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ABSTRACT

This article will focus on, and little extend, the part of the earlier study [5] that concerns the
representations of the groups Co', R, using the method given for continuously differentiability of

f(o) [4].
1. INTRODUCTION

Historical Background

The first extensive investigation of the group representations was carried out in a
series articles by Frobenius, who developed much of the theory of the
representations of finite groups, and in particular, of the symetric groups. On the
other hand, since 1940’s an intensive study of foundations of the theory of group
representations has been in progress. For example, in 1965, Stein constructed, in a
fairly simple manner representations in Gl(2n, C) which where not contained in the

list of Gelfand and Naimark [1,3] and in 1998.

Author constructed, [6] two new representations of the topological group K, and
then in the recent paper [5], he has obtained representations of the groups C;, R

that we will work. The purpose of this paper is to obtain two results on continuously
differentiability of all the one-dimensional representations (p(z) = lzlke‘““"’"“(”) of the

group (Ci, and the representations f— f(ct,,.,,...,0, ) of the group R*, where kis a
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complex constant, m is an integer and «,,a,,...,a, are standart basis vectors of the

vector space R".

2. THE SOME REQUIRED CONCEPTS ABOUT SUBJECT

Let us note briefly some highlights of the mentioned papers. The usual terms and
notations not described in this paper can be found in any standart book [ such as 2
and 7 ]. In this section we shall outline the ideas of algebraic foundations of the
representation theory and basic concept of some compact topological groups. Let
f=f (g) be a complex-valued function defined on a topological group G. The

function f'is called continuous on the topological space G.

Next, let X be a finite-dimensional complex vector space of dimensional n and let
€,,€,,..,€, be a fixed basis in X. Let f be a vector-valued function with values in X

defined on the topological group G and for geG, let (f,(g).f,(g)....f,(g)) be the
components of the point f(g) in the basis ee,,..,e,. The function f is called
continuous on the group if the complex-valued functions fl(g), fz(g),.‘.,fll (g) are
continuous on G. This definition is independent of the choice of a basis e,,e,,...,e, .
For each geG, the components f] (g) of element f (g) in another basis

14

€1,€},...,€, are linear combinations with constant coefficients of the components

fj' (g) If the functions f; are continuous, so are functions f;.

Finally, et A = A(g) be an operator-valued function on G whose values are linear
operators on X. The function A is said to be continuous on G if g —> A(g)x is
a continuous vector function on G for every x € X. Then we say that the function
A(g) is continuous if and only if its matrix elements ajl(g), in any basis
€,,€,,..,¢, in X, are continuous complex-valued functions on G. Let G be a

topological group and let X be a finite-dimensional complex linear space different
from {0} . A representation of G in X is any mapping that carries every g € G into

linear operator T(g) on X in such a way that;
1) T(e) =1, where 1 is the identity operator in X .

2) Tlgeg,)="Te,)T(e,)

3) T(g) is a continuous operator-valued functionon G.

Thus we add to the usual definition the condition of continuity ( to emphasize this,
representations of a topological group are often called continuous) of the operator
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valued-function T(g) . This requirement will play a significant role in the sequel.

Representations that not necessarily satisfying condition (3) will now be called
algebraic representations. By a continuous representations of G we shall mean a

representation (m,H) of G, where H is a Hilbert space and the map
(g,v) - n(g)v, GxH— H is continuous. For a continuous representation (n,H) of
G, avector veH is called K -finite if the span of all n(k)v, k€K, is finite

dimensional, where K is a compact subgroup. Some very important classes of

groups have large compact subgroups, for example, reductive groups over local
fields.

3. ON CONTINUOUSLY DIFFERENTIABILITY

We shall first introduce some basic groups and their continuously differentiable
representations. Every one-dimensional representation of the group R' can be

considered a continuous complex-valued function o — f{a:) [5], a€R', that
satisfies conditions,

£(0)=1,f(a, +a,) = fa, )f(or,) 2.1)

and is continuous.

Let m(a) be a continuously differentiable function on R' equal to zero outside of

some neighborhood of the point o, € R' for which

c= Tf(oz)u(oc)da #0
by virtue of (2.1) such a function m(oc) exists. Multiply both sides of (2.1) by w(az)
and integrate both sides of the resulting equality from —o to +w with respect to

o, .
We obtain [3]

Tf(d.‘ + 0(2)’)((1'2 )daz = f(al)jf(az ):‘)(az )daz (22)
and so
1= 1=
f(a1)=;.[f(a1 +OL2}D(Ot2)d(X,2 ='c' jf(a)’)(a_al)da (23)
But the right side of (2.3) is a continuously differentiable function of «,, Since

(o(oc —a,) has this property and the integral is over a finite interval. That is, f (c)
is continuously differentiable on R' [5] .

The function f' (a) satisfies the differentiable equation
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df/do = kf,
where k is a certain constant.

Differentiating both sides of (2.1) by o, and setting o, =0 and setting o, =, we
obtain

f'(c) = £'(0)f () = kf (o), where k =£'(0).
Any solution of the equation (2.4) that satisfies f (O) =1 has the form f ((x) =e".

Thus all one-dimensional representations o — f' (oc) of the group R' are described
by the formula

fla)=e* (2.5
where k is a complex constant.

The unitary one-dimensional representations f (a) of the group R' are now easily
identified the property of beeing unitary in the one-dimensional case means that
If (cxx =1. For f (oc) =¢* this holds if and only if k is purely imaginary, k =it , for
some T€R'. Thus all unitary one-dimensional representations o — f (a) of the
group R' have the form.

fla)=e™
where 1 is a real constant. Conversely, for every te R' the formula f (oc)= e'™

defines a one-dimensional unitary representation of the group R'.
Note that continuity of a representation o — f (a) implies differentiability of the
function f (cx).

4. THEOREMS AND THEIR PROOFS ON THE CONTINUOUSLY
DIFFERENTIABILITY

On Continuously Differentiability of (p(z).

Every rotation of a circle is described by an angle o of the rotation, where rotations
by a and o+27n are identical. Therefore, in a one-dimensional representation

o—f (oc) of the group I'' the function f (OL) must, besides the conditions in
equations (2.1), also satisfy the condition f (oc + 21t) =f (oc) . From equation (2.1), we
see that f(a)=¢*, and from f (a + 21r)= f (a) that k =im, where m is an integer.
Thus all one-dimensional representations o — f (oc) of the group I have the form
fla)=e™.
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The group C,( C; = C —{0},. ) is isomorphic to the direct product R; xI"' and
the mapping z — (r,a) for|z|=r, o=

7|, is an isomorphism of the group C’ onto
Ry xT'. Combining f(o)=e™ and ¢(B)=p* =¢***, then all one-dimensional
representations z — ¢(z) [5] of the group C; have the form

olz)=o emms®) G.1)

‘where k is a complex constant and m is an integer.

Theorem 3.1. The representation (p(z) in equation (3.1) is differentiable and its
derivative is continuous throughout C .

Proof. The representation o =w(z) is a continuously differentiable function on

continous C ; in some neighborhood of the point z, € C for which

c= JolhlMz =0
by virtue of ¢(z)#0, for z, € C such a function w(z) exists. Multiply both sides
of ¢(z,z,)= oz Je(z,) by ©(z,) and integrate both sides of the resulting equality
from —o to +oo  with respect to Z, and setting z,z, = z,, we obtain
_J.(P(le2) CO(ZZ) dzl = (P(Zl)_J.(P(ZZ)m(ZZ)iZZ )

and so

ofz)= = Jolez.)oz.) dz,

=~ folehn(e/z iz 62

But the right side of (3.2) is continuously differentiable function of z/z, , since
(z/z,) has this property and the integral is over a finite interval. That is to say,
<p(z,) is continuously differentiable. Briefly, the representation ¢(z) is continuously

differentiable on C . Since © =w(z) can be taken infinitely differentiable, olz) is
infinitely differentiable.
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Theorem 3.2. Let a,,,,...,a, be standard basis vectors of the vector space R".
Then the representation f — f( o,,a,,..,a, ) is differentiable and its derivative is
continuous throughout R".

Proof. Let o = ofa)=(a,,a,,..,0 .) be a continuously differentiable function on

R" equal to zero outside of some neighborhood of the point a,,a,,...,a., € R" for
which

c= ujsf(ocl,ocz,...,ogl)(n(ocl,ocz,...,ocn)dcxi #0 (i = 1,2,...).

By virtue of f(a,,y,m..,0 );b 0 such a function of @= m(a,,ocz, ,0,,) exists.
Multiply the representation of f = f (a,,ocz, o ) by 0 = (D( oy ..,an) and integrate
both sides of the resulting equality from —o to +oo with respect to oci(i = 1,2,....).
We obtain

T f(al,ocz,...,ocn)co(ocl,ocz,...,au)doci = f((Xl)Tf(OLN...,()Ln)0)(0,2,...,(1.")dOLi (3.3)

and so

£(0) =2 Tt ) 0ct000,) Ao
fla,)= E_L fa) ofo/at, ) dar. (34)

But the right side of (3.4) is a continuously differentiable function of «,, Since

O[r--

m(oc/oa‘) has this property and the integral is over a finite interval, f (o) is
continuously differentiable.

Similarly, if we do similar procedures for (ocz), we obtain differentiability on R".

f(cxz) = -C—Iof(a,,ocz,...,ocn) m(ocl,az,...,cxn) do, i=134,.

fa,)= 1 Tf(cx) ofa/o,)do .
C e
Briefly (ocz) is continuously differentiable on R". If we continue in this way get

fle)-

O|.—n

T( 150y senes O nl)co(ocl,ocz,...,onn_,)doci, i=123,.,n-
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and we have
£, )=

c
Then f (ocn) is continuously differentiable on R". Since functions
f((x,),f (oaz),f(ocs),....,f (ee,) are continuously differentiabile, then representation
f—f (a,,ocz,...,cxn) are continuously differentiable in R".

ff(e) olo/ar, ) do, i=123,..,n-1
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