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ABSTRACT

We preseni a method which reduces the Kolmogorov goodness-of-test of 
independence to the Kolmogorov-Smimov one sample test. The null distribution of test 
statistic is the same as the Kolmogorov-Smimov test statistic in this test of independence.

1. INTRODUCTION

The Kohnogorov type test of independence for a pair of random 
variables has been tackIed by many authors. Distribution ffee tests of 
independence (Blumm et al. [1], Hoeffding [4]) and the Cramer-von 
Misses test for independence (De Wet [2], Deheuvels [3]) are the well 
known examples of Kohnogorov type test. İn both the distribution free 
and the Cramer-von Misses test, the characteristic function of the 
limiting null distribution of the test statistic is obtained and then the 
corresponding upper quantiles of it are tabulated.

Saunders and Laud [5] shoıved that a test statistic in the 
multidimensional Kolmogorov goodness-of-fit test can be reduced to the
Kolmogorov-Smimov one sample statistic. Consequently, the
distribution of the Kolmogorov-Smimov statistic can be used as the 
exact null distribution of the test statistic in the multidimensional 
Kolmogorov goodness-of-fit test.

In this article, it is showed that the Distribution free test for 
independence, which is one of the two-dimensional Kohnogorov 
goodness-of fit tests, is reduced to the Kolmogorov-Smimov one sample 
test, as the result of [5]. This reduction holds when the marginal 
distributions of a pair of continuous random variables are completely 
known. It provides us to ha ve two things: the exact null distribution and 
the greatest lower bound (g.l.b.) of power of the test.
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2. THE TEST
Let a pair of random variables (^,K)have a bivariate 

distribution function (d.f) Fx,Y ^^•>y‘>P^ with the fixed marginals 

Fy^^y) . Then the test of independence is the following

^0 : F^ y {x, y,p} = {x)Fy

: Fx,y P} F^ {x}Fy {y\ (1)

where is a member of the family of bivariate

distribution functions depending on the dependence parameter p such 
that

Fx,y P} = Fx {x}Fy {y}

when p — Q . For example, the bivariate normal distribution with 
correlation coeffıcient yO is a member of such family.

A fiınction C(m,V,/2) on 1^ = {(m, v): 0 < M, V 1} is

called a parametrized copula if it satisfies the conditions: C(w, V, /?) 

is increasüıg in both M and V, C(l, V, — V for every V € [0,1] 
and C(u,l, — U for every U E. [0,1]. The functions
C(m, V, p) = p max {w + v - l,o}+ (1 - /?) min {m, v} 

and C(î/, v) = MV exp(-p İn w İn v) , where (M,v)el 

and p € [0,1] are the exanq)les of a copula.

2

For any bivariate d.f. F^ y{x,y,p} of a pair of continuous 

random variables, Sklar [6] proved that there exists a unique 
parametrized copula such that

Fx,Y{^’y^P)= C{u,V,p} 

where u = F(■X) and V = Fy (y) .
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Under Hq Fx j {x,y, p} - Fx {^^Fy {y}, 

representation of F;^ y (%, y, p) is n(M,v) = UV.

the copula

Let n = c/F be a random variable produced by the 
transformations U = Fx(^Xy and V = Fy(Y^ . Define the

2
collection of subsets of 1 by Ap - {(m,v) : UV < j?} and

Q<p<\. A is measurable and CZ Ap2 if Pı P2'
p

Then there exists a ımique for a given p such that

where and

^nC) is the d.f. of n . It follows that, for a given p , the critical 
region can uniquely be determined by Fpj (.), when the transformed

observation “/Vj is used instead of

(Xj, y /)/ = 1,2..., n. It shouldbe noted that the transformation 

T : J/j) -> Fx U^ )Fy (y^)

is not one-to-one, however, as it is explained above, the critical region is 
uniquely determined.

When continuous random variables yV and Y are independent
and whose marginal distribution functions Fy (>’) are
completely known, the d.f. of II is the d.f. of the product of two 
independent uniform random variables on [0,1] and is given by

Fg (ve) = w(l - İn w), o < w < 1. (2)
Let Fjj (w) denote the d.f. of 11 . Then, the hypotheses in (1) 

can be revvritten as:
:Fn(w) = Fo(w), 

T/j :Fn(w);^ Fo(w). (3)

Thus, the testing problem in (1) is reduced to the Kolmogorov-Smimov 
one sample test.
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For the hypotheses in (3), the Kolmogorov-Smimov one sample test 
statistic D „ , based on a sample of size H , is given by

= sup (w) - tv(l - İn w)|,
0<w<l 

where
n

n i=l

and <^(0 is the d.f. of a point mass at the origin; <5(0 — 0, if

^(0 -1,t<Q and if t>Q and

=P'xM,Vi =FY(yi).

We reject : Fn(w) = 7^0 (^)’ if D>dn,a *

Numerical values of the percentage point t/n,a of the distribution of

n

D n have been tabulated for selected values of n when

Ol, = 0.01 and Ol = 0.05 and can be found in any book of the 
statistical tables.

The power P of the Kolmogorov-Smimov test for the hypotheses 
in (3) is;
P = sup (w) - w(l - İn w)| > dn^a |^1)» 

0<w<l
(4)

where S(vv) and d are defined before.
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3. THE BOUND FOR THE POWER OF THE TEST

In this section, the greatest lower bound (g.l.b.) of the power of the 
test is obtained and tabulated, when FX,Y is a member of
the Farlie-Gumbel-Morgenstem family and it is defıned as;

Fx,y p} - Fx {x}Fy [\^2p{\-Fx (x))(l - Fy (y))], 

(5)
with p € [—1 / 3,1 / 3].

The copula representation of (5) is :
C(u,v,/7) = wv[l-I-3p(l - m)(1 - v)] 0<M,v<l. (6)

Lemma ; Let the distributions of random variables X and K be a 
member of the Farlie-Gumbel-Morgenstem family. Then the g.l.b. of the 
power of the test is:
P>l-P(0.78-t/„,^ <5„(w)<0.78 + (7)

where (vv) ~ Binomial («,0.78 — 0.181 p) , and p is the 
dependence parameter of the Farlie-Gumbel-Morgenstem distribution.

Proof: The g.l.b. of P in (4) is :
P\Sn (1 - İn WA )1 )’

whereapoint maximizes the function A(w) defmedas:

A(w) = (w) - w(l - İn w)|.

(8)

(9)

and ^^(vv) Binomial (n,)) (Stuart et al., [7]). Here

^FiC^a) Öre d.f. of 11 — UV , where (Uhas the d.f. 
given in (6) with the Standard uniform marginal distribution functions.

To find , we first obtain ) . The probability density
function of 11 is uniquely determined by the inversion integral of the 

Mellin transform Af (51,52) of 9 C{u,V, ! dudv. It is 
given by
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1 1 2

Q Q dudv

The variables and S 2

^1^2
+ 3/3

(1-5i)(1-.92)

■îfl^2(‘^l +1X^2 +1)

(10)

in (10) are replaced by 5' since U and

V are dependent. The inversion integral of M (^S,S^ is:

v f \ 1 fC + zoo
(^) = —İTCİ^^-^^

W ^M{s,s)ds

= -İn vp - 3p(ln w + 4wln w - 4w + 4),

where 0 < TV < 1.

Thus, the d.f. of 11 is:
w

Fn(w)= \fY[{t}dt = p). (11)
0

where Fq (fv) is given in (2) and
9 9

g{yv, p} = 3p(2yv lnw + wlnw-3w +3w). (12)

When a pair of random variables {X ,Y} has the Fairle-Gumbel- 

Morgenstem distribution, the function A(w) in (9) is equal to
g(w,p)in (12), which is nıaximized at the point

1

= 0.41553 . From(ll), we get 

= 0.78 -0.181/3. (13)
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Thus, (8) is equal to (7), when = 0.41553 .

From (7), the g.l.b. of the power P of the test is tabulated for
a = 0.05, and some given fi and p where S(vv) is distributed
as the binomial distribution with the parameters n and p given in 
(13). The results are the following table.

Table 1
The g.l.b. of the power of the 0.05-size test depending on H and p

P n-1) n=-5 n = 'l

-0.3
-0.2
-0.1 
0.1 
0.2 
0.3

0.931
0.917
0.902
0.870
0.853
0.836

0.996
0.995
0.993
0.987
0.984
0.979

0.999
0.999
0.999
0.998
0.998
0.997
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