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ABSTRACT

Let A bea mxn complex matrix with 0 = 0, 2...2 0, andlet | <k </ <. Bounds
for 0y..0,, 0.0, and O, _,,...0, ,ivoving k, 1, 7,(c;), &; and det A where
r; (C,-) is the Euclidean norm of the i-th row (colummn) of A and &, ’s are positive real numbers such

that 0!12 +a22 +...+a: = N, are presented.

1. INTRODUCTION AND PRELIMINARIES

Let 4 be nxn an complex matrix . Let ©, (A) ’s be the singular values of 4
such that
o,(4)20,(4)>..>0, (4).

It is well known that

(1.1) c(4)+ 0'22(A)+...+0',f(A)="A||IZP
and

(12) o\(4)o,(4)..0,(4)=]|det 4

where ”A" - and det A denote the Frobenius norm of 4 and the determinant of 4,

respectively.

Wang and Zhang [2] have established some inequalities for the eigenvalues
of the product of positive semidefinite Hermitian matrices. Merikoski and Virtanen
[3] obtained bounds for eigenvalues using the trace and determinant. Rojo [4]
defined matrix B.
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In Section 2, we have obtained bounds for products of singular values using
bounds for eigenvalues in [3] and (1.1) and (1.2) inequalities. In Section 3, we have
found bounds for products of singular values using row (column) norm and
determinant.

Firstly, we give some preliminaries related to our study.

We define

(04 a a
) D=di ! z ... n
() "’g{nu)’rz(A)’ ’r,,<A>}’

where 7, (A) is the Euclidean norm of the i-th row of 4 and «;,,,...,&, are
positive real numbers such that
(1.4) al +al+..+al=n.

Clearly, the Euclidean norm of the coefficient matrix B=DA4 of the scaled

system is equal to x/;t_ andif o, =@, =..=«, =1 then eachrow of B is a unit
vector in the Euclidean norm. Also, we can define B=4D,
a a a

(1.5) D= diag{ . — }

c(4) ¢, (4)" ¢, (4)
where ¢; (A) is the Euclidean norm of the i-th column of 4. Again, ||B|| s Jn
and if @ =a,=..=, =1 then each column of B is a unit vector in the
Euclidean norm.

Theorem 1 [2] Let A, Be 0™ eindldlSl'1 <..<i, <n.Then

(1.6) Qai, (4B)< li[m, (4),(B)

and

1 ﬁa,uB)zlja,-, (4, (B).

t=1

Theorem 2 [1] Let Ac0™ ,Be0™ andlet 1<i <..<i, <n.Then

k k
09 [To, (4)=T To, (4, .. (8).
t=1 =1
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2. BOUNDS FOR PRODUCT OF SINGULAR VALUES USING NORM AND
DETERMINANT

We will give bounds that we obtained for singular values as a result of some

bounds for eigenvalues which is obtained in [3] where A be a square matrix with
singular values

0,20,2..20,>0.

Corollary 3 Let 1<k</<n. Then

(k1) / (k-1)
i) F AR
2.1) 5 |detA "<0,..0, <
42 I |det 4|
Corollary4 Let 1<k <n-2.Then
2.2)
AN k %(n-k-l)
oo <| 1[4l

T (detd)’ | n—k| k+1

Let 2<k <n-1.Then

nek+1 %(k—l)
21 B — k +1

22) 0O, 4.0, 2| k(det 4) —”A—"i—
’ E

Corollary 5 Let 1<k <!/<n—2.Then
(2.4)

§ -kl %(n—k)
k

|,

k
n

|det A|2(1__)I+2 (n-k+1

L0,..0;
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(=1 +1-k+1 .

|det 4] n—1{1+1
and
(t k+%(n—k)
(2.5) (n —k +1)det 4)° ” k“2 £ 0y..0;
A
E

\(l—k+1)/

P [ 21(n-1-1)
1|1 (]

“l(det ) | n—1| 141

3. BOUNDS FOR PRODUCT OF SINGULAR VALUES USING ROW
(COLUMN) NORM AND DETERMINANT

Since the matrices P4, AP and A4 have the same singular values for any
permutation matrix P, we assume for this section, without loss of generality, that the
rows and columns of A are such that

(3.1) n(A)<r(4)<..<r(4)
(.2) c(4)<c,(4)<..<c,(4)
and let

<.Z<a, <
33) O<ag,<..2a,<q

for &;’s in (1.4).
Theorem 6 Let 2<%k <n—1. Then

n—k+1 %(k—l)

(3.4) 0.0, 2 ﬁ 5 k[ﬁfv’_i_ldetAlJ (n—k+1)

i=n—k+1 “j =1 b n

where 7,’s and «;’s beasin(3.1) and (3.3), respectively.
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Proof. We write inequality (2.3) for matrix B=DA which is defined in Section 1.
Taking i, =n—k+1 and i, =n in (1.6) and applying B = DA, we obtain
(3.4).

Theorem 7 Let 1 <k <n—2.Then
(3.5)

Jin-i)

2 min(r,c;)

2 min(7,,c,) :
: 1—1[ ai, i 1 n "
3.5 e .4 = i
¢3) e-os I1 —5 [det A L—k(kﬂ}

where 7,(¢;)’s and «;’s beasin(3.1) ((32)) and (3.3), respectively.

Proof. Write (2.2) for matrix B=DA which is defined in Section 1. Taking
i =n—k+1 and i, =n in (1.7) and applying matrix B=DA. Then taking
;=1 and i, =k in (1.8) and applying matrix B=4AD which is defined in
Section 1, we have (3.5).

Theorem 8 Let 1<k <n—2.Then

' min(r. c-) 2 \%(n—k—l)

] — i) a1 T
. ; +
36) o, .0 <ﬁmm(ri’ci) =% L

) n—k+1""0 = k\k+1

a; |det A n—

where 7,(c;)’s and «;’s beasin(3.1) ((32)) and (3.3), respectively.

Proof. First, we write (2.2) according to matrix B such that ||B" P Jn. Taking
iy,=1, i, =k and iy =n—k+1, i, =n in(1.7) and applying matrices B=DA
and B = AD which are defined in Section 1, respectively, we get (3.6).
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Theorem9Let 1<k <I<n. Then

kst o 20\ (1_k+%("”k )
@7 J[E3n-k+ I{H—ildet A'J (—) <0,..0
a; n

i=] i=1 ,'

" 2 (I—kH%I(n—l—l)

¢

<11‘[-c—1 ]:[a l(n)lﬂn—l
B i=n-l+k &; 'det A| l+1

where ¢;’s and «;’s beasin(3.2) and (3.3), respectively.

Proof. We write inequality (2.1) for matrix B = AD which is defined in Section
1. Taking i, =k, i, =1 in(1.6) and applying matrix B = AD , we obtain (3.7).

Theorem 10 Let 1 <k </ < n. Then
(3.8) o o

n=I+1""""" n-k+1 <

e 2 %(n—l+k—2)
- 111 j . . Ikag b1
H_ n—l+k—1(l—k+2)

o, || detd
where 7;’s and @;’s beasin(3.1) and (3.3), respectively.

Proof. Firstly, we write inequality (2.3) for matrix B = DA which is defined in
Section 1. Then taking #, =k, i, =/ in(1.7) and applying matrix B = DA , we
have (3.8).
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Theorem 11 Let 1<k </ <n-2.Then
B39 o0 4,2

;k ;:— (gf‘;—fpet A|]2(l_kn)“2 [(n —k+ 1)(%)

i

k :|n—k+1 %(n-k)

where 7;’s and «;’s beasin(3.1) and (3.3), respectively.

Proof. Write inequality (2.4) for matrix B = DA which is defined in Section 1.
Taking i, =k, i, =1 in(1.6) and applying matrix B = DA, we get (3.9)

Theorem 12 Let 1<k </<n—2. Then

.Y iy

!

— n—l
Ly Lo 1 n Y
310) o o <=4 2=
G10) Gtus- Ek[a |det 4] I:n—l(l+l):l

H

where #;’s and «;’s beasin(3.1) and (3.3), respectively.

Proof. To show (3.10), we write (2.5) for matrix B = DA which is defined in
Section 1. Taking i, =k , i, =/ in (1.8) and applying matrix B = DA , we get
(3.10).
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Teorem 13 Let 1<k </<n-2.Then
(3.11) 0.0, <
SN Jrn-t+k-2)
”ﬁ‘ c l;[;'l . [ , )1_“2 n=l+k-1
[-k+2

det 4| | | n-1+k-1

where ¢;’s and «;’s beasin(3.2) and (3.3), respectively.

Proof. To show (3.11), write inequality (2.2) for matrix B = AD which is
defined in Section 1. Taking I, =k, i, =/ in (1.7) and applying matrix
B = AD , we get (3.11).

Theorem 14 Let 2<k <n-1. Then

o[ (2 2y ] e
(312) O, -0, 2] [ k(H—"[detAU (—)
[

=1 & i=l C; n
where ¢;’s and «;’s beasin(3.2) and (3.3), respectively.
Proof. . Write inequality (2.3) for matrix B = AD which is defined in Section 1.

Taking i, =n—k+1, iy =n in (1.6) and applying matrix B = AD, we
have inequality (3.12).
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1 21 2
11 21

Example 15 Let A= 39 1 1 Singular values of matrix A are
1 3 2 2

0,=6.673, 0, =1949, 0, =1.181 and o, = 0.521. In the following, the
best bounds are underlined.

l 1 2 3 4

k
! 0, 0,0, 0,0,05 | 0,0,030,
2 0, 0,0, 0,030,
3 O3 030,
4 o,

For product of singular values, we have the following:

1.THE VALUES OF PRODUCT OF SINGULAR VALUES
I} 1 2 3 4
k
1 6.673 13.008 15.362 8
2 1.949 2.302 1.199
3 1.181 0.615
4 0.521
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2. LOWER BOUNDS FOR PRODUCT OF SINGULAR VALUES:

(3.4

] 2 3 4

1 0.02 0.415 2.063
(3.7 -

] 2 3 4

1 0.223 0.267 2.017

2 0.032 0.038

3 0.002
(3.9

! 2 3 4

1 0.198 0.415 2.063
(3.12)

1 2 3 4

1 2.017

2 0.038

3 0.002




BOUNDS FOR PRODUCT OF SINGULAR VALUES

3. UPPER BOUNDS FOR PRODUCT OF SINGULAR VALUES:

(3.4)
2
4415.874
(3.6
{ 3 4
k
]
2
3 358.542
(.7)
2
5277.946
(3.8)
/ 3 4
k
1
2
3 27990.74
(3.10)
I 3 4
k
]
2
3 404.69

33
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(3.11)

1 390281.06

The bounds for individual singular values are found from the diagonals of these
tables.

We have seen that some bounds for o =a,=.=0q, =1 are better than those

for &, ’s (i = 1,...,n) such that af +0£22 +...+0£,2l = n while some bounds are
worse.

OZET
A, singiller degerleri 0, 20, 2...20, olan M X tipinde bir kompleks matris ve

1<k <! < n olsun. Bu calismada; 7; (C‘ i) , A mn i-inci satir Euclidean normu (stitun Euclidean
normu) ve &; ler, alz + a§ +.+a j = n olacak sekildeki pozitif reel sayilar oimak tzere

0.0, O,..0, ve O, ,,...0, isn k, n, r.(c,), o, ve det A igeren srlar
elde edildi.
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