(n+2) \Gamma(2+\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1) \right] \Gamma(n+2+\delta)} z^{n+1} \right\}$$

or

$$f(z) = z - \frac{\left[(1-\alpha) + \lambda(r-1) \right]}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1) \right]} z^{n+1}.$$

Theorem 5. Let the function f(z) be in the class $P(n,\lambda,\alpha,r)$. Then we have

$$\left|D_z^{\delta}f(z)\right| \geq \frac{\left|z\right|^{-\delta}}{\Gamma(2-\delta)} \left\{\left|z\right| - \frac{\left[(1-\alpha)+\lambda(r-1)\right]\!\Gamma(n+2)\Gamma(2-\delta)}{\left[(n+1-\alpha)(\lambda n+1)+\lambda(n+1)(r-1)\right]\!\Gamma(n+2-\delta)} \left|z\right|^{\frac{1}{n+1}} \right\}$$

and

$$\left|D_z^\delta f(z)\right| \leq \frac{\left|z\right|^{-\delta}}{\Gamma(2-\delta)} \left\{\left|z\right| + \frac{\left[(1-\alpha) + \lambda(r-1)\right]\!\Gamma(n+2)\Gamma(2-\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)\right]\!\Gamma(n+2-\delta)} \left|z\right|^{n+1}\right\}$$

for $0 \le \delta < 1$ and $z \in U$. The result is sharp.

Proof. It is easy to see that

$$\Gamma(2-\delta)z^{\delta}D_{z}^{\delta}f(z) = z - \sum_{k=n+1}^{\infty} \frac{\Gamma(k+1)\Gamma(2-\delta)}{\Gamma(k-\delta+1)} a_{k}z^{k} = z - \sum_{k=n+1}^{\infty} \psi(k)k a_{k}z^{k}$$

where

$$\psi(k) = \frac{\Gamma(k)\Gamma(2-\delta)}{\Gamma(k-\delta+1)} \quad (k \ge n+1).$$

Noting that $\psi(k)$ is a decreasing function of k, we have

$$0 < \psi(k) \le \psi(n+1) = \frac{\Gamma(n+1)\Gamma(2-\delta)}{\Gamma(n+2-\delta)}.$$

Using Theorem 1, we have

$$\frac{(n+1-\alpha)(\lambda n+1)+\lambda(n+1)(r-1)}{n+1}\sum_{k=n+1}^{\infty}ka_k \leq (1-\alpha)+\lambda(r-1)$$

or

$$\sum_{k=n+1}^{\infty} k a_k \le \frac{(n+1)[(1-\alpha)+\lambda(r-1)]}{[(n+1-\alpha)(\lambda n+1)+\lambda(n+1)(r-1]}$$

We can see that

$$\begin{split} \left|\Gamma(2-\delta)z^{\delta}D_{z}^{\delta}f(z)\right| &\geq \left|z\right| - \psi(n+1)\left|z\right|^{n+1}\sum_{k=n+1}^{\infty}ka_{k} \\ &\geq \left|z\right| - \frac{\left[(1-\alpha) + \lambda(r-1)\right]\Gamma(n+2)\Gamma(2-\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1)\right]\Gamma(n+2-\delta)}\left|z\right|^{n+1} \end{split}$$

and

$$\begin{split} \left| \Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z) \right| & \leq \left| z \right| + \psi(n+1) \left| z \right|^{n+1} \sum_{k=n+1}^{\infty} k a_{k} \\ & \leq \left| z \right| + \frac{\left[(1-\alpha) + \lambda(r-1) \right] \Gamma(n+2) \Gamma(2-\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1) \right] \Gamma(n+2-\delta)} \left| z \right|^{n+1} \end{split}$$

which prove the inequalities of the theorem. Further, equalities are attained for the function f(z) defined by

$$D_z^{\delta}f(z) = \frac{z^{-\delta}}{\Gamma(2-\delta)} \left\{ z - \frac{\left[(1-\alpha) + \lambda(r-1) \right] \Gamma(n+2) \Gamma(2-\delta)}{\left[(n+1-\alpha)(\lambda n+1) + \lambda(n+1)(r-1) \right] \Gamma(n+2-\delta)} z^{n+1} \right\}$$

or

$$f(z)=z-\frac{\left[(1-\alpha)+\lambda(r-1)\right]}{\left[(n+1-\alpha)(\lambda n+1)+\lambda(n+1)(r-1)\right]}z^{n+1}.$$

Remark: If we take r=1 in this paper, then we have the result given by Altıntaş [1]

REFERENCES

- [1] Altıntaş, O., On a subclass of certain starlike functions with negative coefficients, Math. Japon 36, No. 3, (1991), 489-495.
- [2] Cho, N.E., M.K. Aouf., Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients, Tr. J. of Mat. 20 (1996), 553-562.
- [3] Kamali, M., E. Kadioglu., A new class of analytic functions with negative coefficients, Math. Balkanica (to be published).
- [4] Owa, S., On the distortion theorems. I, Kyungpook Math. J. 18 (1978). 53-59.
- [5] Owa, S., Some applications of fractional calculus, Research Notes in Math. 138, Pitman, Boston, London and Melbourne, (1985), 164-175.
- [6] Srivastava, H.M., S. Owa., An applications of the fractional derivative, Math. Japon 29(1984), 383-389.