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ABSTRACT
Simple state-space formulas are derived for ali controllers solving a Standard problem. In this
paper, we assume that the Systems are fınite dimension, continuous-time, linear and time-invariant. There

are efficient algorithms to solve Linear Matrix Inequalities. İt is enough to reduce the 
linear matrix inequality by using Riccati inequatity.

problem to a

Key VVords: State-space, Riccati inequalities, control.
AMS Subject Classifications; 93B36, 93B52, 93D25, 93B17, 93C05.

1. INTRODUCTION
control that tried to provide answers to plant uncertainty under

problem. This control problem was fırst formulated by Zames [10] and is developed 
in Zames and Francis [12] and Kimura [7]. Most of the solution techniques available 
at that time involved analytic functions, (Nevanlinna-Pick Interpolation) or operator- 
theoretic methods [1], [8]. The early attempts to solve these problems were based in 
the frequency domain (see, [4]). Many papers have been published in -^^oo control 
theory (see, [3], [4], [10], [11]).

Additional progress on the 2 x 2-block problem came from Bali and Cohen 
[2], who gave a State space solution involving three Riccati equations. In addition to 
these, Youla parametrization and 2 x 2-block problem techniques have played an 
important role in ^oo theory. Consider the transfer function G(s) in ^oo control.

and compare transfer functions with their norm. The 
is defîned by

||g(5)||^ = sup|G(tw)|
(ueR

norm of transfer fımction



36 NECATİ ÖZDEMİR

The transfer function of a System with state-space matrices [A;B;C;D] is given by.
GÇs) = C{sl - A)-^ B + D .

We will develop a state-space theory by following an approach based on the work of 
Gahinet [6] and relevance here Özdenhr [9], Throughout this paper, we assume that 
the Systems are fınite dimension, continuous-time, linear and time-invariant.

The following notation will be used; ker M is null space, K = R or C. Also A (A), 

(J (A) are eigenvalue and singular value of A, respectively. is the Moore-Pseudo
Tinverse of E. N

matrİK V. In addition P
İS the transpose of N. V is Complex conjugate transpose of a

definite, respectively. Moreover, JeK"’'"
0 and P < 0 denote the nıatrix P is positive and negative

notation, the transfer matrix of
is a nxn matrix. Finally as usual

the linear System, defîned as
G{s) = C{sI-Ay^B + D.

2. STATEMENT AND MODIFICATION OF THE PROBLEM

Consider a linear time-invariant plant G(s) with state-space equations

X= dx+SıW+S2M, x(0) = x° 
y - C2X + D2\W+ D22U 
z = Cix + £)||W+£)i2U

where the matrices

n^-n xK

(D^ı,Dı2,D2ı,D22)eK‘>’'‘ x

We regard M as a control input, y the measured output, w an unknown disturbance 
input and z the controlled output. This is very general model since it allows for 
each of X, u , W to affect both and IK=R or C. This can be accommodated 
by setting

B2=[ Sİ 0 ol 022 =[ 0 £»2^2 0 1 A2=[ 0 o 0^2 1

X X
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Similarly with respect to w,

S, =[ 5,' 00], /)21=[ o 732^1 0 I A1=[ o o ]

Ali the nonns of vectors will be Euclidean with the corresponding induced norms for

matrices. The transfer function G(.) from z
to ü;

u

Du 
^21

7^12

7^22

Cı
(5/-(51,^2), seC/ö-(^)

(712 (^) 
^02, (s) G22(5)

This realization is taken minimal and n denotes Its order 
that there is a compensator of the form

nxn . We suppose

where

X = Af^i + Bjiv + Bf^y, x(Çİ) = x^, 
u Cf^x + Dj^y

nx« xK"’'^ ,h,m,p, are integer. So the transfer
function of the controller is

K(s)=Dk+Ck(I-Ak)-’Bk,

The interconnection system Lx Zk is well-posed. It is necessary that I-D22DK is 
invertible. Throughout this paper we assume that

(A.l (^,52) is stabilizable, 
(A.2) (T,C2) İs detectable, 
(A..3') I-D22D1C is invertible.

, Dj' ) 6 K

+

5 €
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w z

u
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y

K

Figüre r. interconnection system

As a result of the above formulation, the continuous-tinıe Basic block diagram 7/<„ 
model problem can be shown as in Figürel.G is the generalized plant and K is 
controller. Now the closed-loop system is

= ^clX + BclW, 
^^C^ıx + D^iw,

where
X n-\-n , and. eKX =

82(1 - D]^D22} 'C/;
A.'■cl -

_ A + B2Df:{I-D2^DKy'C2

~ ^22Dk} D22C2

Bci =
Bj + B2Di({I - D22D'C2

CcZ -t'l + A2^K(^'‘^22'^Ar) C2,D^2^I - Df^D22)

B>cl - [a 1 + B)x2Dk U - D22DK ) ^>21 ]

Let F(G,K)(s) denote the closed-loop transfer function ffom w to z under dynamic 
output feedback u = K{s)y.

F{G,K)(s) = D,!+C,,{sI-A,ıy'B,ı

= Gh(î) + Gi2(sm(,I-G22(5)A:(^))-’G2i(5) 5eC\a(Aei).
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Ouı aim is to characterize ali those dynamic output feedback control K(s), 
i.e. ali quadruple (AK,BK,CK,DK) for the interconnection system ZxZa- is well-
posed and the resulting closed-loop system, whose transfer matrix is F, intemally 
stable such that for some / > 0, the transfer function F(G,K) satisfies

3 . PRELIMINARY MATERIAL

We will use the notation \kerQ >0, to mean

>0, x£ kerQ, x*Q with no constraint on D in the case where kerQ = {o}. The 

folloıving lemma will be needed.

Lemma 3.1. The block matrİK
p N

Q.
so

İs equivalent to

In the sequel, P-NQ 
(see,[6]).

f2<A
[p-A2“'a’’ <0.

will be referred to as the Schur complement of Q

Lemma 3.2. Suppose D^H„ (K), 2 e 7/^ (K) and Z)|\kerQ > 0. Then there exists

a>-Q such that D + «2 > 0. Conversely if D -t- aQ > 0 for some a >- 0, then

d^kerQ 0.

Proof. With respect to the decomposition
K" =(Jter2/®*er2

D and 2 bave the form

A 
.^2

D2D = , Q =
21 0
o o ’ 7^3 > o, 21 >0

Hence
A + «21 ^2

7> + a2ı = 0*2 >0
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follows for suffıcıenlly large a from Lemma 3.1, since

A
*o, Dy + «gj > 0, A + oıQ\ - ^d*2 > o,

The converse is obvious. □

Lemma 3.3 (Gahinet, [5]) Suppose £eH„(K), MeK lxm ,LsK nxm

Then there exists a matrix X e K"’“' satisfying
{L + XM)e\l + XM)<Q 

if and only if i*EL <Q on ker M.
(3.1)

Proof. Suppose L2 e that is a matrix whose columns a hasis of kerM. Then

(3.3) implies V^L*ELV2 <V2QV2, is. I^EL<Q on kerM. Replacing L and X,

respectively, by ig and yg
-1/ 
/2 . We see that we may assume without loss of

generality that Q = 
unitary matrix. Write

Now choose f) such that V = [VI V2] is

ik. A]=[A Aİ m[v, a] = [Mi 0]

pre and post multiplying by V* and V, respectively, we see that (3.1) is equivalent to

(Z-ı + XM^ )* E{L^ + XM^) (il + XMı )* EL2
.*

L2E(L]+XM^) L2EL2

But since Mİ is frıll column rank, there exists a matrix AeK""'' such that
(il + XMx) = 0 . This X proves (3.1).

Lemma 3.4. (Bounded Real Lemma, [5],[6]) Consider a continuous time transfer 
matrix T(s) of (not necessarily minimal) realization

T{s} = D + C{sl-ay'B .

The following statements are equivalent:

(a) A is stable in the continuous-time since Re(T(T)) < 0 and

l/fao

n '

||i) + C(s/-^)‘'5|| /, / > 0.

<Q = ı,n

□
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(b) There exists a symmetric positive definite solution X to the LMI;
A^X XB C'^'' 

B^X -yi D'^ <0 (3.2)

Note that LMI (3.2} equivalent to

,mAD}<Y
a'^X + XA -r -I- -r -pXBY < 0.

Lemma 3.5. (Projection Lemma) Suppose N e 
Then the linear matrix mequality

,HeK «xz« and De//„(K).

0^,

c

D + N* X*H + H* XN <Q (?.3)
has a solution A e K"’'^ if and only if D is negative definite on ferN and on kerH.

Proof. The necessity of the condition is obvious. To prove sufficiency, we assume 
that D is negative definite on AerN and on ker H. For every y>0, 
(3.3) is equivalent to

.*(rXN -p X^H)\yXN + <-D + y^N*X*XN-p .

By assumption and Lemma 3.2
-D + y~^H*H>(İ for Y sufficiently small.

We can apply Lemma 3.3 with E = I„, M = yN, L = y^^H and

Q = -D + r~^H*H,
.*since EL = y~^H*H <-D + y ^H*H = Q on Kefili, since -D>0 on ker N by

assumption. Hence there exists X e such that

(yAîV-p y“’//)*(yW + /"’JT) <-D + <-D + y^N*X*XN + y~'^H*H □

Ali the control Information is collected in a single matrix

.Ck

Sk
€

AJ
4. Main Results

The following notation will be used.
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=

A O

o o- ’

o 

h

B° = 5, c°=[c, ol a°2= [o ö,2İ

B2
O ’

0
^2

In 
0

d =

O ’

» -
o

D21 _

Then the closed loop matrices can be written as

A^l = A° + B^ M , 

C,,=D°+D^2MkC\

B.ı^B'^ +B^M,
,0Az - Al + A°2^x2Î21

Theorem 4.1, The following are equivalent:

(i) There exists a stabilizing dynamic output controller K(.) such that

z«ax||F(G,Âr)(îw)|| < Y (4.1)

(ii) There exists a Xci e. ,Xci>Q such that the matrix Xcl is negative

definite on ferU and İS negative on kerX , where

A^x-J +x;}{A°)* 
{B^'} 
dx;l

B°

-Tİ 
Al

^;?(c'’)* 
D 

-Tİ

(A°')*X ,+X,A°I cl cl

c°

^clB

Al

,0 (C®)’
* 

•11

-yi

=

*
d

<h

and
1.(A")’ 1 = A°n0(^+p)x, (4.2)

Proof. Applying Lemma 3.4 with T = A^ı B = B,, we see that

(«+m)x/

/C(s) = £)jç +Cf^{sI-A) is a stabilizing controller satisfying (4.1) if and only if 
there exists ^n+a dci<^ , such that
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BciPcl " Delici
Bel ~ CclDcl

-Y^f-D*eiD,,_
>0.*

We see that this is eguivalent to the existence e H, X> 0 such that

+ '^cZ^cZ

Bcl^el 
Ccl

^cl^cl
-yJ 
Del

,* 
clC.

Del 
~yI

0. (4-^)

Substituting for A^, Bd, Cd, Dd, (4.3) becomes

or

4- X^ı(A° + B^MkC’) X^ı{B° +

+ I^2MkC-

^ciB’ 

0

.7
-7^
.0Al + D°2MxD2İ

Al + A*2^X^21

-yI

<0.

cl‘
,K

<0.+

*

0
M 2

That is
*

(4.4)

=l(y)*^,,,o,(ö2”ı)*).where Ux^ı We now use Lemma 3.5 with =

N = Ux^ı, H = V and X = Mx, to conciude that (i) is equivalent to '¥^^1 being 

negative defınite on ker V and A;erUXcl. To complete the proof, note that

o 0o 
o
I

0
I
0

^cz 0 0
0 
o

U = U 0
0

I o
o z

and 4)^^,=^cl '^Xei 0 
o

I o 
o /

The characterization in the above theorem is awkward since it involves both Xcl and 
its inverse. However a simpler form can be obtained by partitioning Xcl and X~ı . 
In order to show this we need the following lemma
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Lemma 4.2. Let n,« > 1. Suppose A'e- (K) and its inverse X ’ 

partitioned as follows

S N

are

P M
T ’

and X>0, then
N* ej

S > P ’ > Oand rankl^S-P ’J< «.

P,SeH„(K\ (4.5)

(4.6)

=
M

*

Conversely, if P,S e H„(K) are given such that (4.6) is satisfied, then there exists 
X e (K), X > 0 such that X and its inverse can he partitioned as in (4.5) (with 
suitable N, Q, M, T).

Proof. Suppose that

X =
S N M

T ’N'
p 

m' P,SeH„(K)
Q ’

*

Then
SP+NM* =I„, 7v>+ew* =0

and since X>0, have
5‘>0, Q>0, S-NQ~'n* o,

P>0, 0.

Now SP-NQ ^N*P = I„ and hence S - NQ ^N* =P . So

r>o, /’-mt’-'m*
.*

S>P~' 0 and rank[5'-P ']<«.

Conversely, assume that P,S e (K) are given such that the above conditions 

are satisfied. Let
r = rankÇS - P ^) < n .

It sufficiency to show that there exists M,Ne K"'"' , Q,T e H, (K), ö > 0 such that

SP + A'M* =/„,7y*P + eM* =0, SM + NT = 0, N*M + QT = I- 
In fact, setting

0 0
0

5
X= N* Q 6//„+^(K),

00 n-r
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We obtain
P 

M*
Q

0
T

0
0

*

X>0 because Q>0 and S - NQ 'n* =P ’ >0. W e now construct matrices M, N, Q,

T such that (4.7) holds and Q 0. Let İ7Fİ6K"’ be a unitary matrix with

in ker(5'-P ') and define

.1
İV = [ra«A;(5'-P-’)]^F, M = -PN, Q = Ir, T = I,~N*M

Since LL* is the orthogonal projection from K" into the linear subspace in
ker (.S' - P ’) we have

NN )]2 PP* [ra„it(5' - P~^ )]2 = (5' - P’’).

Using this fact the equations in (4.7) are obtained by direct calculation.

Theorem 4.3. For any y > O , the following are equivalent:

(i) There exists a stabilizing dynamic output feedback controller K(.) of dimension 
n such that

max||F(G,A')(iw)|| < y. (4.8)

(ii) There exists {P,S) e //„ x /7„, P > O, 5 > O such that

S>y^P~' >0 and S-y^P ' (4.9)

I*SA. + A S + Oj

pc,+b,d^, <0, on ker[ ] (4.10)

SSı -ı-Cı*D|i o, on ker [C2 D2] ]. (4.11)

*

♦
= - P

1

*AP + PA +B^B^

*

Sı’s + PfıC,

.*
1

*

Proof. By the Theorem 4.1 (i) is equivalent to the existence of e , 
>0 , suchthatthematrix negative onkerU and i® negative
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definite on kerV . Let

Xcl =
S

TV ej’
P 

m" (4.12)X.d *
M
T ’

Then

Since
SP + NM* =I„, 

0, we have
TV’P + ÖM* =0.

S>0, Q > o, S-NQ'^N*>Q,

P>0, T>Q,

Now 5? - NQ ^N*P = I„ and hence S-NQ =P ’. So we ohtain from
Lemma 4.2

and rank[5-P ']<«. (4.13)

Let us consider the condition that C» Xcl is negative definite on ker\]. Partitioning

O and U, we have

M* A*

CxP

AM
0
0 

CıAf

5, 
0

-Z2 
Al

PC*

Al
M

and

a =
0

P*2
0A 0
*o o n.12 _

It follows that ker\J has a hasis of the form

C/ =

t/ı 

0
0

_t/2

o 
o

0

where
t/1

is hasis of ker [ B2. A*2 ].Now
U
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Uy 
0 
o 

.t/2

0 
o 

il 
0

-1*

5,*

CyP

AM
0
0

By
0

PC,

Al

t/1 
0 
o

-ı*r

0
U2 C^P

By 
-ri 
Dyy

PC,
A*ı
-zf

0
U2

0 

il 
0

Interchanging rows and columns we see that 

and only if

is negative definite on kerU if

Uy
U2 
0

-ı*rAP + PA* 

CyP 
By

PC,
-yi
^>11

By 
Dyy

Uy
U2
0

<0.

M A.*
1

C^M

* *
M C]

0
0

0

0 

h 
o

0
0

.*

*

d

0
0

But tfais is equivalent to

k
k

AP + PA* 

UyP

A‘i
L^2j

k f'il
-7I

By 
Dn. <0.

- zf J L^2 ,

By the negativity Lemma 3.4, the above holds if and only if

k t'il
CyP

/’C,*' 

~'>'I.
+ z'‘ «1

'IIJ

k D,-,])ft'l
.^2j

<0.
A

The transform P->y ^P yields (4.10). (4.11) is proved in similar way and (4.9) 

obtained form (4.13) after the transformations P-^y^^P ,S .
Conversely, suppose ÇP,S)eH„ xH„, P>Q,S >0 satisfy the conditions in (ii), we

first make the transformation ^P,y '5). Suppose ra«Âr[P-5 ']<«, then

we may choose a hasis so that P-S~^ = 0 0 
o H

, where H e H;^, and

commensurate to this partition
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P = Pil Pl2
22,

*511 

.5'12

512 

^22.
S =

Applying the transform P^yP, S and using Lemma 4.2 we ohtain that there

exist N, M e ,Q ,T e. Hı(K) such that

Xci-=
S

N* Öj
P

M*
N M

T

Now define as in Theorem 4.1. We have just proved that (4.10), (4.11)

imply that the matrix is negative definite on kerU and i® negative 

definite on kerV . But this is equivalent to (i).

There are now efficient algorithms for solving linear matrix inequalities (LMIs) (see.
[6]). Given that P 0, S 0 satisfying (4.9), (4.10) and (4.11). can be

constructed as in the above proof, then using (4.4) feasible control matrices Mk are 
obtained. Nevertheless, we continue the analysis of (4.10) and (4.11). The objectives 
are:
♦

♦

♦

to remove the kemel constraint by reducing the dimension in the 
inequalities,

to show that the reduced mequalities can be replaced by Riccati inequalities 
of lower dimension,

as an altemative to the above we will show that by introducing two scalar 
parameters, (4.10) and (4.11) can be replaced directly by two Riccati 
inequalities in H„

These results will be used to obtain a Riccati equation based characterisation. First 
*

we assume that D,2 and D21 have fiili column rank. Then later we will show how
this assumption can be removed. Since we want to State a result which covers both 
(4.10) and (4.11), we will use the following notations.

xK rtx/n

Aq--A-BE^C, Vg=V + BE\r^I-Q)
(4.14)
(4.15)

X

Wo = fP-BE^E*- VÇBe"^ )* -BE\r'^ i- Q\BE  ̂)*, (4.16)

Po =Wq{I-EE^Qo=(A- EE^')Q{I- EE^), Co=(I- EE^)C (4.17) 
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where is the pseudo inverse of E and since we will assume that E is of fiili 
column rank, we have = ÇE*E)~^E*.

Lemma 4.4. Suppose (4.14)-(4.17) hold with E being fiili column rank. Then there 
exists P s H„,P> 0, such that

* *
AP + PA +W PC +V

CP-ı-r*
<0 on ker[ B* E* ] (4.18)

if and only if P > 0 satisfies 
z"/>eo

A^P + PA; +fPo+ {PC*o + Po)(z2z - öo)'’ (PCo* + Po)* < 0.

(4.19a)

(4.19b)

Proof. Let U,, be a basis for E* = Range(I - EE^) with CZı*2tZi2 = I • Then we may 
choose

-{BE^}*

as a basis for ker [ B E* ]. So (4.18) is equivalent to

I 0

*

AP + PA*+W /^c’-t-rî
-{BE^)* U, CP+V.* <0.

12.

I o z o
*

\2 -r2/+eJ_-(5Bt)’* U,

The {11} component of the LHS of the above ineguality is

AP + PA* +W-BE^ {CP +V*)- {PC* + V){BE^ i
The {12} conç»onent is

{PC* + v + BE^{r^ı~Qy}U^2,

+ BE\-r‘̂ I + Q){BE^)* .

and the {22} is
-U*n{r^I-Q-)U,2.

So (4.18) is eguivalent to

*

AgP + PAo+fPo
_ tz,‘2(CP+Te)

(pc* + re)[z,2

-r^ı + u*,2QU^2
<0.
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Then using Lemma 3.4, both of the above are equivalent to > g|

and the Riccati inequality
Ikerfi

a^p+paI + ff'o +(PC‘ +rQ)u,2(r^/-[/;2QU,2)~^u^2(^c* + re)* <o

(4.20)

But ~ ^120^12 - ~ U İ2^\2Q) ^^12^12 •

* 2Now U^2Un=^I-EE^} = (.I-EE^y , so

{Y^I-U,2EnQr'UnEn={r^KI-EE^yQy\l-EE^f

Substitution in (4.20) yields (4.15).

In order to apply this result to (4.9) and (4.10), we have to introduce even more 
notations.

S2 -^lAl ’ A = A-B2Ci , A -Ei -B2Dıı

(4.21a)
G=(/-Di2öt^)C,, Al - (^“ A2A^2)Ai > - y^/-£),ı£)jı

and
(4.21b)

C2 =D^iC2,>4 =A-BiC2, A - A “Al A (4.22a)

fi,=5,(Z-n2^Aı), •ZT* TTAl = Aı(^-ötıD2,), n, =z2/_p*/)„ (4.22b)

Proposition 4.5. Suppose D12 and have fiili column rank. Then the 
followings are equivalent:

(i) There exists a stabilizing dynamic output feedback controller K(.) of 
dimension n such that

mM|F(G,ZC)(nv)|| < y.

(ii) There exists (P, S) s 7/„ x H„, P > 0, S > 0 such that
y>max|nı,|,|Dıı||}, (4.23a)
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2d-1S>r^P' and rank[5-y^P ']< n , (4.23b)

AP + PA*-7^828*2 +51S1* +(PC,* +5151*1 )n;'(PC,* +5ı5ıı)* <0 (4.24)

A*S + SA-r^C2C2 +CıQ +{S8ı+CÎDıı')*n-\SBı+C*D^y')* <0 . (4.25)

Proof. Let

B = B2, E = Di2, w = 8^8*, C = C„ P^8yD;^, Q^D,,D*,,

and applying Lemma 4.4, we see that (4.18) is eguivalent to the first inequality in 
(4.23a), together with the Riccati inequality

AoP + PA;+fPo+(PC;+PoXr^/~Qo)-\PCo + Po)* <0,

where
Ao=A- 82D^2^i = Co=(/-A2A^2)C1=C1

Ko =[ 51A*, +52/?iV/"/-AiA‘1 ](^-ö,2ö/2) 

= B,D;,+r^82D}2(I-Di2D^2)

But

1 ^12 -(-^12^12) ^12 ^12

and hence Pq = Rı/tfı.

2o ~ ^12^12 1 (^ ~ ^12^12 ) ~ A1A1
lLo=5,5,* ~B2Dl^DyıB* - BjDj^(B2Dİ2)* - B2Dİ2(r^I - DitDnXS2D^2)*

Thus, the above Riccati inequality is the same as

2p+pZ -r^B2B2+BıBj +(PCı* + 5151*1 )n;’(PCı* +515*1)* <0. □

Equation (4.25) and the second inequality in (4.23a) are proved in a similar way.
Then the equivalence follows from Theorem 4.3.
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REMARKS

Since there are efficient algorithms to solve Linear Matrix Inequality (LMIs), it is 
enough to reduce the problem (control to a linear matrix inequality by using 
Riccati inequality. However, this requires E to be full column rank which implies
£>12 and Djı have full column rank. In the case when £>,2 and £>21 do not have

full column rank, the reduction algorithm can be used to reduce D12 and £>21 to the 

case where the equivalent reduced version of the £>12 and D21 have full column 
rank. This can be done by using the Lemma 4.4, and it may require multiple steps, 
but eventually a reduced form of £>12 and /J21 would be found after which the 
Riccati inequalities follow. Then the problem can be solved by one of the efficient 
algorithms which are developed to solve the Linear Matrix Inequality (LMI).
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