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ABSTRACT

The semi-open and semi-closed sets are classified in Khalimsky n-space, the space which

appropriate the digital picture. The separation axioms, namely semi-7; and semi-T are studied.

1. INTRODUCTION

The purpose of this paper is to study semi-open and semi-closed sets [2,7], in the
digital n-space which is the product of digital lines with the Khalimsky topology.
Even though these digital spaces have been studied by many authors [1,4,5,6], it
appears that these concepts have not been studied previously in this setting. The
notions of the semi-openness and semi-closedness have been applied to compactness,
connectedness, separation axioms, and continuity [3,10]. Some of these notions will
be extended to digital n-space. In order to make this work self-contained, we begin
by recalling some definitions. Let (X,z) be a topological space, a subset A c X is a

semi-open if it is contained in the closure of its interior, symbolically A  A°~. Also

A is called semi-closed if A°" c A.
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2. SEMI-OPEN AND SEMI-CLOSED SETS IN THE KHALIMSKY N-SPACE:

The Khalimsky line is the set of integers Z which is equipped with the
topology = generated by the sub-base S = {{2n-1,2n,2n+1},ne Z}. If x is odd, then
{x} is open in r and if x is even, then {x-1,x,x+1} is open in r. Of particular

interest is the

Khalimsky plane Z°, where Z° is endowed with the product topology 2.

Two distinct lattice points (a,b) and (c,d) are 8-adjacent if max ﬂa ~c|p- d|}=1. It is

obvious that if (a,b) € Z°, where a and b are both even, then {(a,b)}° =@. If @ and b
are both odd, then {(a,b)}°={(a,b)}. If a is even and b is odd, the smallest open set
containing (a,b) is {(a-1,b), (a,b),(a+1,b)} and lastly if a odd and b is even, then the
smallest open set containing (2,b) is the set {(a,b-1), (a,b), (a,b+1)}. The digital n-
space, the product of n copies of the Khalimsky line, Z” with the product topology
7", has some important results. In ", points all of whose coordinate are odd, are
open, while points all of whose coordinates are even, are closed. These points are
called pure points. The other points which are mixed, are neither open nor closed.
We chose the (3"-1)-adjacent points for each xe Z". For such x, denote by N(x) the

minimal open neighbourhood of x and denote by 4,, the set of open points of A.
The following theorem classifies the semi-open sets in Khalimsky n-space,
but let us start with the next lemma which will be used in proving our classification

theorem.

Lemma 2.1. [6]. Ify € N(x), then x e {y}". The converse is also true.
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Theorem 2.2. 4 Z" is semi-open if and only if for eachx € 4, N (x) A Ay 20

Proof. Suppose that 4 ¢ Z" is semi-open and xéA, if {x} is open, then we are
through. If on the other hand, {x} is not open but xe A c A%, then A°~ N () is non-
empty and hence must contain an open point z € Z" because 4° N(x) is open. Since

N (x) is an open set and z is an open point, z is an adjacent to x this because x is not

an open point and thus z € 4,, " N (x).

For the converse, suppose that x e 4; if {x} is open, then xe 4> and we are through.
If on the other hand {x} is not open and N(x) N 4, # @, then there is an open point

z,z € N (x). using the above lemma we see that x € {z}". But {z} is an

open subset of 4,i.e. {z} ¢ A°, it follows that xe {z} = A%, thus A is semi-open.

It is easy to show that the complement of every semi-open subset is semi-closed and
vice versa. So, if we transform each implication in theorem (2.2), to its

contrapositive, we obtain the logically equivalent next statement.

Theorem 2.3.4 ¢ 7" is semi-closed if and only if for each
xeZ' VA, Nx)n (Z"\4), » O .

The previous two theorems give an indication of which sets are semi-open but not

semi-closed and vice versa.

Examples 2.4,
1. {2n+1} is semi-open but not semi-closed.
2. {2n} is semi-closed but not semi-open.
3. {2n,2n+1} is both semi-open and semi-closed at the same time.
4. {2n,2n+7,2n+9} is neither semi-open nor semi-closed..
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3. SEMI-CONTINUOQUS AND IRRESOLUTE FUNCTIONS

The main problem in image processing is to present a continuous picture in R” on a
computer screen using a finite set of points. So it is important to translate a
continuous picture from R’ or R’ to Z° by using digital points. The greatest lower
integer function explains how this translation might occur. Consider the real line with
the usual topology v . Recall that a function f from X to Y is semi-continuous if and
only if every open set in Y has a semi-open inverse in X. The Khalimsky line was
defined to be a quotient space of the real line in which 27— 2n and the open interval
J]2n-2,2n{ - 2n-1. This usual function, of course, is continuous. However, it is

obvious that

f R v)—>(Z 1)

x— [x]
is semi continuous, where /x]/ denotes the greatest lower integer function.
One can easily show that f is not continuous for example f~ {2n-1, 2n, 2n+1}=
[2n-1, 2n+2[ which is not openin v .

Recall that fis irresolute [8] if and only if the inverse image of a semi-open subset in

7 is again a semi-open subset in v .

Theorem 3.1. fis an irresolute function.
Proof. By using theorem (2.2) one can see that any semi-open subset in 7 may be

represented as a union of semi-open subsets in the form U = {2n, 2n-1} (or {2m-1}).
Since f "(q A,-) =uf ~14; and the union of semi-open subsets is semi-open, we only
1 i

prove that f'(U) is semi-open in v. fU)=[2n2n+1[C [2n-12n]
(or =[2m-1,2m|). Hence (f' (U)” )= [2n-1,2n+1] (or = [2m-1,2m]) and
consequently 1 (U) is a subset of (7' (U))” i.e. fis irresolute.
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4. SEMI-T, AND SEMI-T,

A space X is called semi-T, if and only if {x} is semi-closed for each x € X and X is
called semi-T if and only if for each two distinct points x and y in X, there exist two

disjoint semi-open sets U, and ¥, of x and y, respectively.

Theorem 4.1. (Z", ") is a semi T;-space.

Proof. The product of semi-closed subsets is also semi-closed because

-0
[14: =T14°. Therefore, all we need to prove is that (Z, ) is semi-T; or
i i

equivalently that each singleton in (Z, 7 ) is semi-closed [3]. Forx € Z, x =2nor x
= 2n+l. Then 2n}° = (2n})° = D or {2n+1} ° = {2n,2n+1, 2n+2}° = {2n+1}). In
either cases, 4 = {x} is semi-closed.

Of course r is mot T)-space, for example {2n+]} is not closed in 7, and

consequently it is not T,-space. However one can get,

Theorem 4.2. (Z", z") is a semi-T,-space.

Proof. As we said before, we need only to show that (Z, z) is semi-T,. Letx, y € Z.
Then either they are adjacent or not. If they are adjacent, then one of them is odd and
the other is even. Let x=2n and y=2n+/ then {2n+1} and {2n-1,2n} are disjoint
semi-open sets containing x and y, respectively. By a similar technique one can prove

that any numbers can be separated by two disjoint semi-open sets.

We noticed that 7 with the usual order (totally ordered) on Z is not an ordered
topological space in the sense of Nachbin’s definition [9], because if it was, it would

be Hausdorff [9] which is not as mentioned above.



6 ' S.INADA

ACKNOWLEDGMENT

I am greatly indebted to Prof.T.Y.Kong from whom I heard for the first time about

digital topology. Thanks to Dr.AKozae and Dr. A.Geasa for many insightful
discussions.

OZET

Bu caligmada, uygun dijital goriintiiye sahip n-boryutlu Khalimsky
uzaymda yar-agik ve yari-kapah kiimelerin simiflandirilmasi yapilmustir.
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ABSTRACT |

In [2], Baik-Howie-Pride defined a set of the generating pictures of z(P) where P is a presentation
of a graph product of the vertex groups. In this paper, as an application of this, we discuss necessary and
sufficient conditions for the presentation P to be p-Cockcroft, where p is a prime or 0. In addition we
examine some special cases of this result.
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1. INTRODUCTION
Let
P=<x;r> (D

be a group presentation. Let F denotes the free group on x and let N denotes the
normal closure of r in F. The quotient G = F/N is the group defined by P.

If we regard P as a 2-complex with one O-cell, a 1-cell for each x € x, and a 2-
cell for each R € r in the standart way, then G is just the fundamental group of P.
We then define the second homotopy group 7(P) of P, which is a left ZG-module.

The elements of #>(P) can be represented by geometric configurations called
spherical pictures. These are described in detail in [20] and we refer the reader these
for details. Moreover, by [20], there are certain operations on spherical pictures.

Suppose X is a collection of spherical pictures over P. Then, by [20], one can
define the additional operation on spherical pictures. Allowing this additional
operation leads to the notion of equivalence (rel X) of spherical pictures. Then, by

[20], the elements < P > (PeX) generate m(P) as a module if and only if every
spherical picture is equivalent (rel X) to the empty picture. If the elements < P >
(PeX) generate m,(P) then we say that X generates m(P).

2000 Mathematics Subject Classification: 20F05; 20F06,; 20F32; 20F55; 29K25; 57M0S.
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For any picture P over P and for any Rer, the exponent sum of R in P, denoted
by expp(P) is the number of discs of P labelled by R, minus the number of discs
labelled by R . It is clear that if pictures P , and P , are equivalent, then exp(P;) =
expp(Py) forallR e r.

Definition 1.1. Let P be as in (1), and let n be a non-negative integer. Then P is
said to be n-Cockcroft if expp(P) = 0 (mod n), (where congruence (mod 0) is taken
to be equality) for all Rer and all spherical pictures P over P. A group G is said to

be n-Cockcroft if it admits an n-Cockcroft presentation. The case n = 0 is usually
Just called Cockcroft.

The reader can find some examples and details about Cockcroft property, for
example, in [11], [13], [14], [17] and [19] and about p-Cockcroft property, for
example, in [8] and [19].

We remark that to verify the n-Cockcroft property holds, it is enough to check
for pictures PeX, where X is a set of generating pictures.

A graph T consist of two disjoint set v = v(I') (vertices) and e = e(I") (edges)
and three functions

i;e>v, 71:e>v and T:e—oe

satisfying: i(e) = fe’), (€)' = e, e’ # e for all e € e. We call e) and 7e) the
initial and terminal point of e € e, respectively. An orientation €' of I consists of a
choice of exactly one edge from edge pair e’ (ece). We will call to pair (v, e)
with the functions 5 7 as an oriented graph with oriented edge set e*. A graph I is
called simple if whenever i(e;) = i(ey) and oe;) = 7ey) thene; = e, foralle, e; € e.
A simple graph I is called complete if for any two distinct vertices u and v, there is
an edge e with i(e) = u, 7fe) = v. The details and applications of these can be found,
for instance in [3]. ’
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1.1. Graph Product

Let I' be a simple oriented graph with a vertex set v and edge e (thus e is a
collection of 2-element subsets of v). For each v € v, let G, be a vertex group given
by a presentation P, = <x,,; s,> where the elements of s, are cyclically reduced
words on x,. For each e € e with i(e) = u and 7(e) = v, let G, be an edge group given
by a presentation P, = <x,, X, ; S,, S,, I> where the elements of r, are cyclically
reduced words on x, U x, each involving at least one x,-symbol and x,- symbol and
cachr, (e € e) consists of all words [x,y] =xyx’y”’ (x € Xy ¥ € Xugg) ).

Let

P=<x;s,r> (2)

be a presentation where x = U x,,s= U s, r= U r.. The group G = G(I')

Vev VEV ece
defined by P is called a graph product of the vertex groups G, forallv e v ([2], [5],
(15}, {16)).

A graph product has two extreme cases:

e If the edge set e is empty then G is the free product of the groups G, (v €
V).

e IfT is complete and each G, is finite then G is the direct product of the
groups G, (v ev).

If all the vertex groups G, (v € v) are infinite cyclic then G is called a graph group
(see [2], [9], [10], [22], [23)).

The main result of this paper is the following:

Theorem 1.2. (Main Theorem) Let p be a prime or 0 and let P be a presentation
as in (2). Then P is p-Cockcroft if and only if

i) each P, (v €v) is p-Cockeroft,

ii) for each v €v, exp(S) = 0 (mod p) where x € x,, S € s,
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2. PRELIMINARIES

-

In this section we exhibit the generating pictures of m(P) where P is a
presentation as in (2), in order to prove the main theorem. We may refer to [2] for
the details of this material.

Let T be an oriented graph. For each triangle {#, v, w} (that is a 3-element
subset of v for which {u, v}, {v, w}, {w, u} € e) in I (see Figure 1-(a)), we have a
collection of spherical pictures of the form depicted in Figure 1-(b) where a € x,, b
€ X,, C € X,. Let Z be the union of all these collections over all triangles of I'.

For each ec e with 1(e) = u, ffe) =v,let S=xx;... %, (xi €X,,i=12,...,1n
where n € Z") be a relator in s,. Then for each y € x,, we have a spherical picture
Ps, over P of the form as depicted in Figure 2-(a).

(@) (®)
FIGURE 1

Similarly, for each x € x,, we get a spherical picture Pr, over P where T =y,

LetYe,={Psy,:Ses,yex}andY,={Pr,:Tes,xe x,} be the sets of
these spherical pictures. Also for each ec e in T, let us define ¥, = ¥, \J Y., and
Yy=UY.

ece



THE P-COCKCROFT PROPERTY OF THE GRAPH PRODUCT 1

Let X, be a collection of spherical pictures over P, such that z,(P,) is generated
by X,andlet X= U X,

vev

(@ (®)
FIGURE 2

The proof of the following result can be found in [2] and [3].
Theorem 2.1. Let P be a presentation as in (2). Then my(P) is generated by
XuYUZ
3. PROOF OF THE MAIN THEOREM

Throughout this section the notations will be the same as in the previous ones.

Let p be a prime or 0. In this part of the proof, let us suppose that the
presentation P, as given in (2), is p-Cockcroft for any prime p. By Theorem 2.1,
since m(P) is generated by X U Y U Z and, by the assumption, since the exponent
sum of the discs of each spherical picture defined in the sets X, Y and Z is
equivalent to zero by mod p then, by Definition 1.1, this gives that each P, (vev) is

p-Cockeroft and then since each of the relators S is defined in the presentation P, ,
so we get

expy(S) = 0 (mod p),

forallx € x,, S € s,, as required.
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For the other part of the proof let us assume that conditions i) and ii) hold
for the presentation P. By Theorem 2.1, for a presentation P as in (2), since 7(P) is
generated by the union of the sets X, Y and Z then we need to calculate the exponent
sum of the pictures in the sets X, Y and Z under these assumptions. Now by the
definition of X, the exponent sum of the discs s, (v€v) of each spherical picture is
equivalent to zero by mod p. Additionaly, since the exponent sum of the discs r. (e
€ e) of the spherical pictures in the set Z is equal to zero (see Figure 1-(b)) then it is
enough to check that the exponent sum of the discs of spherical pictures in the set Y.

By Figure 2, the spherical pictures Pg,, and Pr, (Se s, Tes,,yex, x
€ x,) in the set Y consist of the discs S, T, [y,x;] (x; € x,,i=1,2,..,n wheren €

Z), [xy] 0 €x,, j=1,2, .., mwhere meZ"). Since the conditions i), ii) hold for
P and each of the relators S, T is defined in the presentation P, then we have

exp,i(S) =0 (modp), Vx;ex,for i=12,..,n
and
expy (I)=0(modp), Wex, for j=12,.. ,m
Also it is easy to see that

€Xpy,,., (Ps,) = €xp, (S) and €XPy,y,) (Prs) = €Xp,, (T)

where Vx;ex,, Vy;ex,, i=1,2,..,n, j=1,2,..,mandn, meZ'. Therefore we get

€xpy,,,,; (Ps,) =0 (modp) and expy, , (Pr)=0(modp).

Moreover, for the discs S, T in the spherical pictures Py, and P7,, it is clear that

exps(Ps,) =1-1=expr(Pr,)=0.

Hence, since the above processing can be made for all the spherical pictures in the
set Y then we get P is p-Cockcroft where p is a prime or 0, as required.

Hence the result. ¢
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4. APPLICATIONS OF THE MAIN THEOREM

Our aim in this section is to investigate what we get by changing some
situations in the main theorem and then trying to get some consequences of it. In fact
we will obtain some well-known results by applying these variations.

Let I be a graph with vertex set v and edge set e and let G = G(I') be a graph
product.

First let us suppose that all the vertex groups G, (vev) are infinite cyclic. Then
a presentation of a group G, is given by P,=<1x,; >. Thus the presentation P, as
in (2), becomes

P=<x; > 3)

Corollary 4.1. Let p be a prime or 0 and let P be a presentation as in (3). Then P is
p-Cockcroft.

Proof. By the definition of X and Y, it is easy to see that they are equal to the
empty sets. Then by Theorem 2.1, m,(P) is generated by only the set Z. Additionally,
since all the spherical pictures are Cockcroft in the set Z (see Figure 1-(b)) then P is
p-Cockeroft, as required.¢

Now assume that the edge set e is empty in I'. Then the set r, (ece) in the
presentations P, (ece) will be empty. Therefore r = & and the group G becomes the
free product of the groups G, (vev). Thus, by [18], G is given by a presentation

P=<x;s> “

Corollary 4.2. Let p be a prime or 0 and let P be a presentation as in (4). Then P is
p-Cockceroft if and only if each P, (ve v) is p-Cockerofft.

Proof. Itis clear that Y= and Z=. Then 7,(P) is generated by only the set

X = U X,. First assume that P is p-Cockcroft for some prime or 0. Therefore, since
VeV

7 P) is generated by the union of the sets X, (ve v) then we get each P, is

p-Cockeroft.
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Now suppose that each P, (ve v) is p-Cockcroft. Since X = | X, and m(P)

vev

is generated by the set X then P is p-Cockceroft, as required. ¢

Finally let us suppose that the oriented edge set is {e,, e, e;} and the vertex set
is {#, v, w} inT" as shown in Figure 3. Also let P,=<x; x¥1> P, =<y ;72> P,

= <z, 23 > be the presentations of the vertex groups G,, G, and G, respectively
where p,, p,, p; are distinct primes. Thus

P=<xyz; &1,°2, 23, [x)], n2], [zx] > ©)

is a presentation of the graph product of the groups G,, G,, G,.

FIGURE 3 : The graph I’
Remark 4.3. [t is well known that the presentation P, as in (5), is actually
presenting the direct product of the cyclic groups of order p;, p, and ps, respectively
where p,;, py, ps; are distinct primes.
Let P be a presentation as in (5). As a consequence of Section 2, we can define
the generating pictures of m(P) as depicted in Figure 4. It is easy to see that set Z is
empty for this group (we may refer [1] for the details of this).

It is clear that the proof of the following lemma is a immediate consequence of
Theorem 2.1.

Lemma 4.4. Let P be a presentation as in (5). Then my(P) is generated by X U Y.

Now as an application of Theorem 1.2 we can obtain the following result.
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Corollary 4.5. Let P be a presentation as in (5) and let p be a prime. Then P is p-
Cockcroft if each prime p; is equal to p (i=1,2,3).

Proof. Let us label the relations in the presentations P,, P, , P,, as follows:

xPl =Rl’y1’2 =R2,ZP3 =R3’
[x,y]1=S,,[y,2]1=S,.[z,x] = S,

By Lemma 4.4, we must check the exponent sum of the discs in the sets X and
Y. By Figure 4, the spherical pictures P, P,, P in the set X consist of discs R;, R,

R; and the spherical pictures Py, Ps, P, P, Pg, Py in the set Y consist of discs R},
R3 R3, S, S; and S;. Then the exponent sum of these discs are

expyp (P) = expp (P)= expy, (Ps) =expy (P =expy (Ps)=1-1=0,
expy, (Ps) =exp, (P;) =exp, (Ps)=exp x, (P9)=1-1=0,
exp,, (Py=pi, exp, (Ps)=p,, exp, (Pe)=px,

exp,, (Py)=ps=exp, (Ps), exp, (Po)=p;.

Therefore, by Theorem 1.2, P is p-Cockcroft if each of the presentation P, ,
P, , P, is p-Cockcroft for the same prime p. Thus the primes p;, p, p; must be
equal to p, as required.
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The set X:

The set Y:
P P [

FIGURE 4
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Remark 4.6. Although Corollary 4.5 states the p-Cockcroft property of a sphecial
case of the graph product, in fact, by Remark 4.3, it states that the p-Cockcroft
property of the direct product of the cyclic groups of order p,, p;, ps respectively
which was studied and taken too much attention by the authors (see, for example, in

(211).

One can find the definition of efficiency for a presentation P as in (1), for
instance, in [4], [6], [7] and [24]. In [12], Epstein (and later on Kilgour-Pride in
[19]) showed that a presentation P, as given in (1), is efficient if and only if it is p-
Cockcroft for some prime p.

As an application of Theorem 1.2, we can also give the following example
which is used the term efficiency instead of the p-Cockcroft property for the
presentations of the vertex groups.

Example 4.7. Let I"be a graph with the oriented edge set is {e;} and the vertex set
is {v;,vy}. Let

v

P, =< a,b;a”,aba"b™" > and P, =< c,d;c',cdc™*d™ >

be presentations of the vertex groups le and GVZ , respectively where (n, m-1) = 1,
(t,k-1)#1(n,mt k €Z')and p is any prime with p|n, p|z Then

P=<ab,cd, d", aba™b’, ¢, cdc*d”, [a,c], [ad], [b,c], [bd] >

is a presentation of the graph product of the groups G, and G,, . By [3), each of

the presentations Pv, and PVZ is efficient (and so is p-Cockcroft by the last

paragraph before example). Moreover the exponent sum of the each letter in the

relators of the presentations Pv, and Pv; is congruent to zero by mod p. Then, by

Theorem 1.2, we have that P is p-Cockcroft.
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OZET Baik - Howie - Pride, vertex gruplarinin graph ¢arpiminin bir gosterimi P olmak {izere m(P) ye
ait Ureteg resimlerinin bir kiimesini tammlamugty, [2]. Bu ¢aligmada bunun bir uygulamasi olarak, p asal

veya sifir olmak uizere P gosteriminin p- Cockeroft olmas: igin gerek ve yeter kosullar ile birlikte bu

sonuca ait bazi 6zel durumlar incelenmistir.
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