Commun. Fac. Sci. Univ. Ank. Series A1 V. 52. (no.2) pp. 29-34. (2003)

THE TANGENT BUNDLE ON C¹ FUZZY MANIFOLDS

ERDAL GÜNER

Ankara University, Faculty of Science, Department of Mathematics, Ankara, TURKEY

Received: August,23.2003; Revised:Dec.07.2003; Accepted:Dec.09.2003)

ABSTRACT

Let X be a C¹ fuzzy manifold and p be a point in X. At first, it is given that the tangent space at p denoted by $T_p(X)$ is a vector space. In this paper, constructing the tangent bundle $T(X) = \bigvee_{p \in X} T_p(X)$ on X, it is shown that there is a covariant functor from the category of C¹

fuzzy manifolds and fuzzy differentiable functions to the category of the tangent bundles on C^1 fuzzy manifolds and fuzzy manifold derivative functions.

1.INTRODUCTION

We begin by giving the following definitions.

Definition 1.1. Let (X,τ_1) , (Y,τ_2) be fuzzy topological spaces and $f: X \to Y$ be a mapping. If for each open fuzzy set V in τ_2 the inverse image $f^{-1}(V)$ is open in τ_1 , then f is called a fuzzy continuous [3].

Definition 1.2. A fuzzy topological vector space is a vector space E over the field K of real or complex numbers, E equipped with a fuzzy topology τ and K equipped with the usual topology T, such that two mappings

$$\begin{array}{cc} +:(E,\tau)\times(E,\tau) &\to (E,\tau) \\ (x,y) &\to x+y \end{array}$$

and

$$\begin{array}{cc} (K,T) \times (E,\tau) & \to (E,\tau) \\ (\alpha,x) & \to \alpha \, x \end{array}$$

are fuzzy continuous [5].

Definition 1.3. Let E_1 , E_2 be fuzzy topological vector spaces and $f: E_1 \rightarrow E_2$ be a bijection. If f and f^{-1} are fuzzy differentiable, and f' and $(f^{-1})'$ are fuzzy continuous, then f is called a C¹ fuzzy diffeomorphism [2,4].

Definition 1.4. Let X be a set and $\{(X_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ be a collection of pairs. If,

Each X_{α} is a fuzzy set in X and $\sup \{\mu_{X_{\alpha}}(x)\} = 1$ for all $x \in X$,

Each ϕ_{α} is a bijection, defined on the support of X_{α} , $\{x \in X : \mu_{X_{\alpha}}(x) > 0\}$, which maps X_{α} onto an open fuzzy set $\phi_{\alpha}[X_{\alpha}]$ in some fuzzy topological vector space E_{α} , and, for each β in the index set, $\phi_{\alpha}[X_{\alpha} \cap X_{\beta}]$ is an open fuzzy set in E_{α} ,

The mapping $\phi_{\beta} o \phi_{\alpha}^{-1}$, which maps $\phi_{\alpha}[X_{\alpha} \cap X_{\beta}]$ onto $\phi_{\beta}[X_{\alpha} \cap X_{\beta}]$ is a C¹ fuzzy diffeomorphism for each pair of indices α, β ,

then the family $\{(X_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ is called a C¹ fuzzy atlas.

Definition 1.5. Each pair $(X_{\alpha}, \phi_{\alpha})$ is called a fuzzy chart of the fuzzy atlas. If a point $x \in X$ lies in the support of X_{α} , then $(X_{\alpha}, \phi_{\alpha})$ is said to be a fuzzy chart at x.

Let (X,τ) be a fuzzy topological space. Suppose there exist an open fuzzy set χ in X and a fuzzy continuous bijective mapping ϕ defined on the support of χ and mapping χ onto an open fuzzy set V in some fuzzy topological vector space E. Then (χ,ϕ) is said to be compatible with the C¹ atlas $\{(X_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ if each mapping $\phi_{\alpha} o \phi^{-1}$ of $\phi[\chi \cap X_{\alpha}]$ onto $\phi_{\alpha}[\chi \cap X_{\alpha}]$ is a fuzzy diffeomorphism of class C¹.

Two C¹ fuzzy atlases are compatible if each fuzzy chart of one atlas is compatible with each fuzzy chart of the other atlas. It is shown that the relation of compatibility between C¹ fuzzy atlases is an equivalence relation. An equivalence class of C¹ fuzzy atlases on X is said to define a C¹ fuzzy manifold on X [1].

2. THE TANGENT BUNDLE ON C¹ FUZZY MANIFOLDS

Let X be a C¹ fuzzy manifold and let p be a point in X. Consider triples $(X_{\alpha}, \phi_{\alpha}, v)$, where $(X_{\alpha}, \phi_{\alpha})$ is a fuzzy chart at p and v is a fuzzy point of the fuzzy topological vector space in which $\phi_{\alpha}(X_{\alpha})$ lies.

Two such triples $(X_{\alpha}, \phi_{\alpha}, v)$, $(X_{\beta}, \phi_{\beta}, w)$, are said to be related, written $(X_{\alpha}, \phi_{\alpha}, v) \sim (X_{\beta}, \phi_{\beta}, w)$, if the fuzzy derivative of $\phi_{\beta} o \phi_{\alpha}^{-1}$ at $\phi_{\alpha}(p)$ maps v into w. That is,

 $(\phi_{\beta} o \phi_{\alpha}^{-1})'(\phi_{\alpha}(p))v = w.$

Lemma 2.1. The relation $(X_{\alpha}, \phi_{\alpha}, v) \sim (X_{\beta}, \phi_{\beta}, w)$ is an equivalence relation.

Proof. Straightforward.

Definition 2.1. An equivalence class of triples $(X_{\alpha}, \phi_{\alpha}, v)$ is called a tangent vector of the fuzzy manifold X at p and this equivalence class is denoted by $[X_{\alpha}, \phi_{\alpha}, v]_p$. The tangent space of p denoted by $T_p(X)$ is defined as the set of all tangent vectors at p.

The set $T_p(X)$ can be given the structure of a vector space. Define the sum of two tangent vectors at $p \in X$ as

 $[X_{\alpha}, \phi_{\alpha}, v]_{p} + [X_{\beta}, \phi_{\beta}, w]_{p} = [X_{\beta}, \phi_{\beta}, (\phi_{\beta} o \phi_{\alpha}^{-1})^{'} (\phi_{\alpha}(p))v + w]_{p}.$

Define the product of a tangent vector with a scalar c as

 $c [X_{\alpha}, \phi_{\alpha}, v]_{p} = [X_{\alpha}, \phi_{\alpha}, cv]_{p}.$

Now, let X be a C^1 fuzzy manifold on E and the tangent bundle of X is defined as the disjoint union of the tangent space $T_p(X)$, p running over X, and will be denoted by T(X). i.e.,

$$T(X) = \bigvee_{p \in X} T_p(X) \,.$$

The next proposition shows that T(X) can always be given, in a natural manner, a fuzzy topology and C¹ fuzzy atlas under which it becomes a C¹ fuzzy manifold on E×E. In the sequel T(X) will always be assumed to have this extra

structure. Define a map

π : T(X) \rightarrow X,

called the natural projection, by $\pi([X_{\alpha},\,\phi_{\alpha},\,v]_p)=p.$ Corresponding to each α in A define

$$\tau_{\alpha} : \pi^{-1}(X_{\alpha}) \to U_{\alpha} \times E$$

by $\tau_{\alpha} \left(\left[X_{\alpha}, \phi_{\alpha}, v \right]_{\phi_{\alpha}^{-1}(u)} \right) = (u, v)$. Notice that τ_{α} is a bijection and that the union
of the codomains of τ_{α}^{-1} is equal to T(X). Suppose that for α , β in A the codomains
of τ_{α}^{-1} and τ_{β}^{-1} overlap, that is, that $\pi^{-1}(X_{\alpha}) \cap \pi^{-1}(X_{\beta}) \neq \emptyset$. Since $\pi^{-1}(X_{\alpha}) \cap \pi^{-1}(X_{\beta}) = \pi^{-1}(X_{\alpha} \cap X_{\beta})$, we have $X_{\alpha} \cap X_{\beta} \neq \emptyset$. Let (u, v) belong to $\tau_{\alpha}(\pi^{-1}(X_{\alpha}) \cap \pi^{-1}(X_{\beta}))$, then

$$\tau_{\beta} \circ \tau_{\alpha}^{-1}(\mathbf{u}, \mathbf{v}) = \tau_{\beta} \left[\left[X_{\alpha}, \phi_{\alpha}, \mathbf{v} \right]_{\phi_{\alpha}^{-1}}(u) \right] \\ = \tau_{\beta} \left(\left[X_{\beta}, \phi_{\beta}, (\phi_{\beta} \circ \phi_{\alpha}^{-1})'(u) \mathbf{v} \right]_{\phi_{\beta}^{-1} \circ (\phi_{\beta} \circ \phi_{\alpha}^{-1}(u))} \right) \\ = \left((\phi_{\beta} \circ \phi_{\alpha}^{-1})(\mathbf{u}), (\phi_{\beta} \circ \phi_{\alpha}^{-1})'(\mathbf{u}) \mathbf{v} \right).$$

Now,

$$\tau_{\alpha}(\pi^{-1}(X_{\alpha}) \cap \pi^{-1}(X_{\beta})) = \tau_{\alpha}\pi^{-1}(X_{\alpha} \cap X_{\beta}) = \phi_{\alpha}(X_{\alpha} \cap X_{\beta}) \times E$$

and so the C¹ fuzzy diffeomorphism of $\tau_{\beta} \sigma \tau_{\alpha}^{-1}$ on $\tau_{\alpha}(\pi^{-1}(X_{\alpha}) \cap \pi^{-1}(X_{\beta}))$ follows from the C¹ fuzzy diffeomorphism of $\phi_{\beta} \sigma \phi_{\alpha}^{-1}$ on $\phi_{\alpha}(X_{\alpha} \cap X_{\beta})$.

The collection of fuzzy open sets $\tau_{\alpha}^{-1}(U \times V)$, α ranging over A, U ranging over fuzzy open subsets of U_{α} , and V ranging over fuzzy open subsets of E, may be seen to from the basis of a fuzzy topology on T(X) and under this topology we have just shown that:

Proposition 2.2. (T(X), $(\tau_{\alpha} : \alpha \in A)$) is a C¹ fuzzy manifold on E×E.

Definition 2.2. Let X, Y be C^1 fuzzy manifolds. If $f : X \to Y$ is a fuzzy differentiable and $p \in X$, then we define a map

 $f_{*,p}: T_p(X) \rightarrow T_{f(p)}(Y),$

called the C¹ fuzzy manifold derivative function of f at p, by

 $f_{*,p} : [X_{\alpha}, \phi_{\alpha}, v]_{p} \rightarrow [Y_{\beta}, \psi_{\beta}, (\psi_{\beta} of o \phi_{\alpha}^{-1})'(\phi_{\alpha}(p))v]_{f(p)}.$

Since $(Y_{\beta}, \psi_{\beta}, (\psi_{\beta}ofo\phi_{\alpha}^{-1})'(\phi_{\alpha}(p))v) \sim (Y_{\delta}, \psi_{\delta}, (\psi_{\delta}ofo\phi_{\gamma}^{-1})'(\phi_{\gamma}(p))w)$ whenever $(X_{\infty}, \phi_{\alpha}, v) \sim (X_{\beta}, \phi_{\beta}, w)$, is well-defined. By letting p range over X we define a tangent bundle map

 f_* : $T(X) \rightarrow T(Y)$

by $f_{*}=f_{*,p}$ on $T_p(X)$. Suppose that both $f: X \to Y$ and $g: Y \to Z$ are fuzzy differentiable, where X, Y and Z are C^1 fuzzy manifolds. Then $(gof)_{*,p}=g_{*,f(p)}of_{*,p}$

and hence (gof)*=g*of*.

Now, let Q_1 be the category of C^1 fuzzy manifolds and fuzzy differentiable functions and Q_2 be the category of the tangent bundles on the C^1 fuzzy manifolds and fuzzy manifold derivative functions. Then we can define a mapping $F : Q_1 \rightarrow Q_2$ as follows:

For any sheaf C^1 fuzzy manifold X and every fuzzy differentiable function f : $X \rightarrow Y$, let F(X)=T(X) and $F(f)=f_*: T(X) \rightarrow T(Y)$. Then,

 $f=1_X$, then $F(1_X)=1_{T(X)}$

If $f: X \to Y$ and $g: Y \to Z$ are fuzzy differentiable functions, then

F(gof)=(gof)*=g*of*=F(g)oF(f),

Thus, the mapping $F : Q_1 \rightarrow Q_2$ is a covariant functor.

Therefore, we can state the following theorem.

Theorem 2.3. There is a covariant functor from the category of the C^1 fuzzy manifolds and fuzzy differentiable functions to the category of the tangent bundles on the C^1 fuzzy manifolds and fuzzy manifold derivative functions.

ERDAL GÜNER

REFERENCES

- [1] El-Ghoul, M., and, El-Zohny, H., and, Radwan, S., Deformation of some fuzzy manifolds and its folding, J. Fuzzy Math. 9, No:2, pp. 317-323, (2001).
- [2] Ferraro, M., and, Foster, D.H., Differentiation of fuzzy continuous mappings on fuzzy topological vector spaces, J. Math. Anal. Appl. 121, pp. 589-601, (1987).
- [3] Foster, D.H., Fuzzy topological groups, J. Math. Anal. Appl. 67, pp. 549-564, (1979).
- [4] Kalina, M., Derivatives of fuzzy functions and fuzzy derivatives, Tatra Mountains Math. Publ. 12, pp. 27-34, (1997).
- [5] Katsaras, A.K., and, Liu, D.B., Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58, pp. 135-146 (1977).