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ABSTRACT
Givan a seguence of independent and identically distributed random vectors

(Xı, Yi),(X2, Y2),(X3, Y3),...., (Xn,Y„) wilh 8 unimodal bivariate distribıdion fundion F(x,y), a

consistent estimator of the mode, (9^,0 ) is proposed by using spacings as defined by J.H. Vanter 

(1967) (Ann. Math. Statist., 38, 1446-1455) for univariate distributions. The method is illustrated for a 
bivariate distribulion.

1. INTRODUCTION

A distribulion (d.f.) F of the random variable X is called unimodal at x if the 
gıaph of F is convex in (-00, x) and concave in (x,oo). Unimodality requires that 
there exist a density f which is monotone in (-oo,x) and (x,«3), such that constancy 
are not excluded (see Feller [4], footnote on p. 158). Mode is an important concept, 
though its estimation has so far received littie attention, at least to my knotvledge.

The estimation of the mode of a multivariate d.f. may be desirable in some 
instances. For example, it can be used to find an upper bound estimation of a 
multivariate hazard fimction

f(x)
1-F(x)'

An another case is to utilize il in defining a skewness measure for an appropriate 
family of multivariate distributions. It is also possible to enumerate further cases of 
application vvhere the estimation of the mode of a multivariate distribulion is 
rcquırcd. Such a case for the heat ctjualıoıı modelledby the Wemer-Lf^ proces is 
given by Chemoff [2] in the univariate setting.

A short review of the studies on the mode estimation for the unimodal 
univariate distributions will reveal that it is possible to follow different routes. In 
İris seminal paper on the estimation of density functions, Parzen [ö] proposes a
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method called analogue estimation for the mode of a unimodal univariate d.f. First, a 
consistent estimation f„ of a density fimction f is obtained by using the definiton of 

the empirical d.f. Then, the anologue estimation 0,. of the luikovvn mode 0„ is 
proposed as

fn(0x)= f„(x).
—00<X<«j

The consistency of this estimation depends on the uniform continuity of the 
underiying p.df. f(x). The asymptotic normality of this estimator is shown under 
some mild conditions. In the same line Chernoff [2] develops Parzen [öj’s analog 
estimators of a continuously differentiable f by using bounded weighting (kemel) 
function that has bounded fırst and second derivatives. In the estimation of the 
mode, he uses the idea that the most of the observations are clustered around a point 
vvlrich is tlıe mode itself 0 ,.

On the other hand, Grenander [5] follows different route. Grenander [s] uses 
the vveighted average of order statistics, basically the spacings based on the order
statislics X,■hu 2:ıı <Xo <X 3;n"- •ıı:n constructed from a random sample of size n. The
weights tend to be large at the values where the density function is large. The mode 
estimator is given as

0x =
v+kın

Zv:"(X,
v+kın

where k and p are chosen appropriately. It is shovvn that the estimator is not 
consistent for k = 1 and p < 1.

Basing his ideas on Grenander [s], but using more simple fimctionals of 
spacings, Venter [s] proposes two estimators of the mode 0^ which are formed on 
the Chernoff [2] 's idea Üıat tlıe mode should be the midpoint of the interval which 
contains the most of the observations of a unimodal continuous density function f 
defined on a bounded interval. Venter [s] 's estimators of 0,^ are

0ix=y(X, + x.■Rn (1)Kf] 4Tj5-n

and

e. = x
where lu is an integer specified appropriately i.e. r„ «An'' with A is a positive
constant 0 1, and K„ is defıned asV

tin lYi -rjj+l^j^nKpı=ınm

vvhere
(2)V,

; +1< j<n-^.V — Y — Y
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Venter [s] shows these direct cstımalors of tlıe mode are consistent in addition
to their other properties. 

Venter [s] as well as Grenander [5] satisfîed with the asymptotic results. The
exact distributional results are possible to obtain by using some results of Pyke [?] 
and Young [lo] among others; however, the results possibly will be very 
complicated and restrictive. Especially tlıe difficulties concerning the dependency 
structure that occurs in construction of spacings may block such results to be useful 
in most cases.

İn this paper, Venter [s] ’s mode estimation method for univariate distributions 
is extended to, the bivariate case by using some properties of the concomitant 
random variables. The results of the paper are presented in the subsequent sections 
and an iJlustration is provided.

2. Estimation of the Mode
İt will be convenient to recall some of the earlier results wlıich form the basis 

of the result of this paper and introduce the assumptions underiying estimation 
process.

Probably, the most important and basic result is Theorem 1 of the ChemolT [2] 

whıch States that as n 00 majority of observations accumulates with probability 
one in the çenter of a bounded interval that includes the true mode. So, it is 
reasonabİe to expect that the minimal spacings occur around the true mode at wlıich 
majority of observaitons are most likely to be taken. Venter [s] uses this idea 
suggesting his consistent estimators of the mode given in (1).

There is no vital problem of extendmg this result to the two dimensional 
random vectors with unimodal bivariate distributions F(x,y) having unimodal 
marginals.

İn this setting, it is reasonabİe to thınk that the most of the bivariate 
observations are accumulated in a region of the support set of the bivariate 
distribution which contains the mode with probability one. This follows from the 
argument that it is possible to find two intersecting intervals one of which contains 
the true mode of the marginal distribution and the other one includes true mode of 
the conditional (or margmal) d.f. of the second r.v. conditioned on the first r.v i.e.,
F, (y). This is accomplished by ınvoking the Theorem 1 of Chemoff [2] for Ihe Y/X=x
marginal distribution and the marginal conditional distribution. The subsequent 
discussion is based on tlıis fact.

Let (X,Y) be a random vector that has absolutely continuouss d.f. F(x, y).
The assumptions on the probability density fiuıction f(x,y) of the random vector are 
as follows:
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• Al. The marginal density function fx(x) > 0 for some known constants a,b.
such that -00 x<b 00 and siniilarly the conditional density fimction of thea
r.v Y given X = X is Tv/x=x(y)>O forsomeconstantssuchthat -<»<c<y<d<oo.

• A2. fx(x) and f.Y/X=:,,(y) are continuous över the intervals (a,b). (c,d)
respectively and they get their unique nıavimunı values at 0^ e (a, b) and 0y e (c,d)

Let (X,,Y,),(X2,Y2),(X3,Y3),...,(Xn,Yn) be iid random vectors with the 
conunon bivariate distribution as above. If tlıese random vectors are ordered witlı 
respect to their first component, (i.e.,X), the new random vectors are represented as
(Xi:n, Y[| p, (X2:„, Y[2:„]),(X33, , Y^ . ,(X,j.„, where Y[ü,] denotes Üre

concomitant of the i th order statisticsXi„ which means that Y[i.„] = Yj if Xi.„ = Xj.
Some properties of the concomitants can be found in David and Nagaraja [s] and 
Yang [9] An important lemma of Bhattacharya [1] Üiat we will use uı conjuction 
with the concomitants is the following:

Lemma. For every n and almost ali are

conditionally independent given X,, X,, X-3>-- •,x„.
An obvious result of this Lemma is that tlıe conditional F(Y[j„]jxi), given

Xi3. = x;i = L2,...,n, are iid Standard uniform r.v’s. They do not depend on the Xi‘i ’
moreover they are also independent of X^.m as indicated in David and Nagaraja [sj

Let Y[k,■n-rn:». n-fn+l-”. ] be the concomitants that fail

between the ordered statistics X;■K„-r„:ıı and X]■K-n+in” , inciusive, that constitute
minimal spacings m the Venter [s] ’s mode estimator for tlıe first component of

-"■n+Zm

the iid random vector defined as in (1) and (2). Next, define = 2r„ +1 and order
these concomitants as Y,l:v. 'n . Let {Cn} be a sequence ofn ,Y2.„,Y3.y„„ Y

n
appropriate integers to be discussed further down the subsequent pages. Also, define 
tlıe folloıving:

Wi = X n' '-<=nY,’n ;c„+l<i<v^
and

Wt 
^1 = nıin{Wi: c„ +1 < i < v„ -Cn} (3)

n -c„ .

'n

Finally, we define twQ estimators for the second domponent 0y of the vector 

valuedmode of tlıe bivariate distribution.

'îî 'n + Y,Ln-Cn:'’, (4)'n )

and
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®2y
'n

The first component 6 of the vector valued parameter is estimated using one of
the estimator in (1), the second component of tlıe parameter is estimated by using 
one of the estimators in (4).

Tlıe suggested estimators âjy and 02y are slıown to be consistent in our result.

which is the modified form of the Venter [s] ’s Theorem 1. Before giving the
statment of the result, let us give some additional definitions. İn the folloıving the 
notations of the Venter will be adopted. Let S > 0 be a constant.
Define,

a(5) = aj(5)/a2(5)
where

a, (8) = min^(y|x): 0y 5 < y < 6y +5}

and
«2 (5) - max^(y|x); c < y < 0

Our main result is as follows:

28, 0y+28<y<d}.

Theorem. If the assumptions Al and A2 are satisfied and tlıe conditions for ali 
small enough 5

a(8) > 1,
3S Vjj —> co

-^0
and for ali 0 < A, < 1,

•n

hold, then the estimators âjy and e2y converge to 0y wth porbability one.

Hence, the two components of the vector valued parameter (0,;,0y) can be 
estimated by using the estimators (1) and (4). Tlıe sample size for the second 
component’s estimation 2v„ +1 becomes relatively small as comparedto the sample 
size n; however, it should be noted that the second estimator uses the information 
obtained in the estimation of the first component. This use of information can be
tlıouglıt as a compensation for tlıe lost sample size 
the definiton of a(§) by writing f(y|x) explicitly.

n-v„ . Tlıis effect can be seen in

3. Proof and an £xample
In this section an outline of the proof of the theorem will be given. Then, an 

application of Üıe mode estimation for a bivariate distribution will be considered by 
using a simulated observations from a bivariate distribution.
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Proof. Because of the Theorem 1 of Chemoff [2], most of the observations for the 
unimodal bivariate df. ’s cıunulated around a poüit which is common to both density

(y|x). On the other hand, it obviously is ahvaysfunctions; namely, fx(x) and fY|x=x

possible to express a bivariate density function as
f(x,y) = fx(x)fY|x=x(ylx)-

A consistent mode estimator is found for the marginal density function fx by (1). 
Based on this estimation, tire mode estimator for the marginal conditional density 
function fY|x=x(y|^) found by (4). This is alloved because of Lemma given above. 

Based on these rv’s, one can construct order statistics witlıout lıaving diffıculty by 
means of depcndency to define c, spacings.n

The consistency part of the proof follows the saıne line tliat of the proof of
Theorem 1 of Venter [s] with n replaced by 
proof is completed.

Vn and li, replaced by c, Thus, the

Choice of c„ is based on the requirements c„Zv„ >0 and £v„X.‘=n 00 İn the

n

theorem above; it should be c„ ~ Av^ for a poistive constant A and o < v < ı. A 
suitable choice is made by considering rate of convergence of the estimators to the 
true value of the mode. This is accomplished by Theorem 2 of Venter [9] which can 
be also used for the main result of this work.

For illustration, consider the set of generated pseudo observations for the 
random sample (Xj,Y,),(X2,Y2),(X3,Y3),...,(X3oo,Y3oo) with a bivariate distribution 
having the probability density funciton given below

(X - yX^ + y)cos(y)sm(x - y)

0

, y < X < y +71, -Hİ2 y < 7ç/2

, oüıervvise

The random vector has the mean vector 
covariance matrix

14. = [2.1659,0.2976] and variance

V =
0.7578 0.3789
0.3789 0.3788

This is a skewed bivariate distribulion; so, its mean vector is different than its mode 
which is at the point (2.4867,0.4580). The generated data and its scalter plot 
presented in Table 1 and Figüre 2 respectively.
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3,Ş

6.2

C.i

Figüre 1: The probability density function of the bivariate random vector used in Üre 
example.

First, fıx ı;, = n’1/2 «17 for the given data. Of course better choices for are
possible to increase the rate of convergence of the estimator to the true mode as 

much as tlıe conditions in Theorem 1 of Venter [9] is satisfied namely for a positive 

constant A and O < v < 1, r„ « An". We find that
= nıin{Vj:ii,+l<j<n-r„|Vk

~ ^172:300 -X,i 38:300 = 0.1943
for = 155. If the fîrst or the second estimator in (1) is used we fınd that

■172:300 + x,i383oo) = {2.'2.2135 + 2.Q19T)I1 = 2.1764 (5)

or

Q. = x,■155:300 = 2.1751.
Now, after reordering the observed concomitants

y[138-300],y[139300},y[140:300|->y[l72:300j

Between x,3g3oo Xi72..300 andtakıng c,'n = v;n. « 6, with 21
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Wl„ = min{Wi: c,, +1 < i < v„ - c„ }

= V- ->'15:35=0.3374

İS found. By using the estimators defined in (4) the second component of the 
estimation is obtained as

15:35 ) =0.3802 (6)

or
e - >21:35 “ 0.3611.

2.0;

1

Vâ'
■s «t

’l s-

ÛJÛ 1»
ffi

5^'

t

•

t
î ■

s

*■ J

•M
»

- -İB** 4
«

-1/3^ 9S

4 1

K

Figüre 2: Tlıe scatter plot for tlıe generated bivariate data.

As a result, (2.1764, 0.3802) or (2.1751, 0.3611) can be considered as an 
estimation of tlıe mode which was actually (2.4867, 0.4580).

If we had chosen the r.v. Y to order the random vector (X,Y) with respect to, 

we would find the estimate littie different by using the estimators (0,^,0iy) 

and(02x,62y) respectively. It may be helpful that to have some Information about 
the underiying distribution to decide whiclı component to choose first for ordering 
Üıe random vector in order to increase tlıe perfonııance of tlıe estimator. The otlıer 
possible way is to take their componentwise artihmetic mean.

The result of tlıis paper can be extended for tlıe luglıer dimensional random 
vectors in a nested way. However, as dimension increases we will need larger 
sample sizes.
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