Commun. Fac. Sci. Univ. Ank. Series Al
V.52. (no.2) pp. 21-27 (2003)

THE KOLMOGOROV GOODNESS-OF-FIT TEST OF
INDEPENDENCE BASED ON COPULAS

Bilgehan Giiven

Department of Statistics, Middle East Technical University 06531 Ankara,
Turkey

(Received: March, 31,2003; Revised: Nov.05, 2003; Accepted: Nov.11, 2003)

ABSTRACT

We present a method which reduces the Kolmogorov goodness-of-test of
independence to the Kolmogorov-Smirmov one sample test. The null distribution of test
statistic is the same as the Kolmogorov-Smimov test statistic in this test of independence.

1. INTRODUCTION

The Kolmogorov type test of independence for a pair of random
variables has been tackled by many authors. Distribution free tests of
independence (Blumm et al. [1], Hoeffding [4]) and the Cramér-von
Misses test for independence (De Wet [2], Deheuvels [3]) are the well
known examples of Kolmogorov type test. In both the distribution free
and the Cramér-von Misses test, the characteristic function of the
limiting null distribution of the test statistic is obtained and then the
corresponding upper quantiles of it are tabulated.

Saunders and Laud [S] showed that a test statistic in the
multidimensional Kolmogorov goodness-of-fit test can be reduced to the
Kolmogorov-Smirnov one sample statistic. Consequently, the
distribution of the Kolmogorov-Smirnov statistic can be used as the
exact null distribution of the test statistic in the multidimensional
Kolmogorov goodness-of-fit test.

In this article, it is showed that the Distribution free test for
independence, which is one of the two-dimensional Kolmogorov
goodness-of fit tests, is reduced to the Kolmogorov-Smirnov one sample
test, as the result of [5]. This reduction holds when the marginal
distributions of a pair of continuous random variables are completely
known. It provides us to have two things: the exact null distribution and
the greatest lower bound (g.1.b.) of power of the test.
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2. THE TEST
Let a pair of random variables (X ,Y ) have a bivariate

distribution function (d.f.) F Xy (x s Vs ,0) with the fixed marginals

F X ()C ) and F, y (y) . Then the test of independence is the following

H, :FX,Y(an’>p) =Fy (x)Fy (),
Hl:FX,Y(xayap)¢FX(x)Fy(J’), (1)

where £ Xy (x, Y, ,0) is a member of the family of bivariate

distribution functions depending on the dependence parameter 0 such
that

FX,Y(x’yap) =F,(x)Fy,(y)

when p = 0. For example, the bivariate normal distribution with
correlation coefficient £ is a member of such family.

A function C(u,v, p) on 12 = {(u,v) :0<fu,v< 1} is
called a parametrized copula if it satisfies the conditions: C(u ,V, p)
is increasing in both % and v, C(1,v, p) =V forevery v € [0,1]
and C(u,l, p) = u forevery u € [0,1]. The functions
C(u,v,p) = pmax {u +v-1,0}+ (1 - p) min {u, v}
and C(u,v)=uvexp(—phlnulnv), where (u,v)e 12
and P € [0,1] are the examples of a copula.

For any bivariate d.f. F XY (x,, p) of a pair of continuous

random variables, Sklar [6] proved that there exists a unique
parametrized copula such that

FX,Y(xayap)-_— C(”,V,p)
where U = FX()C) and Vv = FY(y) .
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Under Ho:Fy y(x,y,p)=Fx(x)Fy(y), the copula
representation of FX,Y (x,y,p)is I (u,v) =uv.

Let II=UV be a random variable produced by the
transformations U = Fy(X) and V = Fy(Y). Define the
collection of subsets of 12 by Ap = {(u,v) tuy < p} and
0<p<l. Ap is measurable and Apl < Apz if py <p,.
Then there exists a unique C (p) for a given P such that
P(Ae(p))=p  where P(4c(p)) =Fri(c(p)) and
F 8 () is the d.f. of 11 . It follows that, for a given P , the critical
region can uniquely be determined by i (), when the transformed
observation #;V; = Fy (x;)Fy(»;) is wused instead of
(x;,¥;)i =1,2..., n. It should be noted that the transformation

T :(x;y;) > Fx (x))Fy (¥;)

is not one-to-one, however, as it is explained above, the critical region is
uniquely determined.

When continuous random variables X and Y are independent
and whose marginal distribution functions Fy (x), F Y (y) are

completely known, the d.f. of 11 is the d.f. of the product of two
independent uniform random variables on [0,1] and is given by

Fo(w) = w(l-Inw), 0<w<l. )

Let FH (W) denote the d.f. of I1 . Then, the hypotheses in (1)
can be rewritten as:

H : Fip(w) = Fy(w),
Hy: Frp(w) # Fy(w). €))

Thus, the testing problem in (1) is reduced to the Kolmogorov-Smirnov
one sample test.
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For the hypotheses in (3), the Kolmogorov-Smirnov one sample test
statistic D . » based on a sample of size 7 , is given by
D, = sup ISn(w) —w(l-1In w)|,

0<w<l
where

S, (W) =3 S(w-UWy),

n =1

and O(?)is the d.f. of a point mass at the origin; O(¢) =0, if
t<0 and o()=1, if t>0 and
up = Fx (x;),v; = Fy ().

We reject Hy: Fp(w)=Fy(w),it D, > dn’a.

Numerical values of the percentage point d n,q Of the distribution of

D n have been tabulated for selected values of #  when

o =0.01 and @ =0.05 and can be found in any book of the
statistical tables.

The power P of the Kolmogorov-Smirnov test for the hypotheses
in (3) is:
P=P( sup |S,(w)-w(l-tnaw)|>d, o|H)), (4

0<w<l

where S n (W) and d n,a are defined before.
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3. THE BOUND FOR THE POWER OF THE TEST

In this section, the greatest lower bound (g.1.b.) of the power of the
test is obtained and tabulated, when F XY (X, ¥y, ,0) is a member of

the Farlie-Gumbel-Morgenstern family and it is defined as:

Fxy(x,y,p) = Fx ()Fy[1+3p(1-Fx (x))(1- Fy ()],

)
with p € [-1/3,1/3].

The copula representation of (5) is :

Clu,v,p)=wll+3p(0-u)1-v)] 0<u,v<1. (6)

Lemma : Let the distributions of random variables X and Y bea
member of the Farlie-Gumbel-Morgenstern family. Then the g.1b. of the
power of the test is:

P>1-P(0.78-d, , <S,(W)<0.78 +d, ), (D
where S, (w) ~ Binomial (n,0.78 — 0.181p) .and P is the

dependence parameter of the Farlie-Gumbel-Morgenstern distribution.

Proof: The g.Lb. of Pin 4)is:
P2 P|S,(w)—wa(l-Inwy)|2d, ), (8)

where a point W, maximizes the function A(W) defined as:
A(w) = |Fy (w) = w(l - Tn w)), ©
and S, (W)~ Binomial (7, FT7(Wp)) (Stuart et al, [7]). Here

Fri(wp) the df of II=UV , where (U, V') has the d.f.
given in (6) with the standard uniform marginal distribution functions.

To find W, , we first obtain FT1 (W, ) . The probability density
function of IT is uniquely determined by the inversion integral of the

Mellin transform M (51,52) of 92C(u,v, p)/dudv. 1t is
given by
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11 2
M (sy,89) = _f Iusl 1ys2-1 é—ca(uév—’p)dudv
00 uov
b g (A=s))-sp)
5157 s159(sy +D(sy +1)
(10)

The variables §| and §, in (10) are replaced by § since U and

V are dependent. The inversion integral of M (S S ) is:

Fry(w) = —— [ =54 (s, 5)ds
Tl

=-lnw-3p(lnw+4whn w-4w+4),
where 0 < w <1.

Thus, the d.f. of I is:

Fri(w) = [ frm(t)dt = Fo(w) - g(w, p), (11)
0

where F{ 0 (w) is given in (2) and

g(w,p) = 3p(2w2 Inw+wlnw-3w? + 3w). (12)

‘When a pair of random variables (X ,Y) has the Fairle-Gumbel-
Morgenstern distribution, the function A(w) in (9) is equal to
g(w, p) in (12), which is maximized at the point
wp = 0.41553 . From(11), we get

Fri(wp)=0.78 - 0.181 p. (13)
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Thus, (8) is equal to (7), when wp = 0.41553 .

From (7), the g.lb. of the power P of the test is tabulated for
a = 0.05, and some given # and p where S, (W) is distributed

as the binomial distribution with the parameters ¥ and p given in
(13). The results are the following table.

Table1
The g.1b. of the power of the 0.05-size test depending on # and O

P n=3 n=>5 n="17
03 0.931 0.996 0.999
202 0.917 0.995 0.999
0.1 0.902 0.993 0.999
0.1 0.870 0.987 0.998
0.2 0.853 0.984 0.998
0.3 0.836 0.979 0.997
REFERENCES

{1] Blum, J.R., Kiefer, J. Rosenblatt, M. (1961). Distribution free tests
of independence based on the sample distribution function. Ann.
Math. Stat. 32, 485-498.

{2] De Wet, T. (1980) Cramér-von Misses test for independence. Journal
of Multivariate Analysis, 10, 38-50.

[3] Deheuvels, P. (1981) An asymptotic decomposition for multivariate
distribution free test of independence. Journal of Multivariate
Analysis, 11, 102-113.

{4] Hoeffding, W. (1948). A non-parametric test of independence. Ann.
Math. Stat. 19, 546-557.

{5] Saunders, R., Laud, P. (1980) The multidimensional Kolmogorov
goodness-of-fit test. Biometrika 67, 237.

[6] Sklar, A. (1959). Fonctionas de repartition 4 n dimensions et leura
merges. Inst. Statist.Univ. Paris Pupl. 8, 229-231.

[71 Stuart, A., Ord, J.K., (1999) Amold, S. Kendall’s Advanced Theory
of Statistics, Arnold, London.





