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ABSTRACT

Some fundamental sohutions of ™ - type for a class of iterated elliptic equations are given,
including Laplace equation and its iterates.

1. INTRODUCTION

Much of physical problems are solved in spherical or cylindrical domains,
That means, most of the time, the solutions are symmetric functions with respect to a
point or with respect to an axis. That is why, when investigating the solutions, we
see a frequent use of the type of solutions in terms of a variable r defining a distance
to a point. For some of the research have been done for various type of problems, we
refer to the references [1-5] Here in this study, we apply the idea to a class of linear
partial differential equations of second order and its iterates. The class of equations
under consideration is

Lu:i(—r—T[xf AL ﬁ}txu:o (L1)
= x; ) axf v 0x,
where A.a;(i =1,2,...,n) are real parameters, p(>0) is a real constant and r is defined
by

= xP+xB+.+xD. (1.2)

The domain of the operator L is the set of all real valued functions u(x) of the class
C%(D), where x = (x;,X,...,X,) denotes points in R® and D is a regularity domain
ofuin R".
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When we investigate the solutions of the equation (1.1), in the form of
u=f(@™),f € C%, we arrive at an Euler equation of second order

LIEG™)] = m*v (V) + mm—p+n(p— D)+ 3 0, V() + AF (v) =0,

with v=r". Since, the complete solutions of this Euler equation can be derived
easily, we conclude from here that, the functions in the form

f(r™)=r"
(and the linear combinations) give solutions to (1.1), where ¢ is a root of the
characteristic equation m”c® +m(-p+n(p-1)+ Y L;a;)e+A = 0. This result suggests

us to investigate the solutions of r™ -type, which will be the subject of next section.
2. ™ -Type Solutions

We first give some properties of the operator L. By a direct computation, is can be
shown that

L(r™) =(m{m + ¢) + A )r™ 2.1)
where m is a real or complex parameter and
n
¢ = -—p+n(p—-l)+2ai. 2.2)

i=1
The proof of the following lemma can be done easily by using induction argument
onk. '

Lemma 1. Let L be given by (1.1). If a function u has continuous derivatives of any
order with respect to the variables x;,x,,...,x,, and with respect to the parameter m,

then
2 fix)= Lk["”_'_u] @23)
Am om'

A

where i is any positive integer and 1* denotes, as usual, the successive applications
of the operator L onto itself, that is 1¥u = L(L" 'u), where k is a positive integer.
Now, we investigate the solutions of ™ -type of the class of the equations

[¥u=0. Let us denote the coefficient of r™ in the equation (2.1) by B(m), that is,
let
p(m) = m(m +¢}+2

=m? +¢m+2 2.4)

Hence for A =¢2 -4, we have three cases:
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1. For A>0, there are two different real roots m; and m, of the polynomial
B(m),
2. For A =0, there is a multiple root m; = m, = w of the polynomial p(m), and
3. For A<0, there are two conjugate complex roots my; =w;-+iw, and
m, =w, —iw, of the polynomial B(m), where
my = (-4+vA)2,m, = (o-va)2, @.5)
w=-0/2,w; =—-¢/2 and w, =%H

Now, we arc ready to give the following theorem.

Theorem 1. A fundamental solution for the iterated equation I*u =0 can be given

by
iif A>0,
k-1 .
u=y [AJ.r’“l +B;r™ k]nr)l,
=0
ii. if A=0,
2k-1 .
u=1"3 C/(nr)’,
=0
or
iii. if A <0,

k-1 .
u=r" jg(:)(ln )’ [DJ- cos(w, Inr)+E; sin(w, lnr)] ,

where A, ,B;, C;. Dy, E;, F, are arbitrary constants.

Proof. By applying the operator L successively to the equation (2.1), clearly one has
LEG@™) = B (mr™, 2.6)

Now,

i.  Let A>0. Hence by (2.6),

LX(r™) = (m - my)* (m - m, ) r™. Q@7
Thus, for m=m,; and for m=m, we have L*(t™)=0 and L*(r™)=0, which

means that the functions r™ and ™ are solutions of the equation L*u=0. Under
the derivation of the expression (2.6) with respect to the parameter m, the left hand
side gives

%(Lk (™))=L (a—il— ™ )] =L5(r™ Inr)
and the right hand side yields
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% (Bk (m)r™ ): KB* " (m)p' (m)r™ + B (m)r™ Inr

=p! (m)(kB' (m)r™ +B(m)r™ In r)
Hence, setting 6, (m) = kfB'(m)r™ +p(m)r™ lnr, we obtain
L* (™ Inr) = ¥ (m)8, (m) = (m~m,)*" (m-m,)*"0, (m) (2.8)
and from this we conclude that the functions ™ Int and r™ Inr are also solutions

of the equation L*u =0.
Once again, deriving (2.8) with respect to m yields

L5 (™ (nn? )= B*2 (m)0, (m) = (m—m,)* > (m—m, )*"20, (m)
where 6,(m) = (k —1DB'(m)6;(m) + ﬁ(m)e'l(m), which, in turns, gives that the functions
r™ (In1)? and r™ (Inr)” are solutions of the equation L*u =0.

Proceeding in this way, by taking the derivative with respect to m, (k-2) times
in (2.8), finally, we get

Lk (r“‘ (Inn*?! )= mP(m)0,_, (m)

where 0,_;(m) = 2p(m)8y _,(m) +P(m)8'_, (m) . Hence, r™ (In r)k‘1

and ™ (Inp**
are solutions of the equation 1*u=0. Thus, by the principle of superposition, a
complete sotution of the equation L*u =0 can be given by

k-1 .
u=3 (A;r™ +B;r™ )(Inr)’.
=0
ii. Let A=0. Hence by (2.6),
Lk (rm) — (m_w)2k e
where w =m; =m, is the multiple root of f(m). It is obvious from (2.9) that r™ is a

solution of I*u=0. In addition, by taking the derivative with respect to m
successively, and using the idea of the preceding proof we conclude that the
functions r”(nr)’, (j=1,2, ..., 2k—1) are also solutions of 1X¥u=0. Hence by
the principle of superposition the function

2k-1 .
u=r" ¥ C(lnr)’
j=0
gives a compiete solution.
iii. Let A<0. By the casc (i), we know that the functions ™ (lnr)’, and
™ (nr), (j=0,1 ..., k-1) are complex valued solutions of *u=0. Now, to
select out the real valued solutions from those, are remember the Euler formula

+iwy

M=y



" - TYPE SOLUTIONS FOR A CLASS OF PARTIAL DIFFERENTIAL EQUATIONS 99

+iwj Int

=r"le
=1" [cos(w, Int) +isin(w, In 0}
From here, we can select real valued solutions for L*u=0 as
[rw‘ cos(W , lnr)hnr)j, [r‘”‘ sin(w , lnr)}]nr)j, (G=0,1,..,k-1.
Thus, the linear combination

k-1 .
u=1"% (Inr)! (D, cos(w, Inr) +E; sin(w, Inr))
=0

gives a complete solution of L¥u =0.

In one dimensional case, the equation (1.1) becomes an Euler
(equidimensional) equation of second order and hence 1™ type solutions are
replaced by x™ type solutions, as were expected. For if n=1, then r=x; and
letting x, =x, o, =0, the equation (1.1) is replaced by the Euler equation
> d*

—E+0Lx9£+lu =0

Fu=x
dx?

and hence for p(m) =m” +(a~hm+A, we have A =(a-1)>-4%,
m, :(1~a+‘/K)/2, m, :(1—a+JZ)/2, w=(1-0)/2=w and w, :% e

Thus we can give the following result for the solutions of the iterated Euler
equation.

Theorem 2. The general solution of the iterated equation E¥u =0 can be given

by
1Lif A>0,
k-1 .
u=Y (Ax™ +B;x™)(Inx)",
=0
it.if A=0,
2k-1 _
u=x" 3 C;(Inx)’,
=0
or
il if A<Q,

k-1 .
u=x" Z%)(ln x) (D cos(w, Inx)+E; sin(w, Inx)),
P

where A;, B;, C,, D,, E,, F, are arbitrary constants.
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