Commun. Fac. Sci. Univ. Ank. Series Al
V.49, pp.77-86 (2000)

MODE ESTIMATION FOR A BIVARIATE DISTRIBUTION

I KARABULUT

Department of Statistics, Ankara University, Ankara, Turkey

(Received Dec. 6, 1999; Revised May 11, 2000; Accepted May 31, 2000 )

ABSTRACT

Given a sequence of independent and identically distributed random vectors
X1, Y1), (X4, Y9), (X3, Y3 ),oors (X, Yy) With a unimodal bivariate distribution function F(x,y), 2

consistent estimator of the mode, (9 ¢ ) is proposed by using spacings as defined by J.H. Venter

(1967) (Ann. Math. Statist., 38, 1446-1455) for univariate distributions. The method is illustrated for a
bivariate distribution.

1. INTRODUCTION

A distribution (d.f) F of the random variable X is called unimodal at x if the
graph of F is convex in (-w,x) and concave in (x,c). Unimodality requires that
there exist a density f which is monotone in (~w,x) and (x,%), such that constancy
are not excluded (see Feller [4], footnote on p. 158). Mode is an important concept,
though its estimation has so far received little attention, at least to my knowledge.

The estimation of the mode of a multivariate d.f may be desirable in some
instances. For example, it can be used to find an upper bound estimation of a
multivariate hazard function

{¢9)
1-F(x)
An another case is to utilize it in defining a skewness measure for an appropriate
family of multivariate distributions. It is also possible to enumerate further cases of
application where the estimation of the mode of a multivariate distribution is
required. Such a case for the heat equation modelled by the Weiner-Lévy proces is
given by Chemoff [2] in the univariate sctting.

A short review of the studics on the mode estimation for the unimodal
univariate distributions will reveal that it is possible to follow different routes. In
his seminal paper on the estimation of density functions, Parzen [6] proposes a
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method called analogue estimation for the mode of a unimodal univariate d.f. First, a
consistent estimation f,, of a density function f is obtained by using the definiton of

the empirical d.f. Then, the anologue estimation éx of the unkown mode 8, is
proposed as
t”‘11(()1;)2 max i:n(x)'

The consistency of this estimation depends on the uniform continuity of the
underlying p.d.f. f(x). The asymptotic normality of this estimator is shown under
some mild conditions. In the same line Chernoff [2] develops Parzen [6]’s analog
estimators of a continuously differentiable f by using bounded weighting (kernel)

function that has bounded first and second dertvatives. In the estimation of the
mode, he uses the idea that the most of the observations are clustered around a point

which is the mode itself 0, .
On the other hand, Grenander [5] follows different route. Grenander (5] uses

the weighted average of order statistics, basically the spacings based on the order
statistics X;, € Xoy < Xgq.. Xy constructed from a random sample of size n. The

weights tend to be large at the values where the density function is large. The mode
estimator is given as

axl
Z v:i( 5 (Xv+kzn + Xv:n)

* Z {:;}\ (Xv+k.n _Xv:n )—P
where k and p are chosen appropriately. It is shown that the estimator is not
consistent for k=1 and p <1. '

Basing his ideas on Grenander [5] but using more simple functionals of
spacings, Venter [8] proposes two estimators of the mode 0, which are formed on
the Chernoff [2]'s idea that thc mode should be the midpoint of the interval which
contains the most of the obscrvations of a unimodal continuous density function

defined on a bounded interval. Venter [8] 's estimators of 0, are

A~

A 1
elx = E(XK,‘ £ 11 + XKn—rn:n) (1)

and

e?x = XK“:n
where 1, is an integer specified appropriately i.e. , ~AnY with A is a posittve
constant, 0 <v <1, and K is defined as
Vi, cmin{Yj 1T +1< i S0 =1, | )
where
V=X

i Jtyn

~Xjgm Ll<jsn-g.
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Venter [8] shows these direct estimators of the mode are consistent in addition
to their other properties.

Venter [8] as well as Grenander [5] satisfied with the asymptotic results. The
exact distributional results are possible to obtain by using some results of Pyke [7]
and Young [10] among others; however, the results possibly will be very
complicated and restrictive. Especially the difficulties concerning the dependency
structure that occurs in construction of spacings may block such results to be useful
in most cases.

In this paper, Venter [8]’s mode estimation method for univariate distributions
is extended to. the bivariate case by using some properties of the concomitant
random variables. The results of the paper are presented in the subsequent sections
and an illustration is provided.

2. Estimation of the Mode

It will be convenient to recall some of the earlier results which form the basis
of the result of this paper and introduce the assumptions underlying estimation
process.

Probably, the most important and basic result is Theorem 1 of the Chernoff’ 2]
which states that as n — o majority of observations accumulates with probability
one in the center of a bounded interval that includes the true mode. So, it is
reasonable to expect that the minimal spacings occur around the true mode at which
majority of observaitons are most likely to be taken. Venter[8] uses this idea
suggesting his consistent estimators of the mode given in (1).

There is no vital problem of extending this result to the two dimensional
random vectors with unimodal bivariate distributions F(x,y) having unimodal
marginals.

In this setting, it is reasonable to think that the most of the bivariate
observations are accumulated in a region of the support sct of the bivariate
distribution which contains the mode with probability one. This follows from the
argument that it is possible to find two intersecting intervals one of which contains
the true mode of the marginal distribution and the other one includes true mode of
the conditional (or marginal) d.f. of the second r.v. conditioned on the first r.v ie.,
F, .. (¥). This is accomplished by invoking the Theorem 1 of Chernoff [2] for the
marginal distribution and the marginal conditional distribution. The subsequent
discussion is based on this fact.

Let (X,Y) be a random vector that has absolutely continuouss d.f. F(x,y).

The assumptions on the probability density function f(x,y) of the random vector are
as follows:
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¢ Al, The marginal density function f, (x) >0 for some known constants a,b,

such that —w<a <x<b<o and similarly the conditional density function of the
rvY given X=X is fy,5. (v) >0 for some constants such that ~o<c<y<d<eo

s A2. f (x) and f,,._ (v) are continuous over the intervals (ab), (c.d)
respectively and they get their unique maximum values at 0, € (a,b) and 0, € (c,d)
Let (X1 Y).(X5,Y5).(X5,Y3),...(X,,Y,) be iid random vectors with the

common bivariate distribution as above. If these random vectors are ordered with
respect to their first component, (i.e,X). the new random vectors are represented as

(Xl m» Y[hl]) (XZ ‘n :Y[?m ]) (Xa"n > YI? 1:11])"",(Xn:n 7YTn1:n]): where Y[i:n] denotes  the
concomitant of the i th order statistics X;,, which means that Y}, = Y;if X;, =X;.

Some properties of the concomitants can be found in David and Nagaraja [3] and
Yang [9] An important lemma of Bhattacharya [i] that we will use in conjuction
with the concomitants is the following:

Lemma. For cvery n and almost all (X1:X2:X3,.X0): Y} > Yo - Y[nm] AT

conditionally independent given X,,X, X;,...X

An obvious result of this Lemma is that the conditional F(Y[,

Xin =% =12,...,n, are iid standard uniform r.v’s. They do not depend on the x,,

moreover they are also independent of X as indicated in David and Nagaraja [3]
Let Yk v m} Y[k, -5, 110} Y[R, -5+ 2]+ YK, +5,m] O€ the concomitants that fall

between the ordered statistics Xk, 1o and Xg_ . n. inclusive, that constitute

n~ Ty n"
minimal r, spacings in the Venter [8]’s mode estimator for the first component of
the iid random vector defined as in (1) and (2). Next, define v, =2r, +1 and order
these concomitants as Y, v Yoy Yo oo Yy v - Let {Ci} be a sequence of
appropriate integers to be discussed further down the subsequent pages. Also, define
the following:

W, =Y,

1+cv~Y1 ISISVn_Cn

—eyvy ¢ Cn
and " ‘ _

Wi =min{W; ¢, +1<i<v, —c, (3)
Finally, we define two estimators for the second domponent 0, of the vector
valued mode (9,,0,) of the bivariate distribution.

~ 1 )
E’ly = "2—(YLn sopivy T YL]1 fcn:vn) B C)]

and
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92y = YLn:vn-
> Of the vector valued parameter is estimated using one of

the estimator in (1), the second component of the parameter is estimated by using
one of the estimators in (4). '

The suggested estimators ély and ézy are shown to be consistent in our result,
which is the modified form of the Venter [8]’s Theorem 1. Before giving the

statment of the result, let us give some additional definitions. In the following the
notations of the Venter will be adopted. Let 5 > 0 be a constant.

The first component 6

Define,
a(8) = o (8)/ o, ()
where
oy (8) = minff(y]x): 0, ~5 <y <0, +5}
and

a,(®) = max{f(ylx):c <y<6,-28, 0,+25<y <d}.
Our main result is as follows:

Theorem. If the assumptions Al and A2 are satisfied and the conditions for all
small enough 3

a(d) >1,
as v, > »
cy /vy, =0
andforall 0 <A <1,
Zvnkcn <

hold, then the estimators ély and ézy converge to 8, with porbability one.

Hence, the two components of the vector valued parameter (0,,0,) can be

estimated by using the estimators (1) and (4). The sample size for the second
component’s estimation 2v, +1 becomes relatively small as compared to the sample

size n; however, it should be noted that the second estimator uses the information
obtained in the estimation of the first component. This use of information can be
thought as a compensation for the lost sample size n - v,. This effect can be seen in

the definiton of «(3) by writing f(yx) explicitly.

3. Proof and an Example

In this section an outline of the proof of the theorem will be given. Then, an
application of the mode estimation for a bivariate distribution will be considered by
using a simulated observations from a bivariate distribution.
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Proof. Because of the Theorem 1 of Chemoff [2], most of the observations for the
unimodal bivariate d.f.’s cumulated around a point which is common to both density
functions; namely, fx(x) and fYIsz(ylx) . On the other hand, it obviously is always
possible to express a bivariate density function as
£(x,) = fx fyjx—y (V-

A consistent mode estimator is found for the marginal density function fx by (1).
Based on this estimation, the mode estimator for the marginal conditional density
function fy|x=x(ylx) found by (4). This is allowed because of Lemma given above.
Based on these rv’s, one can construct order statistics without having difficulty by
means of dependency to define ¢, spacings.

The consistency part of the proof follows the same line that of the proof of
Theorem 1 of Venter [8] with n replaced by v, and 1, replaced by ¢, Thus, the
proof is completed.

Choice of c, is based on the requirements c, /v, —0 and » v,A’ <« inthe

theorem above; it should be ¢, ~ Av; for a poistive constant A and 0<v<I. A
suitable choice is made by considering rate of convergence of the estimators to the
true value of the mode. This is accomplished by Theorem 2 of Venter [9] which can
be also used for the main result of this work.

For illustration, consider the set of generated pseudo observations for the
random sample (X;,Y)).(X5.Y2).(X3,Y3),....(X300, Ya00) With a bivariate distribution
having the probability density funciton given below

(x = yX3 +y)cos(y)sin(x - y)

fx,y) = n?

0 , otherwise

,Y<X<Y+m, —n/2<y<®/2

The random wvector has the mean vector u:[2.1659,0.2976]' and variance
covariance matrix

_ 0.7578 0.3789

’[0,3789 0,3788]

This is a skewed bivariate distribution; so, its mean vector is different than its mode
which is at the point (2.4867,04580). The generated data and its scatter plot

presented in Table 1 and Figure 2 respectively.
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Figure 1: The probability density function of the bivariate random vector used in the

example.

First, fix 1, =n"? ~17 for the given data. Of course better choices for 1, are
possible to increase the rate of convergence of the estimator to the true mode as

much as the conditions in Theorem 1 of Venter [9] is satisfied namely for a positive

constant Aand 0 <v <1, r,  An'. We find that
Yk, =min{Vj I +l,sjsn—rn}
= X300 ~ Xyagaeo = 0.1943
for X, =155. If the first or the second estimator in (1) is used we find that
élx = —;—(xmo0 + X 38300) = (2.22735+2.0792) 12 = 2.1764

or

0, = X559 = 2.1751.
Now, after reordering the observed concomitants
Y8300} Yf139300} Y fia0:300} -+ Yfr72:300}

Between Xysg, and X,;,49, and taking c, =vi'% ~6, with L =21

)
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W, = min{Wi e, +1Ki<y —cn}
= Y2735 ~ Y1535 = 0.3374
is found. By using the estimators defined in (4) the second component of the
estimation is obtained as

2 1
0,y :5(3’27:35 +¥is35) = 0.3802 ©
or
B2y = yo135 = 0.3611
20
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Figure 2: The scatter plot for the generated bivariate data.

As a result, (2.1764, 0.3802) or (2.1751, 0.3611) can be considered as an
estimation of the mode which was actually (2.4867, 0.4580).
If we had chosen the r.v. Y to order the random vector (X,Y) with respect to,

~

we would find the estimate little different by using the estimators (élx,ely)

and (éz,(,ézy) respecttvely. It may be helpful that to have some information about

the underlying distribution to decide which component to choose first for ordering
the random vector in order to increase the performance of the estimator. The other
possible way is to take their componentwise artihmetic mean.

The result of this paper can be extended for the higher dimensional random
vectors in a nested way. However, as dimension increases we will need larger
sample sizes.
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