COPOLYFORM MODULES

G. GÜNGÖROĞLU

Hacettepe University, Education Faculty, Part of Mathematics Education, 06532 Beytepe, Ankara - Turkey.
(Received May 03, 2000; Revised July 20, 2000; Accepted July 27, 2000)

Abstract

A module M is called copolyform module if for any small submodule N of $\mathrm{M}, \operatorname{Hom}(\mathrm{M}, \mathrm{N} / \mathrm{K})=0$ for all submodules K of N . It is shown that rational numbers, and in general, fields of fractions of integral domains are copolyform modules and for a copolyform and lifting module $M, S=E n d(M)$ is left and right principally projective ring, and if M is copolyform and Σ-lifting module then $S=E n d(M)$ is left and right semihereditary ring.

1. INTRODUCTION

Throughout this note all rings will have an identity and modules will be unital right modules. Let M be a module over a ring $\mathrm{R}, \mathrm{N} \leq \mathrm{M}$ will stand for N a submodule of M . Let N be a submodule of M . N is said to be small in M and we write $\mathrm{N} \ll \mathrm{M}$ whenever $\mathrm{N}+\mathrm{L}=\mathrm{M}$ for some submodule L of M implies $\mathrm{M}=\mathrm{L}$. A module M is called small if M is small in $E(M)$, where $E(M)$ is the injective hull of \mathbf{M}. \mathbf{M} is said to be hollow in case every proper submodule of \mathbf{M} is small in \mathbf{M}. In what follows $\operatorname{Rad}(M)$ will denote the radical of a module M and $J(R)$ will be the Jacobson radical of a ring R. Rad(M) is the sum of all small submodules of M and intersection of maximal submodules of M . We call a module M copolyform if for any $N \ll M$, $\operatorname{Hom}(M, N / K)=0$ for all $K \leq N$.

In this note we study some properties of copolyform modules [5] in which they are defined as a dual of polyform modules [12]. Here we give a different approach and study some general properties of copolyform modules. Let \mathbf{Z} and \mathbf{Q} denote the integers and rational numbers, respectively.

2. PRELIMINARIES

In this section we study some small submodules of rationals. Some results of this section may be in the context. For the sake of completeness and as a preparotory section we give proofs in detail. We start with

Lemma 1. Let M be an R-module and $N_{\neq M}$ a proper submodule of M such that $\operatorname{Hom}(M, N / L)=0$ for all $L \leq N$. Then N is small in M.
Proof. Let N be a proper submodule of M. Assume $\operatorname{Hom}(M, N / L)=0$ for all $L \leq N$. We take $K \leq M$ such that $M=K+N$. If $K \neq M$, since $M / K \cong N /(K \cap N)$ then $\operatorname{Hom}(M, N /(K \cap N)) \neq 0$. Hence $N \ll M$.

Lemma 2. Let R be a principal ideal domain with field of fractions K. Then for any R-submodule L of $R, \operatorname{Hom}(K, R / L)=0$.
Proof. Let L be an R-submodule of $R, r / s \in K, t \in L$ and $f \in \operatorname{Hom}(K, R / L)$. Set $f(r / t s)=y+L$ for some $y \in R$. Then $f(r / s)=t y+L=0$ since $t y \in L$. So $f(r / s)=0$ for all $r / s \in K$. Hence $f=0$.

Corollary 3. Let R be a principal ideal domain with field of fractions K. Then for any submodule N of $\mathrm{R}, \operatorname{Hom}(\mathrm{K}, \mathrm{N} / \mathrm{L})=0$ for all submodules L of N .
Proof. The same proof of Lemma 2 works here.
Corollary 4. Let R be a principal ideal domain with field of fractions K. Then every submodule N of R is small in K .
Proof. Clear from Lemma 1 and Corollary 3.
Definition 5. Let M be a module with a submodule N. M is called quasi-corational extension of N if $\operatorname{Hom}(M, N / L)=0$ for all submodules L in N.

Corollary 6. Let R be a principal ideal domain with field of fractions K . Then K is quasi-corational extension of R.

Lemma 7. Let \mathbf{Z} and \mathbf{Q} denote the integers and rational numbers, respectively and let $a / b, c / d \in \mathbf{Q}$ and let N denote the submodule $(a / b) \mathbf{Z}+(c / d) \mathbf{Z}$ of \mathbf{Q}. Then $\operatorname{Hom}(\mathbf{Q}, \mathrm{N} / \mathrm{L})=0$ for all $\mathrm{L} \leq \mathrm{N}$.
Proof. Let L be a submodule of $N, f \in \operatorname{Hom}_{Z}(Q, N / L)$ and $f(1)=(a / b) n+(c / d) m+L$ $=((a d n+b c m) / b d)+L$ for some $n, m \in \mathbf{Z}$. Set $t=a d n+b c m$ so that $f(1)=(t / b d)+L$. Take $0 \neq t_{1} \in L \cap \mathbf{Z}$. Then there exists $u \in \mathbf{Z}$ such that $f\left(1 / t_{1}\right)=(u / b d)+L$. Hence $f(1)=\left(t_{1} u / b d\right)+L$ and so $f(b d)=t_{1} u+L=0$ since $t_{1} u \in L$. Hence $f(1)=(t / b d)+L$ implies $f(b d)=t+L=0$ or $t \in L$. Let $1 / y \in Q$ and set $f(1 / y)=\left(t_{2} / b d\right)+L$ and $f(1 / t y)=\left(t_{3} / b d\right)+L$ for some $t_{2}, t_{3} \in Z$. Then $f(1 / y)=\left(t_{3} / b d\right)+L$ and so $t_{2}-t_{3} \in L$. Since $t \in L$ then $t_{2} \in L$. It follows that if $f(1 / y b d)=(v / b d)+L$ for some $v \in Z$ then $v \in L$ and $f(1 / y)=v+L$. Thus $f(1 / y)=0$ for all $1 / y \in Q$. Let x / y be any element of \mathbf{Q}. Then $f(x / y)=f(1 / y) x=0$. Hence $f=0$.

We record the following theorem which is well known (in [8] page 108,Example.5)

Theorem 8. Let N be a finitely generated \mathbf{Z}-submodule of \mathbf{Q}. Then N is small in \mathbf{Q}. Proof. Let N be a finitely generated \mathbf{Z}-submodule of \mathbf{Q}. An induction on the generators of N and applying the same proof of Lemma 7 may complete the proof.

There are small submodules of \mathbf{Q} that are not finitely generated as \mathbf{Z}-modules.
Lemma 9. Let N denote the \mathbf{Z}-submodule $\Sigma_{p}(1 / p) \mathbf{Z}$ of \mathbf{Q}, where p ranges over all prime integers. Then N is small in \mathbf{Q}.
Proof. Let $\mathbf{N}=\sum_{\mathbf{p}}(1 / \mathrm{p}) \mathbf{Z}$ and L a submodule of \mathbf{Q} such that $\mathbf{Q}=\mathrm{N}+\mathrm{L}$. We prove $\mathbf{Q}=\mathrm{L}$. Since \mathbf{Z} is small in \mathbf{Q}, to complete the proof we assume $\mathbf{Q} \neq \mathbf{Z}+\mathrm{L}$ and get a contradiction. Now assume $\mathbf{Q} \neq \mathbf{Z}+\mathrm{L}$. Then $\mathrm{N} \neq(\mathrm{N} \cap \mathrm{L})+\mathbf{Z}$. Since $\mathrm{p}[((1 / \mathrm{p}) \mathbf{Z}) / \mathbf{Z}]=0$ then N / \mathbf{Z} is semisimple. So $\mathrm{N} /((\mathrm{N} \cap \mathrm{L})+\mathbf{Z})$ is semisimple as a homomorphic image of N / \mathbf{Z}. Hence there exists a maximal submodule H of N with $(\mathrm{N} \cap \mathrm{L})+\mathrm{Z} \leq \mathrm{H} \leq \mathrm{N}$. Since $\mathbf{Q} /(\mathrm{H}+\mathrm{L})=(\mathrm{N}+\mathrm{L}) /(\mathrm{H}+\mathrm{L}) \cong \mathrm{N} / \mathrm{H}$ and N / H is simple then $\mathrm{H}+\mathrm{L}$ is maximal submodule of \mathbf{Q}. This is the desired contradiction.

Theorem 10. Let S_{0} denote the \mathbf{Z}-module \mathbf{Z} and let S_{n} denote the \mathbf{Z}-submodule $\Sigma_{\mathbf{p}}\left(1 / \mathrm{p}^{\mathbf{n}}\right) \mathbf{Z}$ of \mathbf{Q}, where p ranges over all prime integers and $\mathrm{n}=1,2,3 \ldots$. Then
(1) $\mathrm{S}_{n}(\mathrm{n}=0,1,2,3, \ldots)$ are small submodules of \mathbf{Q} and $\mathrm{S}_{\mathrm{n}}(\mathrm{n}=1,2,3, \ldots)$ are not finitely generated \mathbf{Z}-modules.
(2) $\operatorname{Hom}\left(\mathbf{Q}, \mathrm{S}_{\mathrm{I}} / \mathrm{K}\right)=0$ for every $\mathrm{n}=0,1,2,3 \ldots$ and all submodules K of S_{n}.

Proof (1): We proceed induction on n . For $\mathrm{n}=0$ (1) follows from Lemma 2 and Corollary 4 , for $\mathrm{n}=1$, (1) follows from Lemma 9.

Assume $\mathrm{n}>1$ and S_{k} is small in \mathbf{Q} for all k with $\mathrm{k}<\mathrm{n}$. Suppose that $\mathbf{Q}=\mathrm{L}+\mathrm{S}_{\mathrm{n}}$ for some $L \leq \mathbf{Q}$. Since S_{n-1} is small in \mathbf{Q}, to complete the proof we assume $\mathbf{Q} \neq \mathrm{L}+\mathrm{S}_{\mathrm{n}-1}$ and get a contradiction. So assume $\mathbf{Q} \neq \mathrm{L}+\mathrm{S}_{\mathrm{n}-1}$. Then $S_{n} \neq S_{n} \cap L+S_{n-1}$. Since $p\left[\left(1 / p^{n}\right) Z /\left(1 / p^{n-1}\right) Z\right]=0, S_{n} / S_{n-1}$, is semisimple, and then $\mathrm{S}_{\mathrm{n}} /\left(\left(\mathrm{S}_{\mathrm{n}} \cap \mathrm{L}\right)+\mathrm{S}_{\mathrm{n}-1}\right)$ is semisimple as a homomorphic image of semisimple module $\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}-1}$. Hence there exists a maximal submodule H_{n} of S_{n} containing $\mathrm{S}_{\mathrm{n}} \cap \mathrm{L}+\mathrm{S}_{\mathrm{n}-1}$. It is easy to check that $H_{n}+L$ is a maximal submodule of \mathbf{Q}. This is the desired contradiction. This completes the proof of (1).
(2) : The case $n=0$ follows from Lemma 2. Assume $\operatorname{Hom}\left(\mathbf{Q}, \mathrm{S}_{\mathrm{n}} / K\right)$ is nonzero for some positive integer n and $K \leq S_{\mathbf{n}}$. Let f be a nonzero element in $\operatorname{Hom}\left(Q, S_{n} / K\right)$. Suppose that $\mathrm{S}_{\mathrm{n}} \neq \mathrm{S}_{\mathrm{n}-1}+K$. Since $\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}-1}$ is semisimple, $\mathrm{S}_{\mathrm{n}} /\left(\mathrm{S}_{\mathrm{n}-1}+\mathrm{K}\right)$ is semisimple as a homomorphic image of $\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}-1}$. Then $\mathrm{Q} / \mathrm{Ker} \mathrm{f}$ is isomorphic to a submodule of a semisimple module and so \mathbf{Q} has a maximal submodule. This is a contradiction. Hence $S_{n}=S_{n-1}+K$ and so $S_{n} / K \cong S_{n-1} /\left(S_{n} / S_{n-1} \cap K\right) \neq 0$. Now assume $\mathrm{S}_{\mathrm{n}-1} \neq \mathrm{S}_{\mathrm{n}-2}+\mathrm{S}_{\mathrm{n}-1} \cap \mathrm{~K}$. Then by the same reasoning $\mathrm{S}_{\mathrm{n}} /\left(\mathrm{S}_{\mathrm{n}-2}+\mathrm{S}_{\mathrm{n}-1} \cap \mathrm{~K}\right)$ is semisimple and Q has a maximal submodule. It follows that $S_{n-2}+S_{n-1} \cap K=S_{n-1}$ and $S_{n}=S_{n-2}+K$. We continue this way and get $S_{1}=S_{1} \cap K+S_{0}=S_{1} \cap K+Z$, and so $S_{n}=K+\mathbf{Z}$. Then we may replace S_{n} / K by $\mathbf{Z} / \mathbf{v} \mathbf{Z}$ (for some $v \in \mathbf{Z}$) in $\operatorname{Hom}\left(\mathbf{Q}, \mathbf{S}_{\mathrm{n}} / \mathrm{K}\right)$. By Lemma $2 \operatorname{Hom}(\mathbf{Q}, \mathbf{Z} / \mathrm{v} \mathbf{Z})=0$. This contradicts the assumption

Let N be a small submodule of Q and $\mathrm{f} \in \operatorname{Hom}(\mathbf{Q}, \mathrm{N} / \mathrm{K})$ for some submodule K of N. Let α denote the homomorphism from N / K onto $(N+Z) /(K+Z)$ defined by $\alpha(\mathbf{n}+\mathrm{K})=\mathbf{n}+(\mathrm{K}+\mathbf{Z})$ where $\mathbf{n}+\mathrm{K} \in \mathrm{N} / \mathrm{K}$. By Lemma 2 , and since $\operatorname{Ker} \alpha=(\mathrm{K}+\mathbf{Z}) / \mathrm{K} \cong \mathbf{Z} /(\mathrm{K} \cap \mathbf{Z})$, we $\operatorname{Hom}(\mathbf{Q}, \mathbf{Z} /(\mathrm{K} \cap \mathbf{Z}))=\mathbf{0}$. Hence to prove f is zero homomorphism, without loss of generality, we may assume in Lemma 12 and Theorem 13 that N and K contain \mathbf{Z} in case K is a nonzero submodule of N . For an easy reference we record Lemma 11.

Lemma 11. Let N be a submodule of Q and $a b / c^{i} \in N$ for some $a b / c^{i} \in \mathbf{Q}$ with $(a, c)=1$. Then $a, a b$ and b / c^{j} are in N for all j with $1 \leq j \leq i$.

Lemma 12. Let N be a small Z-submodule of \mathbf{Q} and let $f \in \operatorname{Hom}(\mathbf{Q}, N / K)$ be a nonzero homomorphism for some $K \leq N$ and $t \in \mathbf{Z}$ such that $\operatorname{Kerf} \cap \mathbf{Z}=t \mathbf{Z}$. Then
(1) If $f(1)$ is nonzero then there exist an integer a and a positive integer k such that $f(1)=a / t^{k}+K$ and $a / t^{k} \in N$.
(2) If $y \in \mathbf{Z}$ with $(y, t)=1$ and $f(1 / y)=b / t^{1}+K$ for some integer b and positive integer 1 with $b / t^{1} \in N$ then $k=1$.
Proof. (1): Let N be a small submodule of \mathbf{Q} and $\mathrm{f} \in \operatorname{Hom}(\mathbf{Q}, \mathrm{N} / \mathrm{K})$ be a nonzero homomorphism for some $K \leq N$. Then $f(1) \neq 0$. Hence $f(1)=x / b+K$ for some $x / b \in N$ with $x \neq 0$. Then $f(b)=0$. There exist positive integers k and y such that $b=$ $t^{k} y$ with $(t, y)=1$ and so $f(1)=c / t^{k}+d / y+K$ for some $c, d \in Z$. Since $f(t)=0$ and (t, y) $=1, d t^{k} / y \in K$, and so by Lemma $11, d / y \in K$. Hence $f(1)=c / t^{k}+K$. We choose a with $(a, t)=1$ and k as small as to $f(1)=a / t^{k}+K$.
(2): Assume first that $k \ngtr 1$. Since $a / t^{k-1} \in K$ and (a, t) $=1$ and $k-1 \geq 1$, by Lemma $11, b / t^{\ell} \in K$. Hence $f(1)=0$. Now suppose that $k \neq 1$. Since $f(1)=y b / t^{\ell}+K$,
$\mathrm{yb} / \mathrm{t}^{\ell-1} \in \mathrm{~K} . \mathrm{By}(\mathrm{b}, \mathrm{t})=1$ and then by Lemma $11,1 / \mathrm{t}^{\ell-\mathrm{i}} \in \mathrm{K}$ for all $1 \leq \mathrm{i} \leq \ell$. Since $k \leq \ell-1$, we have ya/ $/ \mathrm{t}^{\mathrm{k}}+\mathrm{K}$. Now $\mathrm{f}(\mathrm{y})=\mathrm{f}(1) \mathrm{y}=\mathrm{ya} / \mathrm{t}^{\mathrm{k}}+\mathrm{K}$ implies $\mathrm{f}(\mathrm{y})=0$. Hence $\mathrm{f}(1)$ $=0$. This is a contradiction. Thus $\mathrm{k}=\ell$.

Theorem 13. Let N be any small \mathbf{Z}-submodule of \mathbf{Q}. Then $\operatorname{Hom}(\mathbf{Q}, \mathrm{N} / \mathrm{K})=0$ for all $\mathrm{K} \leq \mathrm{N}$.
Proof. Let N be a small submodule of \mathbf{Q} and $\mathbf{f} \in \operatorname{Hom}(\mathbf{Q}, \mathrm{N} / \mathrm{K}$) for some $\mathrm{K} \leq \mathrm{N}$ and Kerf $\cap K=\mathrm{tZ}$ as in Lemma 12. By Lemma 12, there exists a positive integer k such that for $x / y \in \mathbf{Q} f(x / y)=m / t^{k}+K$ for some $m \in \mathbf{Z}$ with $m / t^{k} \in N$. It follows that $f(\mathbf{Q}) \leq\left(S_{\mathrm{n}}+K\right) / K$ for some positive integer n. Since $\left(S_{\mathrm{il}}+K\right) / K \cong S_{\mathrm{n}} /\left(\mathrm{S}_{\mathrm{n}} \cap K\right)$ $\left(S_{n}+K\right)$, by Lemma $10(2), f=0$.

3. COPOLYFORM MODULES

Definition 14. Let M be a module. M is called comonoform module if for any $\mathrm{N}<\neq \mathrm{M}, \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N} / \mathrm{L})=0$ for all $\mathrm{L} \leq \mathrm{N}$.
Definition 15. Let M be a module. We call M a copolyform module if for any small submodule N of $\mathrm{M}, \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N} / \mathrm{L})=0$ for all $\mathrm{L} \leq \mathrm{N}$. In comparing with Lemma 1 copolyform modules are those modules that satisfy the converse statement of Lemma 1.

We call a ring R comonoform (copolyform) ring provided R is comonoform (copolyform) night R-module. It is clear from definitions that a ring R is copolyform if and only if $J(R)=0$. Every comonoform module is copolyform. For the ring of integers $\mathbf{Z}, J(\mathbf{Z})=0$ and $\mathbf{Z} \cong 2 \mathbf{Z}$ then \mathbf{Z} is copolyform but not comonoform.

A module M is comonoform if and only if M is quasi-corational extension of every submodule N with $0 \leq N \nsubseteq M$, and M is copolyform if and only if M is quasicoratinal extension of every small submodule in M . By Theorem $13, \mathbf{Q}$ is quasicorational extension of every small submodule.

Corollary 16. Let M be a copolyform module. A submodule N of M is small in M if and only if $\operatorname{Hom}(\mathrm{M}, \mathrm{N} / \mathrm{L})=0$ for all $\mathrm{L} \leq \mathrm{N}$.
Proof. By definitions and Lemma 1.
We note that for a module M and a submodule N of M whenever $\mathrm{N} \ll \mathrm{M}$ implies $\mathrm{N} \ll \mathrm{E}(\mathrm{M})$. The converse is not true in general. There may happen a module M with a submodule N such that N is small in $E(M)$ but N is not small in M. Namely $2 \mathbf{Z}$ is not small in \mathbf{Z} but by Corollary 3 it is small in \mathbf{Q}.

Lemma 17. Let M be a module.
(1) If M is comonoform then M is hollow.
(2) If M is hollow and copolyform then M is comonoform.

Proof. Clear from definitions.
Definition 18. Let M be an R-module. We set $Z^{*}(M)=\{m \in M: m R$ is small $\}$ (see,namely [6]). We remark that it is known (and easy to prove) that $Z^{*}(M)=0$ implies $Z^{*}(E(M))=0$, and if $M=M_{1} \oplus M_{2}$ then $Z^{*}(M)=Z^{*}\left(M_{1}\right) \oplus Z^{*}(M)$. By definition, $Z^{*}(M)=M \cap \operatorname{Rad}(E(M))$ and $\operatorname{Rad}(M) \subseteq Z^{*}(M)$. So if M is a module with $Z^{*}(M)=0$ then M is a copolyform module.

Lemma 19. Let R be a ring and $E(R)$ denote the injective hull of R. Then $R \oplus E(R)$ is copolyform module if and only if $Z^{*}(R)=0$.
Proof. Assume $R \oplus E(R)$ is copolyform module. Let $x \in Z^{*}(R)$. Then $x R$ is small in $E(R)$. It is clear that $x R$ is small in $R \oplus E(R)$. Now define $R \oplus E(R) \xrightarrow{b} R \xrightarrow{\boldsymbol{g}} x R$; $(r, t) \rightarrow r \rightarrow x r$ where $r \in R$ and $t \in E(R)$. Set $f=g h$. By hypothesis, $f=0$. Hence $x=0$. For the converse, assume $Z^{*}(R)=0$. Then $Z^{*}(E(R))=0$ and so small submodules of R and $E(R)$ are zero. Let N be a submodule of $M=R \oplus E(R)$ and π_{1} and π_{2} denote the projections of M on R and $E(R)$, respectively. Since homomorphic images of small submodules are small, $\pi_{1}(N)$ and $\pi_{2}(N)$ are zero as small submodules of R and $E(R)$, respectively. Hence N is zero. This completes the proof.

There are submodules and homomorphic images of copolyform modules which are not copolyform.

Example 20. (i). Let M denote the Prüfer p-group $Z\left(p^{\infty}\right)$ for some prime integer p. It is known that for any submodule N with $N \neq M, M / N \cong M$. Let N be a submodule of M with $N \neq M$ and L any submodule of N and $f \in \operatorname{Hom}(M, N / L)$. Set $K=\operatorname{Ker}(f)$. Assume $\mathrm{f} \neq 0$. Then M / K is isomorphic to a submodule of N / L which is Noetherian. This is a contradiction since $M \cong M / K$. Then M is copolyform. Let $t \in \mathbf{Z}$ with $t \geq 4$ and $N_{t}=\left(1 / p^{t}+\mathbf{Z}\right) \mathbf{Z}$ denote the submodule of M such that $p^{t} N_{t}=0$. Let m and n be positive integers such that $\mathbf{m}<\mathbf{n}<t$. Then there exists a nonzero homomorphism f from N_{t} to N_{n} / N_{m} defined by $f\left(a / p^{\dagger}+Z\right)=a / p^{n}+N_{m}$ where $a / p^{t}+\mathbf{Z} \in N_{t}$. Hence N_{t} is not copolyform.
(ii). Let M denote the \mathbf{Z}-module \mathbf{Z} and N the submodule $\mathrm{p}^{\mathrm{m}} \mathbf{Z}$ of M for some prime integer p and some integer $m>1$, and let t be an integer with $t>1$ and set $L=p^{m t} \mathbf{Z}$, Then M is copolyform \mathbf{Z}-module and $\mathrm{p} \mathbf{Z} / \mathrm{L}$ is the unique maximal submodule of M / L and N / L is small in M / L. Now define f from M / L to N / L by $f(x+L)=p^{m} x+L$, where $x+L \in M / L$. It is clear that f is a nonzero homomorphism and so M / L is not copolyform.

In [3] it is proved that for a module M with a projective cover (P, f) M is copolyform if and only if $J(E n d(P))=0$. Now we prove

Theorem 21. Let M be a module and $x \in \operatorname{Rad}(M)$. Assume $M / x R$ has a projective cover (P, f). Then M is copolyform if and only if M / xR is copolyform.
Proof. Let N denote the submodule $x R$ of M with $x \in \operatorname{Rad}(M)$ and (P,f) be a projective cover of M / N. Then N and Kerf are small in M and P , respectively, and f can be lifted to a map g from P to M. It can be easily checked that g is onto and Kerg is small in P. Hence (P, g) is a projective cover of M. By the preceeding remark, M is copolyform if and only if $\mathrm{J}(\operatorname{End}(\mathrm{P}))=0$ if and only if M / N is copolyform.

Corollary 22. Let R be a right perfect ring. Then a module M is copolyform if and only if M / N is copolyform for every submodule N of $\operatorname{Rad}(\mathrm{M})$.
Proof. By Remark (3), page 317 of [2] every module M over a right perfect ring has a projective cover and $\operatorname{Rad}(M)$ is small in M.

Lemma 23. Let M be a copolyform module. Then every direct summand of M is copolyform.
Proof. Assume that $M=M_{1} \oplus M_{2}$ and M is copolyform module. Let $N \ll M_{1}$ and $f \in \operatorname{Hom}\left(M_{1}, N / K\right)$ for some $K \leq N$. Then $N \ll M$. Now define $f_{1}: M \rightarrow N / K$, $f_{1}\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)$, where $m_{1} \in M_{1}, m_{2} \in M_{2}$. Then $f_{1} \in \operatorname{Hom}(M, N / K)$. By assumption $\mathrm{f}=0$.

Definition 24. Let M be a module. M is called lifting $\left(\right.$ or $_{1}$ - $)$ module whenever for any submodule N of M there is a submodule A of M contained in N such that $M=A \oplus B$ for some submodule B of M with $N \cap B$ small in $B[9]$. We say that M is finitely Σ - lifting if every finite direct sum of copies of M is lifting.

Lemma 25. Let M be a copolyform module and $S=\operatorname{End}(M)$ the ring of endomorphisms of M .
(1) If M is lifting then S is left and right principally projective ring.
(2) If M is finitely Σ-lifting then S is left and right semihereditary.

Proof (1) Let $f \in S$. Since M is lifting, there exists a direct summand M_{1} of M such that $M_{1} \leq f(M)$ and $M=M_{1} \oplus M_{2}$ and $f(M) \cap M_{2} \ll M_{2}$ for some submodule M_{2} of M. It is easy to show that $f(M) \cap M_{2}$ is small in M and $f(M)=M_{1} \oplus\left(f(M) \cap M_{2}\right)$. We consider the map αf from M onto $f(M) \cap M_{2}$ is the composition of f with α where α is the canonical projection from $f(M)$ onto $f(M) \cap M_{2}$. Since $(\alpha f)(M)=f(M) \cap M_{2}$ is small in M by hypothesis, $\alpha f=0$. It
follows that $f(M)=M_{1}$. Thus $f(M)$ is a direct summand of M for every $f \in S$. By (39.11 in [11]) S is a right principally projective ring.

To prove S is left principally projective we take $f \in S$. The same proof of the first paragraph shows that $f(M)$ is a direct summand of M and so $f(M)=e(M)$ for some idempotent e in S. Let β denote the map from S onto $S f$ defined by $\beta(s)=s f$ where $s \in S$. Then $(1-e) f(M)=0$ or $S(1-e) \leq \operatorname{Ker} \beta$. Let $g \in \operatorname{Ker} \beta$. Then $g f=0$ and so $\mathrm{gf}(\mathrm{M})=\mathrm{ge}(\mathrm{M})=0$ implies ge $=0$ and then $\mathrm{g}(1-\mathrm{e})=\mathrm{g} \in \mathrm{S}(1-\mathrm{e})$. Thus $\mathrm{S}(1-\mathrm{e})=$ $\operatorname{Ker} \beta$. Now $S / K \operatorname{Cer} \beta=\mathrm{S} / \mathrm{S}(1-\mathrm{e}) \cong \mathrm{Se}$ and $\beta(\mathrm{S})=\mathrm{Sf} \cong \mathrm{S} / \operatorname{Ker} \beta \cong$ Se prove that Sf is a projective left ideal of S. Thus S is a principally projective ring.
(2) Let $S^{n \times n}$ denote the ring of $n \times n$ matrices over S for positive integer n. By (1), End $\left(M^{1}\right) \cong S^{n \times n}$ is a left and right principally projective ring. By (39.13 in [11]), S is left and right semi-hereditary.

Definition 26. Let M be a module with dual Krull dimension $k^{0}(M)$ [1]. Let be an ordinal. M is called α-atomic if $k^{0}(M)=\alpha$ and $k^{0}(N) \neq \alpha$ for each submodule N with $0 \leq N \neq M$, and M is α-coatomic if M / N is α-atomic for every submodule N of M with $\mathrm{N} \underset{\neq \mathrm{M}}{ }$. In [5] It is shown that a module M is α-atomic if and only if M is α-coatomic for some ordinal α.

Lemma 27. Let M be an α-coatomic module for some ordinal α. Then M is copolyform.
Proof. Let M be an α-coatomic module. Then $k^{0}(M)=\alpha$. It is known that for each submodule N with $0 \leq N<M, k^{0}(N)<\alpha$ and $k^{0}(M / N)=\alpha$. Let N be a small submodule of M and $f \in \operatorname{Hom}(M, N / K)$ for some submodule K of N. Then $f(M)=L / K \leq N / K$ for some $L \leq N$ and then by hypothesis, $M / K e r(f) \cong f(M)$ implies $k^{0}(f(M))=\alpha$ and $f(M)=L / K \leq N / K$ implies $\alpha=k^{0}(f(M)) \leq k^{0}(N / K)<\alpha$. This leads to $f=0$ and so M is copolyform.

Lemma 28. Let M be a module with a maximal submodule N. Then $k^{0}(M)=k^{0}(N)$.
Proof. Let N be a maximal submodule of M. Since M / N is simple then $k^{0}(M / N) \leq 0$. $\operatorname{By} k^{0}(M)=\max \left\{k^{0}(N), k^{0}(M / N)\right\}$ (see namely [1]), $k^{0}(M)=k^{0}(N)$.

Lemma 29. Let M be an α-coatomic module. Then M is simple or hollow module with $\operatorname{Rad}(M)=M$.
Proof. Let M be an α-coatomic module for some ordinal α. Then $k^{\circ}(M)=\alpha$ and for any proper submodule N of $M k^{0}(N)<\alpha$. By Lemmá $28, k^{0}(M)=k^{0}(L)$ for all maximal submodules L of M. Hence any nonzero proper submodule of M can not be
maximal in M . Thus for every proper submodule N of $\mathrm{M}^{0}(\mathrm{~N})<\mathrm{k}^{0}(\mathrm{M})$. Assume M is not simple and $M=N+L$ for some proper submodules N and L. From $k^{0}(M)=$ $\max \left\{\mathrm{k}^{0}(\mathrm{~N}), \mathrm{k}^{0}(\mathrm{M} / \mathrm{N})\right\} \quad$ and $\left.\quad \mathrm{k}^{0}(\mathrm{~L})=\max k^{0}(\mathrm{~L} \cap \mathrm{~N}) \mathrm{k}^{0}(\mathrm{~L} / \mathrm{L} \cap \mathrm{N})\right\} \quad$ and $\mathrm{M} / \mathrm{N} \cong \mathrm{L} /(\mathrm{L} \cap \mathrm{N})$ and $\mathrm{k}^{0}(\mathrm{~N})<\mathrm{k}^{0}(\mathrm{M})$ and $\mathrm{k}^{0}(\mathrm{~L})<\mathrm{k}^{0}(\mathrm{M})$ it follows that $\mathrm{k}^{0}(\mathrm{M})<\mathrm{k}^{0}(\mathrm{M})$. This contradiction shows that if M is not simple and $M=N+L$ for some submodules N and L then $\mathrm{M}=\mathrm{N}$ or $\mathrm{M}=\mathrm{L}$. Hence M is simple or hollow module with $\operatorname{Rad}(\mathrm{M})=\mathrm{M}$.

Proposition 30. Let M be a projective module and S the ring $\operatorname{End}(M)$ of endomorphisms of M . Then the followings are equivalent.
(1) M is copolyform.
(2) S is copolyform.
(3) $\mathrm{J}(\mathrm{S})=0$.

Proof. Let M be a projective module and $S=$ End (M). In the proof we use the fact that for $f \in S, f \in J(S)$ if and only if $f(M) \ll M$ [2, Lemma 17.11]. By definitions, (2) and (3) are equivalent. Suppose that M is copolyform module. Let $f \in J(S)$. Then $f(M) \ll M$. Hence $f=0$. Thus $J(S)=0$. This proves that (1) implies (3). As for (3) implies (1), assume $\mathrm{J}(\mathrm{S})=0$. Let $\mathrm{N} \ll \mathrm{M}$ and $\mathrm{f} \in \mathrm{Hom}(\mathrm{M}, \mathrm{N} / \mathrm{K})$ for some $\mathrm{K} \leq \mathrm{N}$. Since M is projective f lifts to an element g of S. Being $N \ll M$ and $g(M) \leq N$ then $g(M) \ll M$ or $g \in J(S)$. Hence $g=0$ and so $f=0$.

Let M be a module. M is called V-module by Hirano [7](or cosemisimple by Fuller [4]) if every proper submodule of M is an intersection of maximal submodules. The ring R is called V -ring if the right R -module R is V -module.

Theorem 31. Let R be a ring. Then the following are equivalent.
(1) R is a V-ring.
(2) Every R-module is copolyform.
(3) For every R-module $\mathrm{M}, \mathrm{Z}^{*}(\mathrm{M})=0$

Proof. The equivalence of (1) and (3) is established in $\lceil 10\rceil$. Clearly (3) implies (2). Assume (2) that every R-module is copolyform. Let M be a module and $x \in Z^{*}(M)$.
Now we consider the module $\tilde{M}=E(M) \oplus R$ as a right R-module. $x R$ is a small submodule of the injective hull $E(M)$ of M and so is small in \tilde{M}. Define the map f : $\tilde{M} \rightarrow x R$ by $f(m+r)=x r$ where $m+r \in \tilde{M}, m \in E(M)$ and $r \in R$. By (2), \tilde{M} is copolyform and so $\mathrm{f}=0$ or $\mathrm{x}=0$. Hence $Z^{*}(\mathrm{M})=0$ and (3) holds.

Example 32. We want to mention some relations of copolyform modules with some classes of modules. A module M is cosemisimple if and only if $\operatorname{Rad}(\mathrm{M} / \mathrm{N})=0$ for all $\mathrm{N} \leq \mathrm{M}$ (see [2],page 122,Exer.14). In a cosemisimple module $\mathrm{M}, \operatorname{Rad}(\mathrm{M})=0$ therefore every cosemisimple module is copolyform. M is said to be coatomic if, for
any submodule N of $\mathrm{M}, \operatorname{Rad}(\mathrm{M} / \mathrm{N})=\mathrm{M} / \mathrm{N}$ implies $\mathrm{M} / \mathrm{N}=0$ [13]. Hence every cosemisimple module is coatomic.

There are coatomic modules that are neither cosemisimple nor copolyform: Consider the ring $R=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in \mathbf{Z}\right\}$ with usual matrix operations. Then $J(R)=\left\{\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]: b \in Z\right\}$ and so R is not copolyform. Let I be any right ideal of R. It is easy to check that I is contained in a maximal right ideal in the form $\left[\begin{array}{cc}\mathrm{nZ} & \mathbf{Z} \\ 0 & \mathrm{mZ}\end{array}\right]$ where either $n=l$ and m is a prime integer or n is a prime integer and $m=1$. Hence R is coatomic.

There are copolyform modules which are not cosemisimple. Namely the ring $S=\left[\begin{array}{ll}\mathbf{Z} & \mathbf{Q} \\ 0 & \mathbf{Q}\end{array}\right]$. Then $\mathrm{J}(\mathrm{S})=\left[\begin{array}{ll}0 & \mathbf{Q} \\ 0 & 0\end{array}\right]$. Set $\mathrm{R}=\mathrm{S} / \mathrm{J}(\mathrm{S})$. It is easily seen that the right ideal $I=\left\{\left[\begin{array}{cc}4 n & 0 \\ 0 & 0\end{array}\right]+J(S): n \in \mathbf{Z}\right\}$ is not an intersection of maximal right ideals of R. Hence R is not cosemisimple. But R is copolyform since $J(R)=0$.

REFERENCES

[1] T.Albu and P.F.Smith, Dual Krull Dimension of modules over commutative rings.Abelian groups, Kluwer Acad.Publ., 1995,1-15.
[2] F.W.Anderson, K.F.Fuller, Ring and Categories of Modules, Springer-Verlag, Berlin-Heidelberg-New York.
[3] L.Christian, Dual Continous Modules, Master's thesis, Glasgow Univ., 1996.
[4] K.R.Fuller, Relative projectivity and injectivity classes determined by simple modules, J.London Math.Soc., 1972, vol5, 423-431.
[5] G.Güngöroğlu and A.Harmancı, On some classes of modules, Czech J.of Mathematics accepted to publish.
[6] M.Harada, Non-small modules and non-cosmall modules, Ring Theory:Proc.of the 1978 Antwerp Conference,F.van Oystaeyen,ed.New York;Marcel Dekker.
[7] Y.Hirano, Regular modules and V-modules, Hiroshimo Math J., 1981, vol. 11, 125-142.
[8] F.Kasch, Modules and Rings, Academic Press, 1982,
[9] S.H.Mohammed and B.J.Müller, Continous and Discrete Modulus, London Mth.Soc.LN 147, Cambridge Univ.Press, 1990.
[10]A.C.Özcan, Some characterizations of V-modules and rings, Vietnam Journal of Mathematics, 1998, vol. 26, 253-258.
[11]R.Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach,Reading, 1991.
[12]IM.Zelmanowitz, A class of modules with semisimple behavior, Abelian groups and Modules, A.Faccini and C.Menini, edts., Kluwer Acad. Publ., Dordrecht, 1995, 491-500.
[13] H. Zöschinger, Koatomare Moduln, Math.Z., vol. 170, 1980, 221-232..

