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ABSTRACT

A modüle M is called cq>olyform modüle if for any small submodule N of M, Hom(M,N/K)=0 for 
ali submodules K of N. It is shown that rational numbers, and in general, fields of fractions of integral 
domains are copolyform modules and for a cq>olyform and lifting modüle M, S=End(M) is left and right 
principally projective ring, and if M is copolyform and lifting modüle then S=End(M) is left and 
right şemihereditary ring.

1. INTRODUCTION

Throughout this note ali rings will have an identity and modules will be unital 
right modules. Let M be a modüle över a ring R. N < M will stand for N a 
submodule of M. Let N be a submodule of M. N is said to be small in M and we
write N M whcnever N+L=M for some subnıodule L of M implies M=L. A 
modüle M is called smaU if M is small in E(M), where E(M) is the injective hull of 
M. M is said to be hollow in case every proper submodule of M is small in M. In 
what follows Rad(M) will denote the radical of a modüle M and J(R) will be the 
Jacobson radical of a ring R. Rad(M) is the sum of aU small submodules of M and 
intersection of nıaximal submodules of M. We cali a modüle M copolyform if for 
any N « M, Hom(M,N/K) = 0 for ali K < N.

In this note we study some properties of copolyform modules [5] in which they 
are defıned as a dual of polyform modules [12]. Here we give a different approach 
and study some general properties of copolyform modules. Let Z and Q denote the 
integers and rational numbers, respectively.

2. PRELIMIN AKİES
In this sectiotı v/e stu(fy some small submodules of rationals. Some results of 

this section may be in the context. For the sake of completeness and as a preparotory 
section v/e give proofs in detail. We start with
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Lemma 1. Let M be an R-module and N a proper submodule of M such that

Hom(M,N/L)=0 for ali L < N. Then N is small in M.
Proof. Let N be a proper submodule of M. Assume Hom(M,N/L)=0 for ali L < N. 
We take K<M such that M=K+N. If K*M, since M/K = N/(KnN) then 
Hom(M,N/ (K n N)) 0.. Hence N«M.

Lemma 1. Let R be a principal ideal domain with field of fractions K. Then for any 
R-submodule L of R, Hom(K,R/L)=0,
Proof. Let L be an R-submodule of R, r/seK, teL and f eHom(K,R/L). Set 
f(r/ts)=y+L for some y e R . Then f(r/s)=ty+L= 0 since ty e L. So f(r/s)=0 for ali 
r/seK . Hence f=0.

Corollary 3. Let R be a principal ideal domain with field of fractions K. Then for 
any submodule N of R, Hom(K,N/L)=0 for ali submodules L of N.
Proof. The same proof of Lemma 2 works here.

Corollary 4. Let R be a principal ideal domain with field of fractions K. Then every 
submodule N of R is small in K.
Proof. Clear from Lemma 1 and Corollary 3.

Dcfinition 5. Let M be a modüle with a submodule N. M is called quasi-corational 
extension of N if Hom(M,NZL)=0 for aU submodules L in N.

Corollary 6. Let R be a principal ideal domain with field of fractions K. Then K is 
quasi-corational extension of R.

Lemma 7. Let Z and Q denote the integers and rational munbers, respectively and 
let a/b, c/d e Q and let N denote the submodule (a/b)Z+(c/d)Z of Q. Then 
Hom(Q,N/L) = 0 for ali L < N.
Proof. Let L be a submodule of N, f e Homz,(Q,N/L) and f(l) = (a/b)n + (c/d)nı + L 
= ((adn + bcm)/bd) + L for some n,meZ. Set t=adn+bcm so that f(l)=(t/bd)+L. 
Take O^tj eLnZ. Then there exists ueZ such that f(l/tj) = (u/bd)+L. Hence 
fO) = (tıu/bd)+L and so f(bd) = tju+L = 0 since tjueL. Hence f(l) =(t/bd)+L 
implies f(bd) = t+L = 0 or t e L. Let 1/y e Q and set f(l/y) = (t2/bd) + L and 
f(l/ty) = (t3/bd)+L for some 12,13 e Z . Then f(l/y) = (ttj/bdI+L and so 
t2 - «3 e L . Since t e L then t2 e L. It follows that if f(l/ybd)=(v/bd)+L for some
V e Z then V 6 L and f(l/y)=v+L. Thus f(l/y) = 0 for alll/y e Q . Let x/y be any
element of Q. Then f(x/y)=f(l/y)x = 0. Hence f = 0.
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We record Üıe follotving theorem which is well known (in [8] page 
108,Example.5)

Theorem 8. Let N be a fmitely generated Z-submodule of Q. Then N is small in Q. 
Proof. Let N be a finitely generated Z-submodule of Q. An induction on the 
generators of N and applying the same proof of Lemma 1 may complete the proof.

There are small submodules of Q that are not fınitely generated as Z-modules.

Lemma 9. Let N denote the Z-submodule of Q, where p ranges över ali

prime integers. Tlıen N is small in Q.
Proof. Let N = 2p(l/p)Z and L a submodule of Q such that Q=N+L. We prove 

Q=L. Since Z is small in Q, to complete tire proof we assume Q Z+L and get a
contradiction. Now assume Q*Z+L. Then N5t(NnL) + Z. Since
p[((l/p)Z)/Z] = 0 then N/Z is semisimple. So N/((N(^L)+Z) is semisimple as a 
homomorphic image of N/Z. Hence there exists a maximal submodule H of N with 
(NnL)+Z<H<N. Since Q/(H+L) = (N+L)/(H+L)sN/H and N/H is simple 
then H+L is maximal submodule of Q. This is the desired contradiction.

Theorem 10. Let So denote the Z-module Z and let Sn denote the Z-submodule
ZpG/p“)Z of Q, where p ranges över ali prime integers and n= 1,2,3,.... Then

(1) S„ (n = 0,1,2,3,...) are small submodules of Q and S„ (n = 1,2,3,...) are not 
finitely generated Z-modules.

(2) Hom(Q, Sn/K) = 0 for every n = 0,1,2,3... and ali submodules K of Sn.

Proof (1) : We proceed induction on n. For n = 0 (1) follows from Lemma 2 and 
Corollaıy 4, for n = 1, (1) follows from Lemma

Assume n > 1 and Sk is small in Q for ali k with k < n. Suppose that Q = L + Sn 
for some L < Q. Since Sn.ı is small in Q, to complete the proof we assume
Q * L + Sn_ı 

Sn^Snr^L+S,

and get a contradiction. So assume Q * L+Sn_j. Then

'n-l- . Since p[(l/p°)Z/(l/p“ ’)Z] = 0, S„/Sn^ı, is semisimple, and then
S„/((Sn nL)+Sn_ı) is semisimple as a homomorphic image of semisimple modüle 
S„/Sn-ı. Hence there exists a maximal submodule Hn of Sn containing r>L+Sn_ı.. 
İt is easy to check that Hn + L is a maximal submodule of Q. This is the desired 
contradiction. This completes the proof of (1).
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(2) : The case n = 0 follows from Lemma 2. Assume Hom(Q,Sn/K) is nonzero 
for some positive integer n and K < . Let f be a nonzero element in Hom(Q,Sn/K). 
Suppose that * Sn„j +K . Since Sn/Sn-ı is semisimple, Sn/(Sn-ı+K) is semisimple as 
a homomorphic image of Sa/Sn_ı. Then QZKer f is isomorphic to a submodule of a 
semisimple modüle and so Q has a maximal submodule. This is a contradiction.
Hence Sn S.>n-l + K and so S„/KzS„_ı/( Sn/Sn-ı nK)7i0. Now assume
S,n-1 *S,’n-2 +S,n-1 nK. Then by the same reasoning S„/(S,'n-2 +S.’n-l oK) is
semisimple and Q lıas a maximal submodule. It follows that S,’n-2 + S,’n-l r^K = S„^
and Sn= Sn-2 + K. We continue this way and get S, = S, + So = S, nK + Z, and 
so Sn = K + Z . Then we may replace S„/K by TJnI (for some veZ) in 
Hom(Q,SnZK). By Lemma 2 Hom(Q,ZAfZ)=0. This contradicts the assumption

Let N be a small submodule of Q and f e Hom(Q,N/K) for some submodule 
K of N. Let a denote the homomorphism from N/K onto (N+Z)/(K+Z) defined by
ot(ıı + K) — n + (K + Z) where n+KeN/K. By Lemma 2, and since
Kera = (K + Z)/K = Z/(KnZ), we Hom(Q,Z/(KoZ)) = 0 . Hence to prove f is 
zero homomorphism, without loss of generality, we may assume in Lemma 12 and 
Theorem 13 that N and K contain Z in case K is a nonzero submodule of N. For an 
easy reference we record Lemma 11.

Lemma 11. Let N be a submodule of Q and ab/c‘ e N for some ab/c' e Q with 
(a,c)= 1. Thena,abandb/c’areinNforaIlj with lsj<i.

Lemma 12. Let N be a small Z-submodule of Q and let f e Hom(Q,N/K) be a 
nonzero homomorphism for some K < N and t e Z such that Kerf n Z = tZ. Then 

(1) If f(l) is nonzero then there cxist an integer a and a positive integer k such 
that f(l) = a/? + K and a/?G N.

(2) If y e Z with (y,t) = 1 and f(l/y) = b/t* + K for some integer b and positive 
integer 1 with b/t' e N then k = 1.

Proof. (1): Let N be a small submodule of Q and f e Hom(Q,N/K) be a nonzero 
homomorphism for some K < N . Then ff 1) / 0 . Hence f(l) = x/b + K for some 
x/b e N with Then f(b) = 0. There exist positive integers k and y such that b =
t*^ with (t,y) = 1 and so f(l) = c/t^ + d/y +K for some c,de Z. Since f(t) - 0 and (t,y) 
= 1, e K, and so by Lemma 11, d/y e K. Hence f(l) = c/t’" + K. We choose a 
with (a,t) = 1 and k as sı^ as to f(l) = a/? + K.

(2): Assume first that k>l. Since a/?’eK and (a,t) = 1 and k-l>l, by

Lemma 11, b/1^ e K. Hence f(l) = 0. Now suppose that k< 1. Since f(l)=yb/+ K,
*
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yb/t-.<-1 e K. By (b,t) = 1 and tlıen by Lenınia 11, 1/1' e K for ali 1 < i < (. Silice
k < ^ -1, we have ya/t’‘+K. Now f(y) = f(l)y = ya/? + K implies f(y) = 0. Hence f(l)
= 0. This is a contradiction. Thus k = fi

Theorem 13. Let N be any small Z-submodule of Q. Then Hom(Q,N/K) = 0 for ali 
KiN.
Proof. Let N be a small submodule of Q and feHom(Q,N/K) for some K<N and 
KerfnK = tZ as in Lemma 12. By Lemma 12, there exists a positive integer k such 
tliat for x/y e Q f(x/y) = m/? + K for some m e Z with m/? e N. It follows that 
f(Q)S +K)/K for some positive integer n. Since (S„ +K)/K s S„ /(S„ r^K) 
(Sn + K), by Lemma 10 (2), f =? 0.

3. COPOLYFORM MODULES

Defînition 14. Let M be a modüle. M is called comonoform modüle if for any
N<M, HomR(M,N/L)=0 for ali L < N.

Defînition 15. Let M be a modüle. We cali M a copolyform modüle if for any small 
submodule N of M, Homjt(M,N/L)=0 for ali L < N. In comparing with Lemma 1 
copolyfonn modules are those modules that satisfy the converse statement of 
Lemma 1.

We cali a ring R comonoform (copolyform) ring provided R is comonoform 
(copolyform) right R-module. It is ciear from definitions tliat a ring R is copolyform 
if and only if J(R) = 0. Every comonoform modüle is copolyform. For the ring of 
integers Z, j(Z) = 0 and Z = 2Z then Z is copolyform but not comonoform.

A modüle M is comonoform if and only if M is quasi-corational extension of 
every submodule N wııh o < N <M, and M is copolyform if and only if M is quasi-

coratinal extension of every small submodule in M. By Theorem 13, Q is quasi- 
corational evtension of every small submodule.

Corollary 16. Let M be a copolyform modüle. A submodule N of M is small in M if 
and only if Hom(M,N/L)=0 for ali L i N.
Proof. By definitions and Lemma 1.

V/e note that for a modüle M and a submodule N of M whenever N « M
implies N E(M). The converse is not true in general. There may happen a modüle
M with a submodule N such that N is small in E(M) but N is not small m M. Namely 
2Z is not small in Z but by Corollaıy 3 it is small in Q.

Lemma 17. Let M be a modüle.
(1) If M is comonoform then M is hollow.



106 Cı. GÜNGÖROĞLU

(2) If M is hollow and copolyform then M is comonoform. 
Proof. Clear from definitions.

Defînition 18. Let M be an R-module. We set Z*(M)={me M;mR is small} 
(sce namely [6]). We remark that it is kuown (and easy to prove) that Z*(M)=0 
implies Z*(E(M))=0, and if M = M, ©M. then Z*(M)=Z*(M,)®Z*(M). By 
definition, Z*(M) = M Rad(E(M)) and Rad(M)c;Z*(M). So if M is a modüle 
with Z*(M)=0 tlıen M is a copoljTomı modüle.

Lemma 19. Let R be a ring and E(R) denote the injective hull of R. Tlıen R @ E(R) 
is copolyform modüle if and only if Z*(R)=0.
Proof. Assume R © E(R) is copolyform modüle. Let xe Z*(R), Then xR is small in 

E(R). It is clear that .xR is small in R©E(R). Noıv define R@ E(R)^R-^xR; 
(r,t) r xr where r e R and t e E(R). Set f=ğh. By hj-polhesis, f=0. Hence x=0. 
For the converse, assume Z*(R)=0. Then Z*(E(R))=0 and so small submodules of R 
and E(R) are zero. Let N be a submodule of M=R © E(R) and Kj and denote 
the projections of M on R and E(R), respectively. Since homomorphic images of 
small submodules are small, 7ij(N) and 7t,(N) are zero as small submodules of R 
and E(R), respectively. Hence N is zero. This completes the proof.

There are submodules and homomorphic images of copolyform modules which 
are not copolyform.

Esample 20, (i). Let M denote the Prüfer p-group Z(p“’) for some prime integer p, 
It is known that for any submodule N with N*M, M/N = M. Let N be a 
submodule of M witlı N M andL any submodule of N and f eHom(M,N/L). Set 
K=Ker(f). Assume f 0 . Then M/K is isomorphic to a submodule of N/L which is 
Noetherian, This is a contradiction since M = M/K . Tlıen M is copolyfonn. Let 
teZ with tS4 and N, =(l/p‘ + Z)Z denote the submodule of M such that 
p'N,=(). Let m and n be positive integers such that m<n<t. Then there exists a non- 
zero homomorphişnı f from Nt to N„/Nn, defıned by f(a/p’+Z) =a/p"+N„
where . Hence Nt is not copolyform.

(ii). Let M denote the Z-module Z and N the submodule p^Z of M for some prime 
integer p and some integer m>L and let t be an integer with t>l and set L = p“‘Z, 
Then M is copolyform Z-module and pZZL is the unique maximal submodule of 
M/L and N/L is small in M/L, Now define f from M/L to N/L by f(x+L)=p“bi+L, 
where x-ı-LeM/L.Itis clear that f is a nonzero homomorphism and so M/L is not 
copolyform.
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In [3] it is proved that for a modüle M with a projective cover (P,f) M is copolyform 
if and only if J(End(P)) = 0. Now we prove

Theorem 21. Let M be a modüle and x e Rad(M), Assume M/xR has a projective 
cover (P,f). Then M is copolyform if and only if M/xR is copolyform.
Proof. Let N denote the submodule xR of M with x e Rad(M) and (P,f) be a 
jH^ojective cover of M/N, Then N and Kerf are small in M and P, respectively, and f 
can be lifted to a map g from P to M. It can be easily checked that g is onto and Kerg 
is small in P. Hence (P,g) is a projective cover of M. By the preceeding remark, M is 
copolyform if and only if J(End(P)) = 0 if and only if M/N is copolyform.

Corollary 22. Let R be a right perfect ring. Then a modüle M is copolyform if and 
only if M/N is copolyform for every submodule N of Rad(M).
Proof. By Remark (3),page 317 of [2] every modüle M över a right perfect ring has 
a projective cover and Rad(M) is small in M.

Lemma 23. Let M be a copolyform module.Then every direct sıunmand of M is 
copolyform.
Proof. Assume that M = Mj ©Mj and M is copolyform modüle. Let N« M] and 
fe Hom(Mı,N/k) for some K<N. Then N«M. Now define fı:M->N/K, 

fj (mj + mj) = f (mj), where m, e M,, mj e Mj. Then f, e Hom(M,N/K). By 
assumption f=0.

Defînition 24. Let M be a modüle. M is called lifting(orDı-)module whenever for 
any submodule N of M there is a submodule A of M contained in N such that 
M = A © B for some submodule B of M with N n B small in B [9]. We say that M 
is finitely 2- lifting if every fınitc direct sum of copies of M is üfting.

Lemma 25. Let M be a copolyform modüle and S = End(M) the ring of 
endomorphisms of M.

(1) If M is lifting then S is left and right principally projective ring.
(2) If M is fmitely X- lifting then S is left and right semihereditary.

Proof (1) Let fe S. Since M is lifting, there exists a direct sıunmand Mı of M such 
that Mj < f (M) and M = M, ©Mj and f (M) M^« M2 for some submodule M;
of M. It is easy to show that ffMjfYMj İS small in M and
f (M) = Mj ffi (f (M) n Mj). We consider the map af from M onto f(M) o Mj is 
the composition of f with a where a is the canonical projection from f(M) onto 
f (M) n Mj. Since (af )(M) f (M) n Mj is small in M by hypothesis, a f = 0. It 
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follows that f(M) = Mı. Thus f(M) is a direet smnmand of M for every fe S. By 
(39.11 in [11]) S is a right principally projective ring.

To prove S is left principally projective we take f e S. The same proof of the 
first paragraph shows that f(M) is a direet summand of M and so f(M) = e(M) for 
some idempotent e in S. Let (3 denote the map from S onto Sf defined by (3 (s) = sf 
where se S. Then (l-e)f(M) = 0 or S(l-e)<KerP. Let g e KerP. Then gf = 0 and 
so gf(M) = ge(M) = 0 implies ge = 0 and then g(l-c) = g e S(l-e). Thus S(l-e) = 
Ker P. Now S/Ker p = S/S(l-e) = Se and P (S) = Sf = S/Ker p a Se prove that Sf is 
a projective left ideal of S. Thus S is a principally projective ring.

(2) Let S""" 
(I), End(M") = S’

denote the ring of n x n ınatriccs över S for positive integer n. By
ınxn

S is left and right semi-hereditary.
is a Icft and right principally projective ring. By (39.13 in [11]),

Definition 26. Let M be a modüle with dual Krull dimension k°(M) [1] . Let be an 
ordinat M is called a - atomic if k“(M) =a and k“(N)«x for each submodule N 

with 0 < N<M, and M is a - coatomic if M/N is a - atomic for every submodule N 

ofM with N<M. In [5] Itis shown that a modüle M is a - atomic if and only if M 

is a - coatomic for some ordinal a.

Lemma 27. Let M be an a - coatomic modüle for some ordinal a. Then M is 
copolyform.
Proof. Let M be an a - coatomic modüle. Then k°(M)= a. İt is known that for each 
submodule N with 0<N<M, k‘’(N)<a and k°(M/N)= a. Let N be a small 

*

submodule of M and fe Hom(M,N/K) for some submodule K of N. Then 
f(M)=L/K<N/K for some L<N and then by hypothesis, M/Ker(f) sf(M) implies 
k°(f(M))=a and f(M)=L/K<N/K implies a= k*’(f(M)) < k°(N/K)<a. This leads 

to f=0 and so M is copolyform.

Lemma 28. Let M be a modüle with a nıaximal submodule N. Then k®(M)= k°(N). 
Proof. Let N be a maximal submodule of M. Since M/N is simple then k°(M/N)< 0 . 
By k®(M)= max{k'’(N), k°(M/N)} (see namely [1]), k°(M)= k°(N).

Lemma 29, Let M be an a - coatomic module. Thçn M is simple or hollow modüle
with Rad(M) = M.
Proof. Let M be an a -coatomic modüle some ordinal a. Then k°(M) =a and 
for any proper submodule N of M k°(N) < a . By Lemmâ‘ İ8, k’^(M) = k°(L) for aU' 
nıaximal submodules L of M. Hence any nonzero proper submodule of M can not be 
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maximal in M. Thus for every proper submodule N of M k^ÇN) < k'’(M), Assume M 
is not simple and M = N + L for some proper submodules N and L. From k°(M) =

andmax|c“(N),k“(M/N)| and k“(L) = max|c“(LnN),k“(LZLnN)|

M/NsL/(LnN) and k'’(N)<k®(M) and k'’(L)<k°(M) il foliows that k'’(AI)<k°(M).
and

This contradiction shows that if M is not simple and M = N + L for some 
submodules N and L then M = N or M = L. Hence M is simple or hollow modüle 
wılh Rad(M) = M.

Proposition 30. Let M be a projective modüle and S the ring End(M) of 
endomorphisms of M. Then the followings are equivalent.

(1) M is copolyform.
(2) S is copolyfonn.
(3) J(S) = O.

Proof. Let M be a projective modüle and S = End (M). In the proof we use the fact
that for f e S, f e J(S) if and only if f(M) M [2, Lemma 17.11], By definitions.
(2) and (3) are equivalent. Suppose that M is copolyfonn modüle. Let f e J(S). Then
f{M) M. Hence f= 0. Thus J(S) = 0, This proves that (1) implies (3). As for (3)
implies (1), assume J(S) = 0. Let N
Since M is projective f lifts to an element g of S. Being N

M and f e Hom(M,N/K) for some K < N.

g(M) M or g e J(S). Hence g = 0 and so f = 0.
M and g(M) < N then

Let M be a modüle. M is called V-module by Hirano [7](or cosemisimple by 
Fuller [4]) if every proper submodule of M is an intersection of maximal 
submodules. The ring R is called V-ring if the right R-module R is V-module.

Theorem 31. Let R be a ring. Then the follovving are equivalent.
(1) R is a V-ring.
(2) Every R-module is copolyform.
(3) For every R-module M, Z*(M) = 0

Proof. The equivalence of (1) and (3) is established in flO]. Clearly (3) implies (2). 
Assume (2) that every R-module is copolyform. Let M be a modüle and x e Z*(M).

Now we consider the modüle M= E{M)@R as a right R-module. xRis a small 

submodule of the injective hull E(M) of M and so is small in M. Define the map f:

M ->xR by f(m+r)=xr where m + re M, m e ;(M) and r e R. By (2), M is
copolyfonn and so f = 0 or x = 0. Hence Z*(M) = 0 and (3>lîold& 

£xample 32. We want to mention some relations of copolyform modules with some 
classes of modules. A modüle M is cosemisimple if and only if RadfM/N) = 0 for ali 
N<M (see [2],page 122,Exer.l4). In a cosemisimple modüle M, Rad(M) = 0 
therefore every cosemisimple modüle is copolyform. M is said to be coatomic if, for 
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any submodule N of M, Rad(M./N) = M/N impUes M/N = 0 [13]. Hence every 
cosemisimple modüle is coatomic.

There are coatomic modules that are neither cosemisimple nor copolyform:
a b
0 c

Consider the rmg R={ : a,b,ceZ} with usual ınatrix operations. Then

0 b
0 0J(R)={ : b 6 Z } and so R is not copolyform. Let I be any right ideal of R. It

is easy to check that I is contained in a ma.\imal right ideal in the form
nZ
0

z
mZ

where either n=I and m is a prime integer or n is a prime integer and m=l. Hence R 
is coatomic.

There are copolyTorm modules which are not cosemisimple. Namely the ring
Z Q
.0 Q.
■4n 0

>- 0 Q. Tlıen J(S)=S = 0 o . Set R=S/J(S). It is easily seen that the riglıt ideal

I={ 0 o + J(S); n e Z } İS not an intersection of maximal right ideals of R. Hence

R is not cosemisimple. But R is copolyform since J(R)=0.
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