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ON HARMONIC CURVATURES OF CURVES IN LORENTZIAN
N-SPACE

ESEN IYIGUN AND KADRI ARSLAN

ABSTRACT. In this study we consider the harmonic curvatures of a Frenet
curve in Lorentzian space L™. We give a charecterization of the rt* —curvature
center Cr(t) of a Frenet eurve of L™ with respect to its harmonic curvatures
Hj, 1<j<r.

1. INTRODUCTION

Let X = (z1,%2,...,2,) and Y = (y1,¥3, ..., ¥n) be nonzero vectors in n-dimensional
real vector space R™. For X,Y ¢ R"

(X,Y)=—z191 + Zwiyi (1.1

i=2

is called Lorentzian inner product. The couple {R™,(,)} is called Lorentzian space
and denoted by L™ [2]. The vector X of L" is called (see [7])

i) time-like if (X, X) < 0,

ii) space-like if (X, X) >0 o0r X =0,

iii) null or null vector if (X, X) = 0, X #0.

In [4] the first author consider the curvature center of the curves on a hypersur-
face M™ in E™*! which was partially contained some results from [5].

In [6] the same author consider the curvature center of the curves a hypersurface
in a n-dimensional Lorentzian space L™. She has shown that the locus of centers
of spheres that has a(t) as the r-multiple contact point with « are on the (n —r)-
curvature hyperplane D(,_,(t).

In this study we consider the harmonic curvatures of a Frenet curve in Lorentzian
space L. We give a characterization of the r** —curvature center C,(t) of a Frenet
curve of L™ with respect to its harmonic curvatures H;, 1 < j < 7. We also consider
the general helices in L™,

2. BASIC DEFINITIONS

The Frenet curvature and Frenet equations of curve L™ can be defined as follows.
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Definition 2.1. Let a: I — L"be a curve in . and ki, k3..., k(n—1) the Frenet

curvatures of &. Then for the unit tangent vector V; = o (t) over M the 3"
e-curvature function m; is defined by (see [5])

0 , i=1
m, = { (ere2)/ka 4= (21)
o —(mi—1) + Ez_zk,_zml—z} (&i)/kica , 2<iZn

where ¢; = (V;, V) = £1

Let & : I — L™ be a unit speed non-null curve in ™. The curve o 1s called Frenet
curve of osculating order d if its higher order derivatives a "(t),a” (t),...,a%t)
are linearly independent and a'(t),c (¢) ,..., a®(t), a®*1(t) are no longer linearly
independent for all t € I. For each Frenet curve of order d one can associate an
orthonormal d—frame V;, V3, ..., V; along o (such that o (t) = V1) called the Frenet
frame and d — 1 functions ki, k2, ..., k(1) : I — E called the Frenet curvatures,
such that the Frenet formulas are defined in the usual way;

Vi = Vo =ekls,
V, = Vo Vo=—eikiVi+eskV,

(2.2)
Vi = VaVi=—ea_nki-1Vi-1 +earnkiVit,

/

Vi+1 = Vv1Vi+1=—EikiVi

where V is the Levi-Civita connection of ™.

A non-null curve a : I ~— L™ is called a W-curve (or heliz) of rank d, if o is a
Frenet curve of osculating order d and the Frenet curvatures k; , 1 <4< d—1 are
non-zero constants.

Definition 2.2. Let a be a non-null curve of osculating order d. The functions
H;: I —1L" 1< j<d-2, defined by

ky
Hy = 0, Hl-—k—2
H; = {V, (HJ 1)+€J_2H] Qk} ,2<73<d~-2 (2.3)
+

are called the harmonic curvatures of a, where kq, kg, ..., k(4-1) are not necessarily
constant {1].

Proposition 1. [8] Let o be a non-null curve of osculating order d then

r—2
Epr—2 (ZHZ)
i=1
== 7 9 <d-2 24
k.(t) SHH . i<rs (2.4)

where ( H;) stands for differentiation with respect to parameter t.
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3. GENERAL HELICES IN L™
In the present section we will consider general helices in L™.

Definition 3.1. Let a be a non-null curve of osculating order d. Then « is called
a general heliz of rank (d — 2) if (see [1])

d—2
Y HZ=c, (3.1)
i=1

holds, where c is a real constant.
We have the following resuit.

Theorem 3.2. For the non-null curve of L™, if the 7" harmonic curvature H;
(7 # 1) vanishes identically, i.e. H; =0, then a is a general heliz of rank j — 1.

Proof :Let o be a non-null curve of L™ then by (2.3) the harmonic curvatures of
o become

1>
Hj = ((Hj-1)' +ej_oH;_ok;)

k1
Suppose, H; = 0 then we have
(Hj-1)' +¢€j-2H; 2k; = 0. (3.2)
So, substituting (2.4) into (3.2) we may get ‘
Hj—]H;__l +HiHy + HyHy+ -+ Hj—zH;_z = 0. (3.3)

Hence, by virtue of (3.3) an easy calculation gives

i—1
=
i=1

where ¢ =const. This completes the proof of the theorem. [

Corollary 1. If H; =0 then a is a straight line.
Corollary 2. If Hy is constant then a is a general heliz of rank 1.

Corollary 3. If a is a general heliz of rank 2 then H; +e1H1ks =0.

4. CURVATURE CENTERS OF A FRENET CURVE

In the present part we give a characterization of the curvature centers C,(t) of
a Frenet curve with respect to its harmonic curvatures H;.

Definition 4.1. Let a : ] — R7? = L" be a non-null curve. If my, ..., m,, denote
the j** e-curvature functions of & and {V}, ..., V,,} the Frenet frame field of & then

Cr(t) = a+Za]m] )t) a; = +1 4.1)

is called r** (ay, ..., a,)-curvature center of a at the point a(t) [6].

By the use of (2.1) and (2.2) with (4.1) we obtain the following result.
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Theorem 4.2. Let a be a non-null curve of L™. Then the 2™ and 3t"-curvature
centers are given by

€1€
Ca(t) = a(t) + a2 (Hlllc22) Va(t) (4.2)
and
€1€2 £1E92€E3 ’ '
Oo(t) = () + a2 ( 22V e) +0a (G2 ) (- i + AEVA)  (43)
respectively, where a; = +1 and
€1€2 E1E2E3 / ’
mo = (H1k2) , m3= (H2k3 ) (—Hyke + Hiky). (44)

Proposition 2. Let o be a Frenet curve of osculating order 3 in L3. If the 2™¢
curvature center of a lies in osculating plane of a, i.e. Ca(t) = Vi + A3V5 for
some functions \; then

)\1 = 1—620.2,
agzel \/
k1 — ks = (Z_ll) (4.5)
4 ag9€1E92E3
Ay = =123
3 Hl

where k1 # 0 and ky #£ 0.

Proof : Differentiating Ca(t) = A1(¢t)Vi + A3(t)V5 with respect to parameter ¢
and using (2.2) we get

Ca(t) = A Vi + MeokiVa + AVa + A3(—e2kaVa) (4.6)
Similarly, differentiating (4.2) we may obtain
' I E1E9 ¢ a9g€1€
Co=a () + (FL2) Vo + (T2 (—erka Vi + eskals) (47)

Hence, comparing (4.6) with (4.7) we get the result. O
As a consequence of Proposition 11 we have the following result.

Corollary 4. Let o be a heliz of osculating order 3 inL® such that the 2"? curvature
center of « lies in osculating plane of a then

Al = 2t, ag€g = -1
Az = AiHy, (4.8)
H12 —a261262€3 , €1€2 = -1

where ages = €169 = —1.

Proposition 3. Let o be a Frenet curve of osculating order 3 in L3. If the 2™¢
curvature center of a lies in normal plane of ¢, i.e. Ca(t) = A2Va + A3V3 for some
functions \; then

) O (4.9)

kq
Aoesks + )\3 = Q9E1E2€E3 ( )
where ageq # 1,k1 #£ 0 and kp # 0.

—Age1ky =1 — ageq,

)\I —- )\3€2k2 = ag€1€2 (
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Proof : Differentiating Cy(t) = Ao(t)Va + A3(t)V with respect to t and using
(2.2) we may get

Co = MVa + M(—e1ky Vi + e3kaVi) + AsVs + Aa(~e2ky V). (4.10)

Similarly, comparing (4.7) with (4.10) we get the result. O
As a consequence of Proposition 11 we have the following result.

Corollary 5. There is no heliz of osculating order 3 in L3 whose curvature center
lies in normal plane itself.

Proof :Let a be a helix of osculating order 3 in L3. Then by (4.10) we get

269 — 1
Ay = 2272
2 Elkl
A3 = 0.

So Ca(t) can not be written of the form Ca(t) = M (t)V2 + A3(t) V3. O

Proposition 4. There is no Frenet curve a in L3 of osculating order 3 which its
2" curvature center lies in the tangent plane of o.

Proof : Let the 2™® curvature center of a lies in tangent plane of o then Cy(t) =

AMW1 + A2Va. So, differentiating C»(¢) with respect to ¢t and using (2.2) we may get

Co = M Vi + M(e2kiVa) + AgVa + do(—e1ks Vi + e5kaVa). (4.11)
Furthermore, comparing (4.7) with (4.11) we may obtain

)\,1 — Aerky =1 — agmaer by,
A2k + Ay = (agmy)’, (4.12)
)\2 = asmy.

But, from 2"¢ and 37 equations we may get A; = 0. Substituting A; = 0 into (4.12)
one can show that the resultant system of differential equation is not consistent.

OZET: Bu calismada, L™ Lorentz uzayindaki Frenet egrilerinin har-
monik efrilikleri Hj, (1 < j < 7) ele ahnmistir. Bununla beraber
L™ deki Frenet egrilerinin 7—inci egrilik merkezleri Cr(t) lerin bir
karakterizasyonu verilmisgtir. Egrilerin helis olmasi durum ayrica ince-
lenmigtir.
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