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ABSTRACT

A module M is called copolyform module if for any small submodule N of M, Hom(M,N/K)~0 for
all submodules K of N. It is shown that rational numbers, and in general, fields of fractions of integral
domains are copolyform modules and for a copolyform and lifiing module M, S=End(M) is laft and right

principally projective ring, and if M is copolyform and ¥ - lifling module then S=End(M) is left and
right semihereditary ring,

1. INTRODUCTION

Throughout this note all rings will have an identity and modules will be unital
right modules. Let M be a module over a ring R, N<M will stand for N a
submodule of M. Let N be a submodule of M. N is said to be small in M and we
write N << M whenever N+L=M for some submodule L of M implies M=L. A
module M is called small if M is small in E(M), where E(M) is the injective hull of
M. M is said to be hollow in case every proper submodule of M is small in M. In
what follows Rad(M) will denote the radical of a module M and J(R) will be the
Jacobson radical of a ring R. Rad(M) is the sum of all small submodules of M and
intersection of maximal submodules of M. We call a module M copolyform if for
any N <<M, Hom(M,N/K) = 0 for all K< N.

In this note we study some properties of copolyform modules [5] in which they
are defined as a dual of polyform modules [12]. Here we give a different approach
and study some general properties of copolyform modules. Let Z and Q denote the
integers and rational numbers, respectively.

2. PRELIMINARIES ,

In this section we study some small submodules of rationals. Some results of
this section may be in the context. For the sake of completeness and as a preparotory
section we give proofs in detail. We start with
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Lemma 1. Let M be an R-module and NgM a proper submodule of M such that

Hom(M,N/L)=0 for all L. < N. Then N is small in M.
Proof. Let N be a proper submodule of M. Assume Hom(M,N/L)=0 for all L <N.
We take K <M such that M=K+N. If K=M, since M/K=N/(KnN) then

Hom(M,N/(K " N)) = 0.. Hence N<<M.

Lemma 2. Let R be a principal ideal domain with field of fractions K. Then for any
R-submodule L of R, Hom(K,R/L)=0.

Proof. Let L be an R-submodule of R, r/seK,teL and feHom(KR/L). Set
f(r/tsy=y+L for some ye R . Then f(r/s)=ty+L~= 0 since ty e L. So f(x/s)=0 for all
r/seK . Hence £=0.

Corollary 3. Let R be a principal ideal domain with field of fractions K. Then for
any submodule N of R, Hom(K,N/L)=0 for all submodules L of N.
Proof. The same proof of Lemma 2 works here.

Corollary 4. Let R be a principal ideal domain with field of fractions K. Then every
submodule N of R is small in K.
Proof. Clear from Lemma 1 and Corollary 3.

Definition 5. Let M be a module with a submodule N. M is called quasi-corational
extension of N if Hom(M,N/L)=0 for all submodules L in N.

Corollary 6. Let R be a principal ideal domain with field of fractions K. Then K is
quasi-corational extension of R.

Lemma 7. Let Z and Q denote the integers and rational numbers, respectively and
let ab, ¢/d eQ and let N denote the submodule (a/b)Z+(c/d)Z of Q. Then
Hom(Q,N/L)=0 forall L<N.

Proof. Let L be a submodule of N, f € Homz(Q,N/L) and f(1)=(a/bn+(c/dm+L
=((adn +bem)/bd)+L for some n,me Z. Set t=adntbcm so that f(1)=(tbd)+L.
Take 0=t; e L~Z. Then there exists ue Z such that £(1/t,;)=(u/bd)+L . Hence
£(1) =(t;ju/bd)+L and so f(bd)=tju+L =0 since tyueL . Hence f(1) =(t/bd)+L
implies f(bd) = t+L = 0 or teL. Let 1/yeQ and set f(1/y)=(t,/bd)+L and
fi/ty) =(t3/bd)+L for some t,,t;eZ. Then f(l/y)=(it3/bd)+L and so
t,~ttyeL . Since teLl then t, e L. It follows that if f(1/ybd)y=(v/bd)+L for some
veZ then veLl and f(1/y)=v+L. Thus f(1/y) = 0 for alli/y e Q. Let x/y be any
element of Q. Then f(x/y)=f(1/y)x = 0. Hence f = 0.
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We record the following theorem which is well known (in [8] page
108 Example.5)

Theorem 8. Let N be a finitely generated Z-submodule of Q. Then N is small in Q.
Proof. Let N be a finitely generated Z-submodule of Q. An induction on the
generators of N and applying the same proof of Lemma 7 may complete the proof.

There are small submodules of Q that are not finitely generated as Z-modules.

Lemma 9. Let N denote the Z-submodule Zp (1/p)Z of Q, where p ranges over all

prime integers. Then N is small in Q.

Proof, Let N = Zp(l/ p)Z and L a submodule of Q such that Q=N+L. We prove
Q=L. Since Z is small in Q, to complete the proof we assume Q = Z+L and get a
contradiction. Now assume Q=#Z+L. Then N=(NnL)+Z. Since
pl((1/p)Z)/Z]1=0 then N/Z is semisimple. So NA(NNL)+Z) is semisimple as a
homomorphic image of N/Z. Hence there exists a maximal submodule H of N with
(NAL)+Z<H<N. Since QAH+L)=(N+L)/(H+L)=N/H and N/H is simple
then H+L is maximal submodule of Q. This is the desired contradiction.

Theorem 10. Let Sy denote the Z-module Z and let S, denote the Z-submodule
Zp( /p"YZ of Q, where p ranges over all prime integers and n= 1,2,3,... . Then

(1 S, (n=0,1,2,3,...) are small submodules of Q and S, (n = 1,2,3,...) are not
finitely generated Z-modules.

(2) Hom(Q, S,/K) = 0 for every n=0,1,2,3... and all submodules K of S..

Proof (1) : We proceed induction on n. For n = 0 (1) follows from Lemma 2 and
Corollary 4, forn= 1, (1) follows from Lemma 9.

Assume n > 1 and Sy is small in Q for all k with k <n. Suppose that Q=L + S,
for some L <Q. Since S, is small in Q, to complete the proof we assume
Q=L+S,; and get a contradiction. So assume Q=L+S,,. Then

Sy #S, L +S, ;.. Since p[(1/p")Z/1/p* 1)Z] =0, S,/S,_, , is semisimple, and then
S, A(Sy NL)+S,_;) is semisimple as a homomorphic image of semisimple module
S,/Sn. Hence there exists a maximal submodule H, of S, containing S, nL+S,_;..

It is easy to check that H, + L is a maximal submodule of Q. This is the desired
contradiction. This completes the proof of (1).
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(2) : The case n = 0 follows from Lemma 2. Assume Hom(Q,S./K) is nonzero
for some positive integer nand K < S, . Let f be a nonzero element in Hom(Q,S,/K).

Suppose that S, =S, ; +K . Since S,/S,,; is semisimple, S,/(S,.1+K) is semisimple as
a homomorphic image of S./S,;. Then Q/Ker f is isomorphic to a submodule of a
semisimple module and so Q has a maximal submodule. This is a contradiction.
Hence S, = S;1  + K and so S/Kz=S/( Si/SpinK)#0. Now assume
S,y #S,,+S,,nK. Then by the same reasoning S /(S,,+S,, "K) is
semisimple and Q has a maximal submodule. It follows that S _, +S_, "nK =5
and S, = §,., + K. We continue this way and get S, =S, "nK+S, =8, nK+Z, and
so S, = K + Z . Then we may replace S, /K by zZwvZ (for some veZ) in
Hom(Q,S/K). By Lemma 2 Hom(Q,Z/vZ)=0. This contradicts the assumption

Let N be a smail submodule of Q and f e Hom(Q, N/K) for some submodule
K of N. Let o denote the homomorphism from N/K onto (N+Z)/(K+Z) defined by
on+K)=n+(K+2Z) where n+KeN/K. By Lemma 2, and since
Kera=(K+Z)/K=Z/(KnZ), we Hom(Q,Z/(K ~Z))=0. Hence to prove f is

zero homomorphism, without loss of generality, we may assume in Lemma 12 and
Theorem 13 that N and K contain Z in case K is a nonzero submodule of N. For an
easy reference we record Lemma 11.

Lemma 11. Let N be a submodule of Q and ab/c' e N for some ab/c' € Q with
(a,c) = 1. Then a, ab and b/c’ are in N for all j with 1< j<i.

Lemma 12. Let N be a small Z-submodule of Q and let f € Hom(Q,N/K) be a
nonzero homomorphism for some K <N and t € Z such that Kerf "Z =tZ . Then
(1) (1) is nonzero then there exist an integer a and a positive integer k such
that f(1) = at* + K and a/t“e N .
(2) If y € Z with (y,t) = 1 and f(1/y) = b/t' + K for some integer b and positive
integer 1 with b/f € N thenk =1
Proof. (1): Let N be a small submodule of Q and f € Hom(Q,N/K) be a nonzero
homomorphism for some K <N . Then f(1)# 0. Hence f(1) = x/b + K for some
xbe N with x# 0. Then f(b) = 0. There exist positive integers k and y such that b =
ty with (t,y) = 1 and so f(1) = ¢/t* + d/y +K for some c,de Z . Since f(t) = 0 and (Ly)
=1, d*/yeK , and so by Lemma 11, dly e K . Hence f(1) = c/t* + K. We choose a
with (a,t) = 1 and k as small as to f(1) = at* + K.
(2): Assume first that k>1. Since /€K and () = 1 and k-121, by

Lemma 11, b/t e K . Hence f(1) = 0. Now suppose that k1. Since f(1)=yb/ '+ K,



COPOLYFORM MODULES : 105

yb/t! eK.By (bt) =1 and then by Lemma 11, 1/t** €K forall 1<i<¢. Since
k < 7—1, we have ya/t*+K. Now f(y) = f(1)y = ya/t* + K implies f(y) = 0. Hence (1)
= 0. This is a contradiction. Thusk= 2.

Theorem 13. Let N be any small Z-submodule of Q. Then Hom(Q,N/K) = 0 for all
K<N.

Proof. Let N be a small submodule of Q and fe Hom(Q,N/K) for some K<N and
Kerf ~K =1Z as in Lemma 12. By Lemma 12, there exists a positive integer k such
that for x/y € Q f(x/y) = m/t* + K for some me Z with m/t*e N. It follows that
Q)< (S, +K)/K for some positive integer n, Since (S, +K)/K=8_/(§, nK)
(Sq + K), by Lemma 10 (2), £ = 0.

3. COPOLYFORM MODULES

Definition 14. Let M be a module. M is called comonoform module if for any
N;M , Homp(M,N/L)=0 forall L<N.

Definition 15. Let M be a module. We call M a copolylform module if for any smali
submodule N of M, Homp(M,N/L)=0 for ali L < N. In comparing with Lemma 1
copolyform modules are those modules that satisfy the converse statement of
Lemma 1. -

We cali a ring R comonoform (copolyform} ring provided R is comonoform
(copolyform) right R-module. It is clear from definitions that a ring R is copolyform
if and only if J(R) = 0. Every comonoform medule is copolyform. For the ring of
integers Z, }{(Z) =0 and Z = 2Z then Z is copolyform but not comonoforni.

A module M is comonoform if and only if M is quasi-corational extension of
every submodule N with ¢ < N<M, and M is copolyform if and only if M is quasi-

coratinal extension of every small submodule in M. By Theorem 13, Q is quasi-
corational extension of every small submodule.

Corollary 16. Let M be a copolyform module. A submodule N of M is small in M if
and only if Hom(M,N/L)=0 forall LS N.
Proof. By definitions and Lemma 1.

We note that for a module M and a submodule N of M whenever N << M
implies N << E(M). The converse is not true in general. There may happen a module
M with a submodule N such that N is small in E(M) but N is not small in M. Namely
2Z is not small in Z but by Corollary 3 it is small in Q.

Lemma 17, Let M be a module.
(1) I M is comonoform then M is hollow.
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(2) If M is hollow and copolyform then M is comonoform.
Proof. Clear from definitions.

Definition 18. Let M be an R-module. We set Z*(M)={me M:mR is small}
(see.namely [6]). We remark that it is known (and easy to prove) that Z*¥(M)=0
implies Z*(E(M))=0, and if M=M, @M, then Z*(M)=Z*M,)® Z*(M). By
definition, Z*(M) =M ~Rad(E(M)) and RadM)cZ*(M). So if M is a module
with Z*(M)=0 then M is a copolyform module.

Lemma 19. Let R be a ring and E(R) denote the injective hull of R. Then R@® E(R)
is copolyform module if and only if Z*(R)=0.
Proof. Assume R @ E(R) is copolyform module. Let xe Z*(R). Then xR is small in

E(R). It is clear that xR is small in R® E(R). Now define R® ER)LHRER;
(r.ty » r— xrwhere reR and te E(R). Set f=gh. By hypothesis, f=0. Hence x=0.
For the converse, assume Z*(R)=0. Then Z*E®R))=0 and so small submodules of R
and E(R) are zero. Let N be a submtodule of M=R @ E(R) and =, and =, denote
the projections of M on R and E(R), respectively. Since homomorphic images of
small submodules are small, =, (N) and n,(N) are zero as small submodules of R

and E(R), respectively. Hence N is zero. This completes the proof.
There are submodules and homomorphic images of copolyform modules which
are not copolyform.

Example 20. (i). Let M denote the Priifer p-group Z(p~) for some prime integer p.
It is known that for any submodule N with N=M, M/N=M. Let N be a
submodule of M with N =M and L any submodule of N and f ¢ Hom(M,N/L). Set
K=Ker(f). Assume f #0 . Then M/K is isomorphic to a submodule of N/L which is
Noetherian. This is a contradiction since M =M/K . Then M is copolyform. Let
teZ with t24 and N, =(1/p'+Z)Z denote the submodule of M such that
p'N=0. Let m and n be positive integers such that m<n<t. Then there exists a non-
zero homomorphism f from N, to Ny/N,, defined by f(a/p'+Z)=a/p" +N,
where a/p+Ze N, . Hence N, is not copolyform.

(ii). Let M denote the Z-module Z and N the submodule p™Z of M for some prime
integer p and some integer m>1, and let t be an integer with t>1 and set L =p™Z.

Then M is copolyform Z-module and pZ/L is the unique maximal submodule of
M/L and N/L is small in M/L. Now define f from M/L to N/L by f(x+L)=p™x+L,
where x +L € M/L . Itis clear that f is a nonzero homomorphism and so M/L is not
copolyvform.
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In [3] it is proved that for a2 module M with a projective cover (P.f) M is copolyform
if and only if J(End(P)) = 0. Now we prove

Theorem 21. Let M be a module and x € Rad(M) . Assume M/xR has a projective
cover (P,f). Then M is copolyform if and only if M/xR is copolyform.

Proof. Let N denote the submodule xR of M with x e Rad(M) and (Pf) be a
projective cover of M/N. Then N and Kerf are small in M and P, respectively, and f
can be lifted to a map g from P to M. It can be easily checked that g is onto and Kerg
is small in P. Hence (P,g) is a projective cover of M. By the preceeding remark, M is
copolyform if and only if J(End(P)) = 0 if and only if M/N is copolyform.

Corollary 22. Let R be a right perfect ring. Then a module M is copolyform if and
only if M/N is copolyform for every submodule N of Rad(M).

Proof. By Remark (3),page 317 of [2] every module M over a right perfect ring has
a projective cover and Rad(M) is small in M.

Lemma 23. Let M be a copolyform module.Then every direct summand of M is
copolyfarm.

Proof. Assume that M= M, ®M, and M is copolyform module. Let N<< M, and
fe Hom(Ml,N/'K) for some K <N. Then N<<M. Now define f,:M — N/K,
fi(m, +m,)=f(m,), where m, eM,,m,eM,. Then f, eHom(M,N/K). By
assumption £=0.

Definition 24. Let M be a module. M is called lifting(orD;-)module whenever for
any submodule N of M there is a submodule A of M contained in N such that
M=A®B for some submodule B of M with NnB small in B[9]. We say that M
is finitely ¥ - lifting if every finite direct sum of copies of M is lifting.

Lemma 25. Let M be a copolyform module and S = End(M) the ring of
endomorphisms of M.

(1) IfM is lifting then S is left and right principally projective ring.
(2) ¥ M is finitely 3 - lifting then S is left and right semihereditary.

Proof (1) Let fe S. Since M is lifting, there exists a direct summand M; of M such
that M, <f(M) and M= M, ®M, and f(M) "M, << M, for some submodule M,

of M Tt is easy to show that f(M)~M, is small in M and
fM) =M, &(fM)~M,). We consider the map of from M onto f(M) M, is
the composition of f with « where « is the canonical projection from f(M) onto
fM) M, . Since (of)M) =f(M)~M, is small in M by hypothesis, o f= 0. It
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follows that f(M) = M;. Thus f(M) is a direct summand of M for every fe S. By
(39.11 in [11}) S is a right principally projective ring.

To prove S is left principally projective we take f € S. The same proof of the
first paragraph shows that f(M) is a direct summand of M and so f(M) = e(M) for
some idempotent e in S. Let P denote the map from S onto Sf defined by P (s) = sf

where se S. Then (1-e)f(M) = 0 or S(1-e)<Kerf. Let ge Kerf3. Then gf = 0 and
so gf(M) = ge(M) = 0 implies ge = 0 and then g(l-¢) = ge S(1-¢). Thus S(1-¢) =
KerB . Now S/Kerp = S/S(1-€)=Se and f(S) = Sf = S/Ker = Se prove that Sf is
a projective left ideal of S. Thus S is a principally projective ring.

(2) Let S™ denote the ring of nx n matrices over S for positive integer n. By
(1), EndM") = S™ is a left and right principally projective ring. By (39.13 in [11]),
S is left and right semi-hereditary.

Definition 26. Let M be a module with dual Krull dimension k°QM) [1] . Let be an
ordinal. M is called o — atomic if k%M) =o. and k°(N)§oc for each submodule N

with 0< N<M, and M is o — coatomic if M/N is « — atomic for every submodule N
of M with N;M. In [5] It is shown that a module M is o — atomic if and only if M

is o — coatomic for some ordinal o .

Lemma 27. Let M be an o — coatomic module for some ordinal . Then M is

copolyform.

Proof. Let M be an o, — coatomic module. Then K°(M)= o . It is known that for each

submodule N with 0<N<M, k’(N)<a and K°M/N)= «. Let N be a small
#*

submodule of M and fe HomM,N/K) for some submodule K of N. Then
fM)=L/K <N/K for some L<N and then by hypothesis, M/Ker(f) = f(M) implics

K’(fM))=o and fM)=L/K <N/K implies o= k’f(M)) < k°(N/K)§a. This leads
to £=0 and so M is copolyform.

Lemma 28. Let M be a module with a maximal submodule N. Then k°(M)= k°(N).
Proof. Let N be a maximal submodule of M. Since M/N is simple then KM/N)<0.
By kK'(M)= max{k’(N), K’(M/N)} (see namely [1]), K’(M)=k°(N).

Lemma 29. Let M be an o — coatomic module. Th(;nM is snnple or hollow module
with RadM) = M. : zw’

Proof. Let M be an « -coatomic module f;/)r some ordmal . Then K°M) =o and
for any proper submodule N of M k°(N) <a. - By Lemma 28, K0V = K°(L) for all*
maximal submodules L of M. Hence any nonzero proper submodule of M can not be *’
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maximal in M. Thus for every proper submodule N of M k°(N) < k°(M). Assume M
is not simple and M = N + L for some proper submodules N and L. From k°(M) =
max §c°(N),k°(M/N)} and KLy = max{'c"(L AN)LKY@L/L A N)} and
M/N=LALAN) and K°N)<k’(M) and K°@L)<k’(M) it follows that k°(M)<k’(M).
This contradiction shows that if M is not simpte and M = N + L for some

submodules N and L then M= N or M = L. Hence M is simple or hollow module
with Rad(M) = M.

Proposition 30. Let M be a projective module and S the ring End(M) of
endomorphisms of M. Then the followings are equivalent.

(1) M is copolyform.

(2) Sis copolyform.

3) KS)=0.
Proof. Let M be a projective module and S = End (M). In the proof we use the fact
that for fe 8, f e J(S) if and only if f(M) << M [2, Lemma 17.11]. By definitions,
(2) and (3) are equivalent. Suppose that M is copolyform module. Let f < J(S). Then
ftM) <<M. Hence f = 0. Thus J(S) = 0. This proves that (1) implies (3). As for (3)
implies (1), assume J(S) = 0. Let N << M and f e Hom(M,N/K) for some K <N,
Since M is projective f lifts to an clement g of S. Being N << M and g(M) <N then
gM) <<Mor ge J(S). Hence g=0and so f= 0.

Let M be a module. M is called V-module by Hirano [7](or cosemisimple by
Fuller [4]) if every proper submodule of M is an intersection of maximal
submodules. The ring R is called V-ring if the right R-module R is V-module.

Theorem 31. Let R be a ring. Then the following are equivalent.

(1) Risa V-ring,

(2) Every R-module is copolyform.

(3) For every R-module M, Z*(M) =0
Proof. The equivalence of (1) and (3) is established in [10]. Clearly (3) implies (2).
Assume (2) that every R-module is copolyform. Let M be a module and x € Z*(M).

Now we consider the module M= EM)@R as a right R-module. xR is a small
submodule of the injective hull E(M) of M and so is small in M . Define the map f:
M — xR by f(m+r)=xr where m+re M, meEM) and reR. By (2), M is
copolyform and so f= 0 or x = 0. Hence Z*(M) = 0 and (3} holds.

Example 32. We want to mention some relations of copolyform modules with some
classes of modules. A module M is cosemisimple if and only if Rad(M/N) = 0 for all
N<M (see [2].page 122,Exer.14). In a cosemisimple module M, Rad(M) = 0
therefore every cosemisimple module is copolyform. M is said to be coatomic if, for
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any submodule N of M, Rad(M/N) = M/N implies M/N = 0 [13]. Hence every
cosemisimple module is coatomic.
There are coatomic modules that are neither cosemisimple nor copolyform:

Counsider the ring R={ B b}: a,b,ceZ} with usual matrix operations. Then
Cc

A

[0 b : o
JR)={ [0 0} : beZ} and so R is not copolyform. Let I be any right ideal of R. Tt
is easy to check that I is contained in a maximal right ideal inr the form 0 mZ
where either n=1 and m is a prime integer or n is a prime integer and m=1. Hence R
is coatomic.
There are copolyform modules which are not cosemisimple. Namely the ring

0]

[ -l Then J(S\—[ Q]A Set R=S/J(S). It is easily seen that the right ideal
[ J+J(S) : ne Z} is not an intersection of maximal right ideals of R. Hence

R is not cosemisimple. But R is copolyform since J(R)=0.
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