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ABSTRACT

In this paper we investigate some new difference sequence spaces which naturaly emerge from the
concept of almost convergence. Strongly almost summable sequences have been discussed by Nanda [6].

The object of this paper is to introduce the spaces of strongly almost A -summable sequences which
happen to be complete paranormed spaces under certain conditions. Some topological results and
inclusion relations of such sequences have been discussed.

KEYWORDS Strongly almost sequences,strongly almost summable.

1. INTRODUCTION
Let S be the set of all sequences of real or complex terms and £_, ¢ and ¢, denote
the Banach spaces of bounded, convergent and null sequences x=(xy), respectively,

normed by "x" =sup, ka| . The zero sequence (0, 0, 0, - - - ) is denoted by O.

Let D be the shift operator on S, thatis Dx = {xk };;1 , D’x = {xk }:=2 and so on. It
may be recalled that the Banach limit L is a non-negative linear functional on £
such that L is invariant under the shift operator ( that is, L(Dx)=L(x) for allx€ £ )

and L(e)=1, where e =(1,1,1,...), [1]. A sequence x€ £ is called almost convergent
Lorentz [12] if all Banach limits of x coincide.
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Let ¢ denote the space of almost convergent sequences. It is proved by
Lorentz [12] that

c= {x . lim, ¢, (x)exists uniformly in n}

m— “m.n

where

1 &
by (6) = EZD‘x,, , (D°=1),
i=0

Several authors including Lorentz [ 12 ], King [ 11 ] and Nanda [ 6, 8 ] have
studied almost convergent sequences. Just as convergence gives rise to absolute and
strong convergence, it was quite natural to expect that almost convergence must give
rise to the concepts of absolute almost and strong almost convergence. Absolutely
almost and strongly almost convergent sequences have been introduced and
discussed in a natural way by Das, Kuttner and Nanda [ 9 ] and Maddox [ 4 ].

The summability methods of real or complex sequences by infinite
matrices are of three types ordinary, absolute and strong, [ 5 ]. In the same vein, it is
expected that
the concept of almost convergence must give rise to three types of summability
methods-
almost, absolutely almost and strongly almost. The almost summable sequences
have been discussed by King [ 11 ],Schaefer [ 13 ] and some others. More recently
Das, Kuttner and Nanda [ 9 ] and Nanda [ 10 ] have introduced the concept of
absolute almost summability along with the concept of absolute almost convergence.
The spaces of strongly almost summable sequences were defined and studied by
Nanda [ 6,7 ].

The purpose of this paper is to introduce the space of strongly almost A-
summable sequences which happen to be complete paranormed spaces under certain
conditions and also obtain some topological results and inclusion relations.

Let A=(ay) be an infinite matrix of complex numbers and x=(x;) be a sequence
of complex numbers. The sequence (4(x)), defined by A(x)n=2ankxk for all

k=1
neN andis called the A-transform of x whenever this series converges for each n.
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Throughout 4 = (ay) denotes an infinite matrix of nonnegative real numbers
and let p=(py) be a sequence of real numbers such that p, > 0 for all k£ and supypy =

H < oo . The following inequality will be used throughout

Let p=(p)e{,, , then for sequences (ay) and (by) of complex numbers we

have
|a, +b | < K(| a, P+ b, |7*)

where K = max (1,2%") ( see for instance Maddox [2]).

2. DEFINITIONS AND PRELIMINARIES

Now we define the following new difference sequences spaces :

[AA,p]0 = {x = (xk)e w: lim, ¢ mn(Ax) 0, uniformly in n}

x=(xk)e w: limm_mtm’n(Ax—le)=O, for somel,
[4,. P)= : : .
uniformly in n

[AA’ p]ao = {x = (xk)e w! supm,n tm,n (Ax)< 00}’
where

(8= 3 4,0 (80)= Tl fomls”
(n k,m) = —Zan“k and

Ax = (Ax,) = (x, - x,,,) forallkeN.

(1

The sets, [AA " p]o R [A A p] and [A A p]w will respectively be called the

spaces of strongly almost A-summable to zero, strongly almost A-summable and

strongly almost A-bounded sequences.
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When A’Xx=2x we obtain the spaces [A, p]o ,[A, p] and [A, p]w
respectively ,  which were defined by Nanda [6 ]. The sets
[A, p]o . [A, p] and [A, p]ﬂo are respectively called the spaces of strongly almost
summable to zero, strongly almost summable and strongly bounded Sequences.

A sequence space E is said to be solid if (oux,) € E , when ever {x) € E and for all
sequences oy of scalars with |oy [<1foralll ke N.

A sequence space E is said to be symmetric if (xnu) € E , whenever (x,)eE, where
n(n) is a permutation of N.

For 0 <7 <1 a non-void subset U of a linear space is said to be absolutely 7-

convex ifx,y€ U and lllr + l ,ulr <1 together imply that Ax + zy € U. It is clear that if

U is absolutely r-convex, then it is absolutely z-convex for # < r. A linear topological
space X is said to be r-convex if every neighbourhood of 8 €X contains an absolutely r-
convex neighbourhood of 6 € X. The r-convexity for r>1 is of little interest, since X is
r-convex for > 1 if and only if X is the only neighbourhood of 6 X, [3]. A subset B of
X is said to be bounded if for each neighbourhood U of 6 eX there exists an integer J >
1 such that BC JU. X is called locally bounded if there is a bounded neighbourhood of
zero.

The following results will be used for establishing the results of this article .

Lemma 1 ( Nanda [6], Proposition 2). [4, p]c [4, p]. if

|| 4= supZa(n,k,m) <o . )

mn k
Lemma 2 ( Nanda [6], Theorem 2). Let 0 < p, <1. Then [A, p]0 and [A, pL are
locally bounded if inf p, > 0.If (2) holds, then [A, p] has the same property.

Lemma 3 ( Nanda [6], Theorem 3). Let 0 < p, <1.Then [4, p], and [4, p]. arer-
convex for all 1, where 0 < 7 < liminf p, . Moreover, if Dy = p <1 for all k, then they
are p-convex. If (2) holds, then [A, p] has the same property.
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3. THE MAIN RESULTS

The proof of the following result is a routine work in view of the inequality (1).

Theorem 1. If pe £, then [AA , p]o , [AA , p] and [AA s p]w are linear spaces over the
field C of complex numbers .

The following result follows from Lemma 1 .

Theorem 2. [4,, p] < [4,,p]. if (2)holds.

Theorem 3. Let pel , then [AA,p]O and [AA,pL (infpk > 0) are

complete linear topological spaces paranormed ( not necessarily totally ) by g
defined by

g(x) =| X I +Supm,n [tm,n (AX)]%'I 4

where M=max (1,H = sup pk). [AA, p] is paranormed by g if (2) holds. Further

[AA, p] is complete if
Za(n,k,m) — 0 wuniformly in n.

k

Proof. Clearly g(0) =0, g(-x) = g(x) and g(x+y) < g(x) + g(y). We now show that
the scalar multiplication is continuous. We have

P
g{7x) < max(| 4 | sup, |4 g (x) )
Therefore x > 60 = Ax = 6 (for fixed A) by (3). Now let A >0 and x €

[4,, p], be fixed. Without loss of generality , let | 1| < 1. Then the inequality (3) takes the
form

g(x) < sup, 4| ¥ g(x) .

Now the proof that Ax — 6 becomes a routine work .
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For [AA,pL ,letinfp,=#h>0 . Thenclearly x > 8 = Ax — @ (for fixed 1).

Nowlet A = 0 andx [AA, pL be fixed. Without loss of generality , let |4 |<1. Then
Ax — 0 follows from the following inequality .

g"(ax)<|4" " (x) @)

Consider the case [AA, p] . If (2) holds , then g(x) exists for each x [AA, p]. Then
the contunuity of the scalar multiplication becomes a routine work in view of the inequality

4.

Let {xi} be a Cauchy sequence in [AA, p]o . Then there exists a sequence
x=(x,) €/ suchthat g(xi - x) -0 (i - 00). Thus for a given € > 0, there exists
ny such that g(x' —x ) <e forall i >n, . Hence x' — x € [AA,p]o. Since [AA,p]O it

follows that x = x' —(x' —x) € [AA, p]0 . The completness of [AA, pL can similarly
be obtained.

We now consider [AA, p]. If (3) holds and {xi} is a Cauchy sequence in [AA, p].
Then there exists x = (x) € £ such that g(xi - x) -0 (i - 00). Further as

Za(n,k,m) —> 0 uniformly inn,

k

it is clear that [AA,p]= [AA,p]0 :
This completes the proof.

Remark. Note that the strong summability field of the matrix method A= (ay) is not a K-
space (a K-space of sequences for which the coordinate linear functionals are continuous) if
the matrix A= (ay) contains zero columns.

Theorem 4 . The spaces [A A p]0 , [A A p] and [A A p]00 are not solid in general.

Proof. It follows from the following example.
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Examplel. Consider the matrix 4 = (ay) defined by ay =1 forall nkeN. Let py=1
for all k eN. Consider the sequence x = (x;) defined by x, =1 forall £ €N . Thenx e

[AA, p]o . Consider the sequence (oy) of scalars defined by oy = (-1)* for all k eN.

Then it is clear that (o x) & [AA, p]o . Hence [AA, p]o is not solid. Similarly it can be
shown that the two other spaces are not solid.

Theorem 5. The spaces [AA , p]o , [A As p] and [AA , pLo are not symmetric in general.

Proof. This is clear from the following example.

Example 2. Consider the matrix A = (ay) defined by ay =k" for all n=k eN and
aq =0, otherwise. Let p, = 1 for all £ eN. Consider the sequence x = (x) defined by x; =1

for all k=74, €N and x, = 0 otherwise. Then x € [AA, p]o . Now consider the
rearrangement (3) of (x) defined as y, = 1 for X odd and y, = O for £ even . Then
[AA, p]o . Hence [AA, p]0 is not symmetric. The other cases can similarly be shown.

The proof of the following result are routine works in view of Lemma 2 and Lemma 3.

Theorem 6 (a). Let 0 < p, <1. Then [AA, p]o and [AA, pL are 1-convex for all 1,
where 0 < 7 < liminf p, . Moreover, if p, = p <1 for all k, then they are p-convex. If
(2) holds, then [AA, p] has the same property.

(b). Let O0<p, <1. Then [AA,p]0 and [AA,pL are locally bounded if
inf p, > 0.1f (2) holds, then [4, , p| has the same property.

Theorem 7(a). Let 0 < p; < g <1 for all k, then [AA,qL is a closed subspace of

[AAapL'

(b). Suppose that HA” <, 0< p, <g; and /3 is bounded for all k,

Dy
then

[4,.q] = [4..p]

(©. Let 0 <inf p, < p, <1, then [4,,p]c [4,].
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@). Let 1< p, <supp, <, then [AA]C [AA,p] ,
where

[AA] = {x : Za(n,k,mXAxk —jll - 0, uniformly in n}.
k
Proof (a). Let x € [AA,qL . Then there exists a constant B > 1 such that

Za(n,k,mlekrh <B (for every m,n)
ang $0

Za(n,k,mlek P <B (for every m,n),
3

thus x € [AA, pL. To show that [AA,qL is closed, suppose that x' € [AA,qL and

¥ oxe [AA, pL . Then for every 0 < £ <1, there exists nq such that for all m and »

; P
Za(n,k,mjA(x,'c - xk) ‘<eg (for every i> ny).
3
Now

Za(n,k,mjA(x,’; - xkllqk < Za(n,k,mlA(x,’; - xklpk <eg ( for every
k k
> 1)

This completes the proof.
(b) Write w, = |Axk —l'qk and Z& = A, forallk Sothat 0 < A < 4, <1

k
(A constant). Let x € [AA,q]. Then

Za(n, k,m)w, =0 uniformly in n.

k
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Define
w, w21
u, =
0, w,<l1
and
0, w21
V, =
w, w,<l
= A — g M A ;
S0 that we=u, +v,, w'=u’+v: . Now it follows

u,f* Su,+w, v,f" < v,'j . We bave the inequality ( see Maddox [2])
|
Za(n,k,m)w,f" <> aln,k,mw, + (Za(n,k, m)ka “AIIH
k k &

Therefore X € [AA, p] and this completes the proof.
(¢). The proof follows from 7(b).
(d). The proof follows from 7(b).

We have the following result which follows from the above result.

Corollary. Suppose that "A" <.
(a).1f 0 <inf p, < p, <1, then [4,,p]=[4,]

). If1 < p, <supp, <o, then [AA]= [AA,p] .

OZET

Bu caliymada hemen hemen yakimsakhk kavramindan dogal olarak ortaya gikan bazi
yeni fark dizi uzaylar1 tanimlanmigtir. Kuvvetli hemen hemen toplanabilir dizi uzaylar
Nanda { 6 ] tarafindan tartigilmistir. Bu makalenin amac, bazi sartlar altmda tam olabilen
kuvvetli hemen hemen A -toplanabilir diziler uzaymi tanimlayip, bu tiir dizilerin bazi
topolojik sonuglarini ve kapsam bagmtilarin tartigmaktir.
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