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ABSTRACT
Simple state-space formulas are derived for all controllers solving a standard H o problem. In this
paper, we assume that the systems are finite dimension, continuous-time, linear and time-invariant. There

are efficient algorithms to solve Linear Matrix Inequalities. It is enough to reduce the H oo problemto a
linear matrix inequality by using Riccati inequality.
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1. INTRODUCTION

H,, control that tried to provide answers to plant uncertainty under

problem. This control problem was first formulated by Zames [10] and is developed
in Zames and Francis [12] and Kimura [7]. Most of the solution techniques available
at that time involved analytic functions, (Nevanlinna-Pick Interpolation) or operator-
theoretic methods [1], [8]. The early attempts to solve these problems were based in
the frequency domain (see, [4]). Many papers have been published in H control

theory (see, [3], [4], [10], [11]).

Additional progress on the 2 x 2-block problem came from Ball and Cohen
[2], who gave a state space solution involving three Riccati equations. In addition to
these, Youla parametrization and 2 x 2-block problem techniques have played an

important role in H o, theory. Consider the transfer fanction G(s) in Ho, control,
and compare transfer functions with their norm. The Hy norm of transfer function
is defined by
|G|, = sup|G(w)|
weR
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The transfer function of a system with state-space matrices [A;B;C;D] is given by.
G(s)=C(sI-A7'B+D.

We will develop a state-space theory by following an approach based on the work of
Gahinet [6] and relevance here Ozdemir [9]. Throughout this paper, we assume that
the systems are finite dimension, continuous-time, linear and time-invariant,

The following notation will be used; ker M is null space, K =R or C. Also A (A),
O (A) are eigenvalue and singular value of A, respectively. E! is the Moore-Pseudo

inverse of E. N7 is the transpose of N. V'is Complex conjugate transpose of a
matrix V. In addition P > 0 and P < 0 denote the matrix P is positive and negative

definite, respectively. Moreover, 4eK™" is a nxn matrix. Finally as usual
notation, the fransfer matrix of the linear system, defined as

G(s)=C(sI-A)'B+D.
2. STATEMENT AND MODIFICATION OF THE H,, PROBLEM

Consider a linear time-invariant plant G(s) with state-space equations

x=Ax+Bw+ Byu, x(0)=x°
33y =Cox+ Dyyw+ Dyyu
z=Cx+Dyyw+ Djpu

where the matrices

(4,B;,B,,C;,C;) e K" x KM x K™ x KT x KP*",
(Dy1,Dy2,Dy1,Dpp) e K& x KOM 5 KP4 5 K P,

We regard ¢ as a control input, ¥ the measured output, W an unknown disturbance
input and z the controlled output. This is very general model since it allows for
each of Xx,u,w to affect both y,z and K=R or C. This can be accommodated
by setting

By=[B} 0 0] py=[0 D} 0] Dy=[0 0 D ]
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Similarly with respect to w,
Bi=[8 00) Dy=[0 D} 0} py=[0 0 D} ]

All the norms of vectors will be Euclidean with the corresponding induced norms for

matrices. The transfer function G(.) from [w} to {Z} is;
u y

[P D) (G} o
G(s)_[D21 Dzz]{cz)(s[ A7\ (B,,B,), seCla(4)

=(Gu(5) G12(S)J
Gy (s) Gp(s)

This realization is taken minimal and n denotes Its order 4e K™". We suppose
that there is a compensator of the form

5 5= AkE+ Bow By, #0)=3°,
K: .
u=Cgx+Dgy

where

(4, By ,Cg,Dy)e K™ 5 KPP 5 K™ K™7? n,m,p, are integer. So the transfer
function of the controller is

K(s)=Dx+Cx(I-Ax)'Bx, s C\o(4y)

The interconnection system I x Xy is well-posed. It is necessary that 7 ~D,, Dy is
invertible. Throughout this paper we assume that

(A.1 (4,B,) is stabilizable,
(A.2) (4,C,) is detectable,
(A.3) I-Dy Dy is invertible.



38 NECATI OZDEMIR

Figure 1: Interconnection system

As a result of the above formulation, the continuous-time basic block diagram H,,

model problem can be shown as in Figurel.G is the generalized plant and K is
controller. Now the closed-loop system is

X = Ay%+Byw,
zZ= CC,J?+ DCIW,

_ |x i
where x=[A]GK”+",and
X

A+ ByDy(I- DD )" C, By(I - DxDyy) ' C }
| Bx(I-DpDg)'DyCy  Ax +Bg (I =Dy D) ' Dy Cy Dy

B, = By +B,Dy(I- Dy Dy )™ Cz]
i - s
Dg(I-DypDg)™'C,

Cy =[C1 + Dya Dy (I = Dyy D)™ Cy, Dyy (I - Dg D)™ Cl(l

Dy = [Du + Dy D - DZZDK)_IDZI]

Let F(G,K)(s) denote the closed-loop transfer function from W to Z under dynamic
output feedback u = K(s)y.

F(G: K)(S) = Dcl + CL‘](SI— Acl)n1 Bcl
=Gy (5) + Gia(K()I — G ()K(s) Gy (s) s€C\a(Ag).
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Our aim is to characterize all those dynamic output feedback controt K(s),
i.e. all quadruple (AK,BK,CK,DK) for the interconnection system YxX . is well-

posed and the resulting closed-loop system, whose transfer matrix is F, internally
stable such that for some ¥ > 0, the transfer function F(G,K) satisfies

IF G, )0 o = ;‘Zzealic“F(G,K)(zw)" <y.
3. PRELIMINARY MATERIAL

We will use the notation DeH,(K), QeH, (K), DIkerQ >0, to mean

(x,Dx)>0, x € kerQ, x # 0 with no constraint on D in the case where kerQ = {0} . The
following lemma will be needed.

Lemma 3.1. The block matrix

P N
(i 5)0

O<N

P-NQ'NT <o.
In the sequel, P-NQ'NT will be referred to as the Schur complement of Q
{see,[6]).

is equivalent to

Lemma 3.2. Suppose De H,(K), Qe H;(K) and Dj kerp > O Then there exists

a>0 such that D+aQ>0. Conversely if D+aQ>0 for some a>0, then
D;MQ>0.

Proof. With respect to the decomposition
K" = (kerQ)* @ kerQ
D and Q have the form
D= DL Dy , 0= & 0 ,D;>0,0, >0
D, D, 0 0
Hence
D, D
D+aQ, ={ Lo 2}>0
D, D,
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follows for sufficiently large & from Lemma 3.1, since

Dy >0, Dy+aQ;>0, D +aQ -D,D;'D;>0, a>>1
The converse is obvious. m]

Lemma 3.3 (Gahinet, [5]) Suppose E e H,(K), Q€ H,,(K), MeK"™ LeK™™.
Then there exists a matrix X e K™/ satisfying

(L+XM)E"(L+XM) < Q 3.1
ifand only if L'EL <Q on ker M.

Proof. Suppose ¥, e K™* that is a matrix whose columns a basis of kerM. Then

(3.3) implies ¥V, L'ELV, <V,QV,, ie. L'EL<Q on kerM. Replacing L and X,

- _1
respectively, by LQ % and X0 % . We see that we may assume without loss of

generality that Q =1, Now choose ¥; e K™ such that V = [V1 V2] is
unitary matrix. Write

y vl=lL L] My ni=l o
pre and post multiplying by V" and V, respectively, we see that (3.1) is equivalent to

(Ll Wl )* E(Ll Wl Ll XMI)* ELZ
<Q —In

LyE(L; + XM,) LyEL,

But since M1 is full column rank, there exists a matrix X K™ such that
(Ly+XM)=0.This X proves (3.1). m]

Lemma 3.4. (Bounded Real Lemma, [5],[6]) Consider a continuous time transfer
matrix 7(s) of (not necessarily minimal) realization

T(s)=D+C(sI-A)'B.
The following statements are equivalent:

{(a) A is stable in the continuous-time since Re(A(A4)) <0 and

“D +C(sl - A)"lBHH <y, 7>0.
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(b) There exists a symmetric positive definite solution X to the LMI:
ATx xB cT
B'x -y DT <0 (3.2)
C D -y

Note that LMI (3.2) equivalent to

Tmax (D) <7 :
{ATX +X4+y'cTC+y( ' T D+ xBYH - DT DY (v IcT D+ xB)T <0.
Lemma 3.5. (Projection Lemma) Suppose NeK””,HeK™™ and De H,(K).
Then the linear matrix inequality
D+N'X"H+H XN <0 (33)
has a solution X e K™ if and only if D is negative definite on kerN and on kerH.

Proof. The necessity of the condition is obvious. To prove sufficiency, we assume
that D is negative definite on kerN and on ker H. For every y >0,
(3.3) is equivalent to

GAN + 7" H)Y QAN +y ' H) <~D+y*N" X XN +y2H'H .
By assumption and Lemma 3.2

-D+y2H'H>0 for ¥ sufficiently small.
We can apply Lemma 3.3 with E=1,, M = yN, L=y"'H and
Q=-D+y?H'H,
since L'EL=yH'H<-D+y 2H"H=0 on KerN, since -D>0 on ker N by
assumption. Hence there exists X e K™/ such that

AN +y  HN QAN +y "H)<-D+y2H'"H<-D+y*N' X" XN+y2H 'H 0
All the control information is collected in a single matrix
My = Ay By K Ax(rR)
Cx Dg
4 . Main Results

The following notation will be used.
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Then the closed loop matrices can be written as
Ay=4°+B'MygC!, B, =B°+B'MyD} ,
Co =D’ + DM yCY, Dy = Dyy + DM D3y

Theorem 4.1. The following are equivalent:

(i) There exists a stabilizing dynamic output controiler K(.) such that
max|F (G, K)aw)| <y 4.1
weR

(i) There exists a X, e€H,,;, Xy >0 such that the matrix @,  is negative
definite on kerU and Wy , is negative on kerV , where

[Ax +x (4% B° xFc%
Cxa = (B°)" -A D |
coxyf Dy -

¥rg=|  B'Xq oA Dy
c’ Dy -A
L
and
U=| (BI)*’O(ﬁer)xl’(DlOz)* 1 v={ €', D3\, 06 pyxq ] (4.2)
Proof. Applying Lemma 3.4 with 4=4,; B=B, we see that

K(s)=Dg +Cg(sI — A)"' By is a stabilizing controller satisfying (4.1) if and only if
there exists P,y e H,,;, P,; <0 , such that
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[+

[PclAcl +Acchl _Cclccl PI _CCIDCI >0.
Bcchl‘-Dchcl _721_Dchcl

We see that this is equivalent to the existence of X, € H,,;, X, > 0 such that

n+fi?

AyX g+ Xgqdy XyBy Cy
BcIXcl —71 Dcl <0. (43)
Cy Dy ~v

Substituting for Ay, B, C., De, (4.3) becomes

(A + B M CTY X+ Xy (A% + B My CTy X (B + B'My DY) (C¥+ DoMyCTY

B+ B M DY) X, - Dy +DAM DY | <o0.
C%+ DMy’ Dy + DMy DYy -A
or
.
XcIBI XclBK
Wy, +| O MK[c’,D§1,0]+[c’,Dgl,OIM}; 0 | <o.
D Diy
That is
Wy, +Ux MgV +V MUy <0, 4.4

where Uy = l(BI)*Xc,,O,(Dgl)*J. We now use Lemma 3.5 with D=Y¥y
N=Uyg,, H=Vand X =My, to conclude that (i) is equivalent to ¥y, being
negative definite on ker V and kerUXcl . To complete the proof, note that

Xg 00 X 00 x7 00
Uy, =Ul 0 [ 0} and @y, =l 0 1 0[¥y,! 0 I 0]
0 01 0 01 0 0 I

The characterization in the above theorem is awkward since it involves both Xcl and
its inverse. However a simpler form can be obtained by partitioning Xcl and X'
In order to show this we need the following lemma
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Lemma 4.2. Let n,7>1.Suppose X e H,,;(K) and its inverse X ! are

partitioned as follows

S Nl ., [P M
x="% "L x'=| 0, TlpseH (K, 4.5
o ob e Mlpsemoo. a9
and X>0, then
§> P!> 0and rank lS- P"IIS A (4.6)

Conversely, if P,Se H,(K) are given such that (4.6) is satisfied, then there exists
XeH, ;(K),X>0 such that X and its inverse can be partitioned as in (4.5) (with
suitable N, Q, M, T).

Proof. Suppose that

S N P M
X=|", , X7l=] 7, ,P,S e H,(K)
N" © M* T
Then
SP+NM" =1I,, N'P+OM" =0
and since X>0, we have
§>0, 0>0, S-NQO™'N* >0,
P>0, T>0, P-MT'M™>0.
Now SP—NQ'N*P=1, and hence S-NO'N"=P7'. So
§>P71>0 and rank[S-P <A

Conversely, assume that P, S € H, (K) are given such that the above conditions
are satisfied. Let

r=rank(S-P Y <h.
It sufficiency to show that there exists M,Ne K™, 0,T € H,(K), O > 0 such that

SP+NM" =1, N'P+OM" =0, SM+NT=0, N'M+QT=I; (4.7)
In fact, setting

0
Q0 0 |eH, (K),
0
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We obtain
P 0 0
x1=iM® T o0
0 0 I,

X>0 because Q>0 and §-NQ'N"=P~! >0. We now construct matrices M, N, Q,
T such that (4.7) holds and Q > 0. Let [U V]e K™” be a unitary matrix with
Ue K™ in ker(S - P~')and define

N=[rank(S—P"l)]%V, M=-PN, Q=1,, T=I,-N'M

Since V¥" is the orthogonal projection from K" into the linear subspace in
ker (S - P") we have

1 1

NN = rank(S i )]5 78 [rank(s -p! )F =(s-P™).
Using this fact the equations in (4.7) are obtained by direct calculation.
Theorem 4.3. For any y > 0, the following are equivalent:

(i) There exists a stabilizing dynamic output feedback controller K(.) of dimension
A such that
max|[F(G, K)w)| <7 . (4.8)
weR
(ii) There exists (P,S)e H,xH,, P>0, S>0 such that

SzyiPt>0 and rank[ §-y2p71 ]S n (4.9)‘

{AP +PA" + BB} PC;+B,D;,

" . |<0, on ker| B} D, | (4.10)
CiP+ Dy By —(}’ZIq—DuDu)}

* * % .
[SAtA S+,,C'C1 Sfl+cl?” jl<0,onker [c, D], (@.11)
B S+ D¢y —("1; - Dy Dyy)
Proof. By the Theorem 4.1 (i) is equivalent to the existence of X, e H .,
X >0, such that the matrix @y, is negative onkerU and ¥y , is negative
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definite on kerV . Let

S N - P M
Xcl =[N* Q], Xcll =|:M* T:|, (412)

SP+NM"=1,, N'P+OM" =o0.
Since X >0, we have

Then

§>0, 0>0, S-NO''N* >0,
P>0, T>0, R-MT'M" >0

Now SP-NQ'N*P=1,and hence S—-NQ~'N* =P!. So we obtain from
Lemma 4.2

§>P7! and rank{S- P 1]<A. (4.13)

Let us consider the condition that @y , is negative definite on kerU. Partitioning

®y,, and U, we have

AP+PA" AM B, PC|
M4 0 0 Mc
Bl 0 -¥ D
P CM D, -A

U 0* I; 0 (1‘
B, 0 0 Dl

lyX c ~

and

It follows that kerU has a basis of the form

-

U 0
0 0
U= ,
0 I
Uy 0]

U * *
where [01] is basis of ker[ B;, Dj, ]. Now
2
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U, 0] [aP+pa"
0 0 M*A*
0 I B

Uu, ¢ L GP

0 I,
U, 0

AM B, PC|
0 0 Mc
0 -¥ D

GM Dy -A

* *
B, -A Dy

v, ol[4r+prs” B, pc U,

0

GP Dy -A|U,

I
0

47

Interchanging rows and columns we see that @ X, is negative definite on kerU if

and only if

U, 0
0 1,
But this is equivalent to

L

[U; U;][AP+ P4’ Pc{} [Ul}

o TR

il =

U, o|4P+P4 pPC B

GP -A D,|U,

B Dy -A

Uz

01<0.

U, 0
0 7
by v

By the negativity Lemma 3.4, the above holds if and only if

[U;U;]{[APC:;:A* fﬂw“[%][&* Dﬁ])[ .

B,

The transform P— 3 'P vyields (4.10). (4.11) is proved in similar way and (4.9)

obtained form (4.13) after the transformations P—y7'P,S—>»7's .

Conversely, suppose (P,S)e H,xH,, P>0,5 >0 satisfy the conditions in (ii), we
first make the transformation (P,S)— (y "'P,y~'S). Suppose rank[P-S~'}<#, then

. 0 0
we may choose a basis so that P-5! =[0 H]’ where HeH;, H20 and

commensurate to this partition
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Pz[Pl*l PIZ} Sz[Sx*l 512]

By Pp Siz Sxn

Applying the transform P — P, S — 5 and using Lemma 4.2 we obtain that there
exist N,M e K™ O T e H,(K) such that

S N P M
Xg={ . X =] . .
N' © MY T

Now define ¥y ,, @ x @sin Theorem 4.1. We have just proved that (4.10), (4.11)

imply that the matrix @y, is negative definite on kerU and ¥y, is negative
definite on kerV . But this is equivalent to (i).

There are now efficient algorithms for solving linear matrix inequalities (LMIs) (see.
[6]). Given that P > 0, S > O satisfying (4.9), (4.10) and (4.11). ¥y, can be

constructed as in the above proof, then using (4.4) feasible control matrices My are

obtained. Nevertheless, we continue the analysis of (4.10) and (4.11). The objectives
are:

* to remove the kernel constraint by reducing the dimension in the
inequalities,

* to show that the reduced inequalities can be replaced by Riccati inequalities
of lower dimension,

. as an alternative to the above we will show that by introducing two scalar

parameters, (4.10) and (4.11) can be replaced directly by two Riccati
inequalities in H,,

These results will be used to obtain a Riccati equation based characterisation. First
we assume that D,, and D;, have full column rank. Then later we will show how

this assumption can be removed. Since we want to state a result which covers both
(4.10) and (4.11), we will use the following notations.

(4,B,C,0,E,V,W)e K™ x K™ « K& « K9 x K& « K™4 « K™

(4.14)
Ay =A-BE'C, V,=V+BE'(y*I-0) (4.15)
Wo =W -BE'V" —V(BE")" - BE'(*1 - Q)(BE'Y', (4.16)

Vo =WoU - EEY), Qg =(I-EE)QU - EE'), Co =(I-EE")C (4.17)
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where E' is the pseudo inverse of E and since we will assume that E is of full
column rank, we have £/ =(E"E)"'E".

Lemma 4.4. Suppose (4.14)-(4.17) hold with E being full column rank. Then there
exists Pe H,,P >0, such that

AP+PA AW PC+V 1 _ 4 on ker[ B E° | (4.18)

CP+V'  —yi+Q
if and only if P> 0 satisfies
ri>Q, (4.19a)
AP+ PAg + Wy +(PCy + V)2 - Q) (PCh + V) <0. (4.19b)

Proof. Let U}, be a basis for E* = Range(I - EE') with U;2U12 =71 . Then we may

choose
1 0
-(BEY" Uy,

as a basis for ker[ B* E" |. So (4.18) is equivalent to

{ I o0 Y[ap+ra"+w PC"+V [ I 0 ]<0
~BENY Upnl| cP+v'  —yr1+0|-BEY Uy
The {11} component of the LHS of the above inequality is

AP+ PA" +W -BE'(CP+V")y—(PC" + VYBE"Y" + BE' (—y2I + Q)XBE')" .
The {12} component is
(PC* +V +BE' (21 -Q)U,, ,
and the {22} is
~ULGR - QU .
So (4.18) is equivalent to
{AOP +PAg+W, (PC* +Vp)Us,

* * 2 * <0.
Up(CP+Vy) -y 1+UpQUp
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Then using Lemma 3.4, both of the above are equivalent to y27 >Q o
er

and the Riccati inequality

AgP + PAy + Wy + (PC™ + V), (1 - UL, QUL UL (PCT + Vo) <0
(4.20)

But U (P21 ~UpQUyp, = (P 1= UpUn0) UL UL,

Now UpU, =(I-EEYY=(1-EEN? 50
(FP1-UpUih0) ' UpUs, = (210 - EEN? ) ' - EET)?

Substitution in (4.20) yields (4.15).

In order to apply this result to (4.9) and (4.10), we have to introduce even more
notations.

§2 =Blei.2 y Z = A —Ezcl s §1 =B] —EzD“

(4.21a)
C; =U - D DY)C, Dyy = (I - DypD{)Dyy, I, = y*I~ Dy, Dy

(4.21b)
and
C,=D},C,,4=4-BC,, C,=C,-D,,C, (4.222)

By =B\(I-D},Dy), Dy=Dy(-DjDy), T, =y2I-DDy;  (4.22b)
Proposition 4.5. Suppose D;, and D,, have full column rank. Then the

followings are equivalent:

(i) There exists a stabilizing dynamic output feedback controller K(.) of
dimension 7 such that

max|[F(G, K)aw)] < 7 .

weR

(it) There exists (P,SYe H, xH,, P >0, 5 >0 such that
511“, 511“}, (4.23a)

7>maxi
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§2y?P™ and rank|s- ;2P |<7, (4.23b)
AP+ PA" —y*B,B; + B,B] +(PCy + BD)IN(PC] +BiDyp) <0 (4.24)
A'S+854-y>C,Cy +C'Cy +(SBy + C; Dyy)" 11,1 (8B + € Dyp)" <0 (4.25)
Proof. Let
B=B,, E=Dy, W=BB, C=C, V=BDj, Q=DyDj
and applying Lemma 4.4, we see that (4.18) is equivalent to the first inequality in

(4.23a), together with the Riccati inequality

AgP + PAg + Wy +(PCy + V)72 ~ Q) " (PCy + V)" <0,

where
Ay =A-B,DLC =4, Co=(I~Dy,D},)C =G
Vo =l B.D{\ + B,D},(»*1 - Dy Dy, | - Dy,DY)
=B\Djy +7*B, D}, (I - D, DY)
But

DltlezD]Tz =(D12D12)"1D12D12D;‘2 = D1Tz

and hence ¥, = B,Dy; .
Oo=(~- szDsz YDy, Dy (I - D12D1iz) =Dy, Dy
Wy =B,B| ~ BZDszDllB; - B,Dj, (Bletz)* - BzD;(z (*1-Dy, Dy, )(Blefz )
= —}’25255 + EIE;
Thus, the above Riccati inequality is the same as
AP+ PA" - y2§2§; + §1§; + (Pﬁl* + 515;1 )ﬁ;l (Pé,'k + 515;,)* <0. O

Equation (4.25) and the second inequality in (4.23a) are proved in a similar way.
Then the equivalence follows from Theorem 4.3.
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REMARKS

Since there are efficient algorithms to solve Linear Matrix Inequality (LMIs), it is
enough to reduce the problem ( H, control to a linear matrix inequality by using

Riccati inequality. However, this requires E to be full column rank which implies
Dy, and D,, have full column rank. In the case when D,, and D5, do not have
full column rank, the reduction algorithm can be used to reduce D;, and Dj, to the
case where the equivalent reduced version of the D;, and D, have full column
rank. This can be done by using the Lemma 4.4, and it may require multiple steps,

but eventually a reduced form of Dj,and D;; would be found after which the

Riccati inequalities follow. Then the problem can be solved by one of the efficient
algorithms which are developed to solve the Linear Matrix Inequality (LMI).
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