ON THE HADAMARD PRODUCTS OF GCD AND LCM MATRICES

AHMET ALI ÖÇAL
Department of Mathematics, Faculty of Arts and Sciences, Gazi University, Ankara, Turkey. (Received: July 21,2003; Revised: Oct.27,2003; Accepted: Oct.31,2003)

Abstract

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The matrix (S) having the greatest common divisor ($\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$) of x_{i} and x_{j} as its i, j-entry is called the greatest common divisor (GCD) matrix on S. The matrix [S] having the least common multiple $\left[x_{i}, x_{j}\right]$ of x_{i} and x_{j} as its i, j entry is called the least common multiple (LCM) matrix on S . In this paper we obtain some results related with Hadamard products of GCD and LCM matrices. The set S is factor-closed if it contains every divisor of each of its elements. It is well-known, that if S is factor-closed, then there exit the inverses of the GCD and LCM matrices on S . So we conjecture that if the set S is factor-closed, then $(\mathrm{S}) \circ(\mathrm{S})^{-1}$ and $[\mathrm{S}] \mathrm{O}[\mathrm{S}]^{-1}$ matrices are doubly stochastic matrices and $\operatorname{tr}\left((S) O(S)^{-1}\right)=\operatorname{tr}((S))=\sum_{i=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}$.

1. INTRODUCTION

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The matrix (S) having the greatest common divisor (x_{i}, x_{j}) of x_{i} and x_{j} as its i, j-entry is called the greatest common divisor (GCD) matrix on S. The study of GCD matrices was introduced by Beslin and Ligh [1]. They have shown that every GCD matrix is positive definite.

The matrix [S] having the least common multiple [x_{i}, x_{j}] of x_{i} and x_{j} as its i , j-entry is called the least common multiple (LCM) matrix on S. Smith [3] also considered the determinant of LCM matrix on a factor-closed set. We note that GCD matrix (S) and LCM matrix [S] are invertible when S is factor-closed set. In this
paper we obtained some results related with determinant, rank, norm and permanent of the Hadamard product of GCD matrix (S) and LCM matrix [S]. Moreover we conjecture that if S is factor-closed, then the Hadamard product of GCD matrix (S) and the inverse of GCD matrix (S) is a doubly stochastic matrix and also the Hadamard product of LCM matrix [S] and the inverse of LCM matrix [S] is a doubly stochastic matrix. Again we conjecture that if S is factor-closed, then

$$
\operatorname{tr}\left((\mathrm{S}) \circ(\mathrm{S})^{-1}\right)=\operatorname{tr}((\mathrm{S}))=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}
$$

2. MAIN RESULTS

Definition 1. The Hadamard product of two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of the same size is just their element-wise product $\operatorname{AoB}=\left(\mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}\right)$.

Lemma 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers.If (S) is the GCD matrix and [S] is the LCM matrix defined on S, then

$$
((S) o[S])_{i j}=\left\{\begin{array}{ccc}
x_{i}^{2} & \text { if } & i=j \\
x_{i} x_{j} & \text { if } & i \neq j
\end{array} .\right.
$$

Proof. Consider the set S and if we denote the greatest common divisor of x_{i} and x_{j} with (x_{i}, x_{j}) and the least common multiple of x_{i} and x_{j} with $\left[x_{i}, x_{j}\right]$, then we have

$$
\left(x_{i}, x_{j}\right)\left[x_{i}, x_{j}\right]=x_{i} x_{j},(i, j=1,2, \ldots, n .)
$$

Therefore by the definition 1 , we get the proof.

Remark 1. Clearly (S)o[S] matrix is symmetric.

Theorem 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. If (S) is the GCD matrix and $[S]$ is the LCM matrix defined on S, then

$$
\operatorname{det}((S) o[S])=0
$$

Proof. By Lemma 1 and using the properties of determinants we have

$$
\begin{aligned}
\operatorname{det}((S) o[S]) & =\operatorname{det}\left[\begin{array}{cccc}
x_{1}^{2} & x_{1} x_{2} & \ldots & x_{1} x_{n} \\
x_{2} x_{1} & x_{2}^{2} & \ldots & x_{2} x_{n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{n} x_{1} & x_{n} x_{2} & \ldots & x_{n}^{2}
\end{array}\right] \\
& =\left(x_{1} x_{2} \ldots x_{n}\right) \operatorname{det}\left[\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & x_{2} & \ldots & x_{n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] \\
& =\left(x_{1} x_{2} \ldots x_{n}\right) \cdot 0 \\
& =0
\end{aligned}
$$

and thus the proof is complete.

Definition 2. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The matrix $1 /(S)$ is the $n \times n$ matrix whose i, j-entry is $\frac{1}{\left(x_{i}, x_{j}\right)}$. We call $1 /(S)$ the reciprocal $G C D$ matrix on S.

Corollary 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. If (S) is the GCD matrix and $1 /(S)$ is the reciprocal GCD matrix defined on S, then

$$
\operatorname{det}((S)) \mathrm{l} /(\mathrm{S}))=0
$$

Proof. Since (S)ol/(S) is the matrix whose all entries are equal to 1 , it is easily seen that

$$
\operatorname{det}((S) \mathrm{ol} /(\mathrm{S}))=0
$$

Theorem 2. If (S) and [S] are the GCD and LCM matrices defined on $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ the set of distinct positive integers, respectively, then

$$
\operatorname{rank}((S) \mathrm{o}[\mathrm{~S}])=1
$$

Proof. Firstly by Theorem 1 we say that $\operatorname{rank}((S) \circ[S])<n$. If we denote the rows of $(S) o[S]$ with $r_{i}(i=1,2, \ldots n)$, then we can write

$$
\begin{aligned}
& r_{\mathrm{t}}=x_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& r_{2}=x_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
r_{n}=x_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

So we write

$$
r_{1}=\frac{x_{1}}{x_{i+1}} r_{i+1} \quad i=1,2, \ldots, n-1
$$

Therefore r_{1} is a multiple of the rows $r_{2}, r_{3}, \ldots, r_{n}$. Hence by the elementary row operations it follows that the number of row which isn't zero of the matrix (S)o[S] is 1 and thus the proof is complete.

Definition 3. Let $A=\left(a_{i j}\right)$ be $n \times n$ matrix over any commutative ring. The permanent of A written per(A), or simply PerA, is defined by

$$
\operatorname{per}(\mathrm{A})=\sum_{\sigma} \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i} \sigma(\mathrm{i})}
$$

where the summation extends over all one-to-one functions from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, n\}$.

Now we can state the following result.

Theorem 3. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered set of distinct positive integers. If (S) and $[S]$ are the GCD and LCM matrices defined on S, respectively, then

$$
\operatorname{per}((S) o[S])=n!\prod_{i=1}^{n} x_{i}^{2}
$$

Proof. For the brevity if we take $C=(S) \circ[S]$ and $C=\left(c_{i j}\right)$ then by the Definition 3, we have

$$
\operatorname{per}(\mathrm{C})=\sum_{\sigma} \mathrm{c}_{1 \sigma(1)} \mathrm{c}_{2 \sigma(2)} \ldots \mathrm{c}_{\mathrm{n} \mathrm{\sigma(n)}}
$$

On the other hand we note that the sequence $\left(c_{1 \sigma(1)}, c_{2 \sigma(2)}, \ldots, c_{n \sigma(n)}\right)$ is called a diagonal of C , and the product $c_{1 \sigma(1)} c_{2 \sigma(2)} \ldots c_{n \sigma(n)}$ is a diagonal product of C . Thus the permanent of C is the sum of all diagonal products of C . Considering the structure of the matrix $C=(S) \mathrm{o}[S]$ we get result.

Corollary 2. If (S) is the GCD matrix defined on the set S of distinct positive integers, and $1 /(\mathrm{S})$ is the reciprocal matrix of GCD matrix, then

$$
\operatorname{per}((\mathrm{S}) \circ 1 /(\mathrm{S}))=\mathrm{n}!
$$

Proof. Since (S)o1/(S) is the matrix whose all entries are equal to 1 , it is easily seen that

$$
\operatorname{per}((\mathrm{S}) \mathrm{ol} /(\mathrm{S}))=\mathrm{n}!
$$

Definition 4.(i) The $\quad 1$ norm is defined for $A \in M_{n}$ by

$$
\|A\|_{1}=\sum_{i, j=1}^{n}\left|a_{i j}\right| .
$$

(ii) The Euclidean norm or 2 norm is defined for $A \in M_{n}$ by

$$
\|A\|_{2}=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

(iii) The $\quad \infty$ norm is defined for $A \in M_{n}$ by

$$
\|A\|_{\infty}=\max _{1 \leq i, j \leq n}\left|a_{i j}\right| .
$$

(iv) The maximum row sum matrix norm is defined $A \in M_{n}$ by

$$
\|A\|_{r}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

(v) The maximum column sum matrix norm is defined for $A \in M_{n}$ by

$$
\|A\|_{c}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| .
$$

Theorem 4. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered set of distinct positive integers. If (S) and $[S]$ are the GCD and LCM matrices defined on S, respectively, then the following statements are satisfied:
(i) $\|(\mathrm{S}) \mathrm{o}[\mathrm{S}]\|_{1}=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)^{2}$
(ii) $\|$ (S)o[S] $\|_{2}=\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}^{2}$
(iii) $\|(S) \mathrm{O}[\mathrm{S}]\|_{\infty}=\mathrm{x}_{\mathrm{n}}^{2}$
(iv) $\|(S) o[S]\|_{r}=\|(S) o[S]\|_{c}=x_{n}\left(\sum_{i=1}^{n} x_{i}\right)$.

Proof. If we denote i-th row sum of (S)o[S] with $r_{S_{i}}(I=1,2, \ldots, n)$. Then we can write

$$
\begin{gathered}
r_{S_{1}}=x_{1}\left(\sum_{i=1}^{n} x_{i}\right) \\
r_{S_{2}}=x_{2}\left(\sum_{i=1}^{n} x_{i}\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
r_{S_{n}}=x_{n}\left(\sum_{i=1}^{n} x_{i}\right)
\end{gathered}
$$

So we have

$$
\begin{aligned}
\|(S) O[S]\|_{1} & =r_{S_{1}}+r_{S_{2}}+\ldots+r_{S_{n}} \\
& =x_{1}\left(\sum_{i=1}^{n} x_{i}\right)+x_{2}\left(\sum_{i=1}^{n} x_{i}\right)+\ldots+x_{n}\left(\sum_{i=1}^{n} x_{i}\right) \\
& =\left(x_{1}+x_{2}+\ldots+x_{n}\right)\left(\sum_{i=1}^{n} x_{i}\right) \\
& =\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

(ii) Again for the brevity let take as $\mathrm{C}=(\mathrm{S}) \mathrm{o}[\mathrm{S}]$ and $\mathrm{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$. Then we have

$$
\operatorname{tr}\left(\mathrm{CC}^{\mathrm{T}}\right)=\sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{n}}\left|\mathrm{c}_{\mathrm{ij}}\right|^{2}=\|\mathrm{C}\|_{2}^{2}
$$

On the other hand from the structure of the matrix $(\mathrm{S}) \mathrm{o}[\mathrm{S}]$, it is easily seen that

$$
\operatorname{tr}\left(C^{T}\right)=\left(\sum_{i, j=1}^{n} x_{i}{ }^{2}\right)^{2}
$$

So we obtain

$$
\|C\|_{2}=\sum_{i=1}^{n} x_{i}{ }^{2} .
$$

(iii) Since $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an ordered set of distinct positive integers, without loosing the generality we can assume that $X_{1}<X_{2}<\ldots<X_{n}$. Considering the definition of ∞_{∞} norm we find

$$
\|(S) o[S]\|_{\infty}=x_{n}^{2} .
$$

(iv) Clearly since (S) $\mathrm{o}[\mathrm{S}]$ is symmetric, we have

$$
\|(\mathrm{S}) \mathrm{o}[\mathrm{~S}]\|_{\mathrm{r}}=\|(\mathrm{S}) \mathrm{o}[\mathrm{~S}]\|_{\mathrm{c}} .
$$

On the other hand we can assume that $\mathrm{X}_{1}<\mathrm{X}_{2}<\ldots<\mathrm{X}_{\mathrm{n}}$. Therefore by the definition maximum row sum matrix norm (or maximum column sum matrix norm) we have

$$
\|(S) o[S]\|_{r}=\|(S) o[S]\|_{c}=x_{n}\left(\sum_{i=1}^{n} x_{i}\right) .
$$

Thus the Theorem 4 is completely proved.

Definition 5. A set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of positive integers is said to be factor-closed (FC) is whenever x_{i} is in S and d divides x_{i}, then d is in S.

The above definition is due to J.J. Malone.

Remark 2. We note that if the set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of distinct positive integers is not factor-closed, then an LCM matrix may not be invertible. But the GCD matrix (S) defined on any set S of distinct positive integers is always invertible.

Theorem 5. [2] Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. If S is factor-closed, then the inverse of the GCD matrix (S) defined on S is the matrix $(S)^{-1}=\left(t_{i j}\right)$, where

$$
\mathrm{t}_{\mathrm{ij}}=\sum_{\substack{x_{i}\left|x_{k} \\ \mathrm{x}_{\mathrm{j}}\right| \mathrm{x}_{\mathrm{k}}}} \frac{1}{\varphi\left(\mathrm{x}_{\mathrm{k}}\right)} \mu\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{i}}\right) \mu\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{j}}\right)
$$

$\varphi($.$) is Euler's totient function and \mu($.$) denotes Moebius function.$

Now we present the following.

Conjecture 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $(S)^{-1}$ be the inverse of the GCD matrix (S) defined on S. If S is factor-closed, then $(S) o(S)^{-1}$ is a doubly stochastic matrix, i.e.,

$$
\sum_{j=1}^{n}\left\{\left(x_{i}, x_{j}\right) \sum_{\substack{x_{i}\left|x_{k} \\ x_{j}\right| x_{k}}} \frac{1}{\varphi\left(x_{k}\right)} \mu\left(x_{k} / x_{i}\right) \mu\left(x_{k} / x_{j}\right)\right\}=1 \quad(i=1,2, \ldots, n)
$$

and

$$
\sum_{i=1}^{n}\left\{\left(x_{i}, x_{j}\right) \sum_{\substack{x_{i}\left|x_{k} \\ x_{j}\right| x_{k}}} \frac{1}{\varphi\left(x_{k}\right)} \mu\left(x_{k} / x_{i}\right) \mu\left(x_{k} / x_{j}\right)\right\}=1 \quad(j=1,2, \ldots, n)
$$

Theorem 6. [2] Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. If S is factor-closed, then the inverse of the LCM matrix [S] defined on S is the matrix , where

$$
\mathrm{b}_{\mathrm{ij}}=\frac{1}{\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}} \sum_{\substack{x_{i}\left|x_{k} \\ x_{j}\right| x_{k}}} \frac{1}{g\left(x_{k}\right)} \mu\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{i}}\right) \mu\left(\mathrm{x}_{\mathrm{k}} / \mathrm{x}_{\mathrm{j}}\right)
$$

and g is defined for each positive integer m by

$$
\mathrm{g}(\mathrm{~m})=\frac{1}{\mathrm{~m}} \sum_{\mathrm{d} \mid \mathrm{m}} \mathrm{~d} \mu(\mathrm{~d})
$$

Conjecture 2. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $[S]^{-1}$ be the inverse of the LCM matrix [S] defined on S. If S is factor-closed, then $[\mathrm{S}] \mathrm{o}[\mathrm{S}]^{-1}$ is a doubly stochastic matrix, i.e.,

$$
\sum_{j=1}^{n}\left\{\frac{\left[x_{i}, x_{j}\right]}{x_{i} x_{j}} \sum_{\substack{x_{i}\left|x_{k} \\ x_{j}\right| x_{k}}} \frac{1}{g\left(x_{k}\right)} \mu\left(x_{k} / x_{i}\right) \mu\left(x_{k} / x_{j}\right)\right\}=1 \quad(i=1,2, \ldots, n)
$$

and

Conjecture 3. . Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers and $(S)^{-1}$ be the inverse of the GCD matrix (S) defined on S. If S is factor-closed, then

$$
\operatorname{tr}\left((S) \circ(S)^{-1}\right)=\operatorname{tr}((S))=\sum_{i=1}^{n} x_{i}
$$

i.e.,

$$
\sum_{i=1}^{n}\left\{x_{i} \sum_{x_{i} \mid x_{k}} \frac{1}{\varphi\left(x_{k}\right)} \mu^{2}\left(x_{k} / x_{i}\right)\right\}=\sum_{i=1}^{n} x_{i}
$$

Remark 3. The Conjecture 3 is not true for $[\mathrm{S}] \mathrm{o}[\mathrm{S}]^{-1}$ matrix, i.e.,

$$
\operatorname{tr}\left([\mathrm{S}] \mathrm{o}[\mathrm{~S}]^{-1}\right) \neq \operatorname{tr}([\mathrm{S}])=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}
$$

For example, if $S=\{1,2,4\}$ (we note that the set S is factor-closed), then we have the following:

$$
[S]=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 2 & 4 \\
4 & 4 & 4
\end{array}\right],[S]^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & \frac{-3}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{-1}{4}
\end{array}\right]
$$

and

$$
[\mathrm{S}] \mathrm{o}[\mathrm{~S}]^{-1}=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -3 & 2 \\
0 & 2 & -1
\end{array}\right]
$$

Thus since $\operatorname{tr}\left([S] o[S]^{-1}\right)=-5$ and $\operatorname{tr}([S])=\sum_{i=1}^{n} x_{i}=7$, it follows that $\operatorname{tr}\left([\mathrm{S}] \mathrm{o}[\mathrm{S}]^{-1}\right) \neq \operatorname{tr}([\mathrm{S}])$.

REFERENCES

[1] S.Beslin and S.Ligh, Greatest Common Divisor Matrices, Linear Algebra and Its Appl., 118:69-76 (1989)
[2] K.Bourque and S.Light, On GCD and LCM Matrices, Linear Algebra and Its Appl., 174:65-74 (1992)
[3] H.J.S.Smith, On the Value of a Certain Arithmetical Determinant, Proc. London Math. Soc., 7:208-212 (1875-1876)

