## NEW CRITERIA FOR MEROMORPHIC CONVEX FUNCTIONS

M. K. AOUF ,F. M. AL-OBOUDI AND M. M. HAIDAN

ABSTRACT. Let  $Q(\alpha)$  be the class of functions of the form

$$f(z) = \frac{a_{-1}}{z} + \sum_{k=0}^{\infty} a_k z^k \quad (a_{-1} \neq 0)$$

which are regular in the punctured disc  $U^* = \{z : 0 < |z| < 1\}$  and satisfying

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}f(z)\right)'}{\left(D^{n}f(z)\right)'} - 2\right\} < -\alpha, \quad 0 \le \alpha < 1, \quad |z| < 1,$$

$$N_{n} = \{0, 1, 2, \dots\}, \quad |z| < 1,$$

and  $n \in N_0 = \{0, 1, 2, ...\}$ , where

$$D^{n}f(z) = \frac{a_{-1}}{z} + \sum_{k=2}^{\infty} k^{n} a_{k-2} z^{k-2}.$$

It is proved that  $Q_{n+1}(\alpha) \subset Q_n(\alpha)$ . Since  $Q_0(\alpha)$  is the class of meromorphically convex functions of order  $\alpha(0 \le \alpha < 1)$  the members of  $Q_n(\alpha)$  are meromorfically convex. Further property preserving integrals are considered.

## 1. Introduction

Let  $\sum$  denotes the class of functions of the form

$$f(z) = \frac{a_{-1}}{z} + \sum_{k=0}^{\infty} a_k z^k \quad (a_{-1} \neq 0)$$
 (1.1)

which are regular in the punctured disc  $U^* = \{z : 0 < |z| < 1\}$ . Define

$$D^{0}f(z) = f(z), \qquad (1.2)$$

$$D^{1}f(z) = \frac{a_{-1}}{z} + 2a_{o} + 3a_{1}z + 4a_{2}z^{2} + \dots$$

$$= \frac{(z^{2}f(z))'}{z}, \qquad (1.3)$$

$$D^{2}f(z) = D\left(D^{1}f(z)\right), \tag{1.4}$$

and for n = 1, 2, 3, ...

Received by the editors Jan 26, 2005, Accepted: March 24, 2005. 1991 Mathematics Subject Classification. 30C45, 30C50.

$$D^{n}f(z) = D(D^{n-1}f(z))$$

$$= \frac{a_{-1}}{z} + \sum_{m=2}^{\infty} m^{n} a_{m-2} z^{m-2}$$

$$= \frac{(z^{2}D^{n-1}f(z))'}{z}.$$
(1.5)

In this paper, we shall show that a function f(z) in  $\sum$ , which satisfies are of the conditions

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}f(z)\right)'}{\left(D^{n}f(z)\right)'}-2\right\}<-\alpha, \quad |z|<1,\tag{1.6}$$

 $0 \le \alpha < 1$ , and  $n \in N_0 = \{0, 1, 2, ...\}$ , is convex of order  $\alpha$  in 0 < |z| < 1. More precisely it is proved that for the classes  $Q_n(\alpha)$  of functions in  $\sum$  satisfying (1.6),

$$Q_{n+1}(\alpha) \subset Q_n(\alpha) \quad (n \in N_0, \ 0 \le \alpha < 1) \tag{1.7}$$

holds. Since  $Q_0(\alpha)$  equals  $\sum_k (\alpha)$  (the class of meromorphically convex functions of order  $\alpha$ ,  $(0 \le \alpha < 1)$  the convexity of members of  $Q_n(\alpha)$  is a consequence of (1.7). Further property preserving integrals are considered, a known result of Goel and Sohi [2, Corollary 1] is obtained as a particular case and a result of Bajapi [1, Theorem 1] is extended.

In [4] Uralegaddi and Somanatha obtained a new criterion for meromorphic starlike univalent functions via the basic inclusion relationship  $B_{n+1}(\alpha) \subset B_n(\alpha)$ ,  $0 \le \alpha < 1$  and  $n \in N_0$ , where  $B_n(\alpha)$  is the class of function  $f(z) \in \sum$  satisfying

$$\operatorname{Re}\left\{ \frac{D^{n+1}f\left( z\right) }{D^{n}f\left( z\right) }-2\right\} <-\alpha,$$

 $0 \le \alpha < 1, n \in N_0 \text{ and } |z| < 1.$ 

## 2. Properties of the class $Q_n\left(lpha ight)$

In proving our main results (Theorem 1 and Theorem 2 below), we shall need the following lemma due to Jack [3].

**Lemma 2.1.** Let w(z) be non-constant regular in  $U = \{z : |z| < 1\}$ , w(0) = 0. If w(z) attains its maximum value on the circle |z| = r < 1 at  $z_o$ , we have  $z_ow'(z_o) = kw(z_o)$ , where k is a real number,  $k \ge 1$ .

**Theorem 2.2.**  $Q_{n+1}(\alpha) \subset Q_n(\alpha)$  for each integer  $n \in N_0$ .

*Proof.* Let  $f(z) \in Q_{n+1}(\alpha)$ . Then

$$\operatorname{Re}\left\{ \frac{\left(D^{n+2}f(z)\right)'}{\left(D^{n+1}f(z)\right)'} - 2 \right\} < -\alpha, \quad |z| < 1.$$
 (2.1)

We have to show that (2.1) implies the inequality

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}f(z)\right)'}{\left(D^{n}f(z)\right)'}-2\right\}<-\alpha. \tag{2.2}$$

Define a regular function  $w\left(z\right)$  in the unit disc  $U=\left\{z:\left|z\right|<1\right\}$  by

$$\frac{\left(D^{n+1}f(z)\right)'}{\left(D^{n}f(z)\right)'} - 2 = -\frac{1 + (2\alpha - 1)w(z)}{1 + w(z)}.$$
 (2.3)

Clearly w(0) = 0. Equation (2.3) may be written as

$$\frac{\left(D^{n+1}f(z)\right)'}{\left(D^{n}f(z)\right)'} = \frac{1 + (3 - 2\alpha)w(z)}{1 + w(z)}.$$
(2.4)

Differentiating (2.4) logarithmically, we obtain

$$\frac{z\left(D^{n+1}f(z)\right)''}{\left(D^{n+1}f(z)\right)'} - \frac{z\left(D^{n}f(z)\right)''}{\left(D^{n}f(z)\right)'} = \frac{(3-2\alpha)zw'(z)}{1+(3-2\alpha)w(z)} - \frac{zw'(z)}{1+w(z)}.$$
 (2.5)

From the following identity

$$z(D^{n}f(z))' = D^{n+1}f(z) - 2D^{n}f(z)$$
 (2.6)

we have

$$z(D^{n}f(z))'' = (D^{n+1}f(z))' - 3(D^{n}f(z))'.$$
(2.7)

Using the identity (2.7), equation (2.5) may be written as

$$\frac{\frac{\left(D^{n+2}f(z)\right)'}{\left(D^{n+1}f(z)\right)'} - 2 + \alpha}{1 - \alpha} = \frac{2zw'(z)}{\left(1 + w(z)\right)\left[1 + (3 - 2\alpha)w(z)\right]} - \frac{1 - w(z)}{1 + w(z)} \tag{2.8}$$

We claim that |w(z)| < 1 for  $z \in U$ . For otherwise by the above lemma there exists  $|z_o| < 1$  such that

$$z_o w'(z_o) = k w(z_o), \qquad (2.9)$$

where  $|w(z_o)| = 1$  and  $k \ge 1$ . From (2.8) and (2.9) we obtain

$$\frac{\frac{\left(D^{n+2}f(z_o)\right)'}{\left(D^{n+1}f(z_o)\right)'} - 2 + \alpha}{1 - \alpha} = \frac{2kw(z_o)}{\left(1 + w(z_o)\right)\left[1 + (3 - 2\alpha)w(z_o)\right]} - \frac{1 - w(z_o)}{1 + w(z_o)}.$$
 (2.10)

Thus

$$\operatorname{Re}\left\{\frac{\frac{\left(D^{n+2}f(z_o)\right)'}{\left(D^{n+1}f(z_o)\right)'}-2+\alpha}{1-\alpha}\right\} \geq \frac{1}{2\left(1-\alpha\right)} > 0$$

which contradicts (2.1). Hence |w(z)| < 1 for  $z \in U$  and from (2.2) it follows that  $f(z) \in Q_n(\alpha)$ .

**Theorem 2.3.** Let  $f(z) \in \sum$  and for a given  $n \in N_0$  and c > 0, satisfy the condition

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}f\left(z\right)\right)'}{\left(D^{n}f\left(z\right)\right)'}-2\right\}<-\alpha+\frac{1-\alpha}{2\left(1-\alpha+c\right)}.\tag{2.11}$$

Then

$$F(z) = \frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) dt \qquad (2.12)$$

belongs to  $Q_n(\alpha)$ .

*Proof.* From the definition of F(z) we have

$$z(D^{n}F(z))' = cD^{n}f(z) - (c+1)D^{n}F(z)$$
(2.13)

and also

$$z(D^{n}F(z))' = D^{n+1}F(z) - 2D^{n}F(z)$$
. (2.14)

Using (2.13) and (2.14) the condition (2.11) may be written as

$$\operatorname{Re}\left\{\frac{\frac{\left(D^{n+2}F(z)\right)'}{\left(D^{n+1}F(z)\right)'} + (c-1)}{1 + (c-1)\frac{D^{n}F(z)}{D^{n+1}F(z)}} - 2\right\} < -\alpha + \frac{1-\alpha}{2\left(1-\alpha+c\right)}.$$
 (2.15)

We have to prove that (2.14) implies the inequality

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}F\left(z\right)\right)'}{\left(D^{n}F\left(z\right)\right)'}-2\right\}<-\alpha.$$

Define a regular function w(z) in the unit disc U by

$$\frac{\left(D^{n+1}F(z)\right)'}{\left(D^{n}F(z)\right)'} - 2 = \frac{1 + (2\alpha - 1)w(z)}{1 + w(z)},\tag{2.16}$$

clearly w(0) = 0. The equation (2.16) may be written as

$$\frac{\left(D^{n+1}F(z)\right)'}{\left(D^{n}F(z)\right)'} = \frac{1 + (3 - 2\alpha)w(z)}{1 + w(z)}.$$
(2.17)

Differentiating (2.17) logarthmically and simplifying we obtain

$$\frac{\left(D^{n+2}F(z)\right)'}{(D^{n+1}F(z))'} + (c-1) + (c-1) - 2 = -\left[\alpha + (1-\alpha)\frac{1-w(z)}{1+w(z)}\right] + \frac{2(1-\alpha)zw'(z)}{(1+w(z))[c+(2-2\alpha+c)w(z)]}.$$
(2.18)

The remaining part of the proof is similar to that of Theorem2.

Puting n = 0 and c = 1 in Theorem 3, we obtain the following result:

Corollary 1. If  $f(z) \in \sum$  and satisfies

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\}<-\alpha+\frac{1-\alpha}{2(2-\alpha)}$$

then

$$F(z) = \frac{1}{z^2} \int_{0}^{z} t f(t) dt$$

belongs to  $\sum_{k} (\alpha)$ .

Putting  $\alpha = 0$  and  $a_{-1} = 1$  in Corollary 1 we obtain the following result of Goel and Sohi [2].

Corollary 2. If 
$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k \in \sum satisfies$$

$$\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} < \frac{1}{4}$$

then

$$F(z) = \frac{1}{z^2} \int_{0}^{z} t f(t) dt$$

belongs to  $\sum_{k}$ .

Remark 2.4. Corollary 2 extends a result of Bajpai [1].

**Theorem 2.5.**  $f(z) \in Q_n(\alpha)$  if and only if

$$F\left(z\right) = \frac{1}{z^{2}} \int_{0}^{z} t f\left(t\right) dt \in Q_{n+1}\left(\alpha\right).$$

*Proof.* Proof. From the definition of F(z), we have

$$D^{n}(zF'(z)) + 2D^{n}F(z) = D^{n}f(z),$$

that is,

$$z(D^{n}F(z))' + D^{n}F(z) = D^{n}f(z)$$
 (2.19)

By using the identity (2.6), (2.19) reduces to  $D^n f(z) = D^{n+1} F(z)$ . Hence  $\left(D^{n+1} f(z)\right)' = \left(D^{n+2} F(z)\right)'$ . Therefore

$$\frac{\left(D^{n+1}f\left(z\right)\right)'}{\left(D^{n}f\left(z\right)\right)'} = \frac{\left(D^{n+2}F\left(z\right)\right)'}{\left(D^{n+1}F\left(z\right)\right)'}$$

and the result follows.

ÖZET:  $Q(\alpha)$ ,  $disc~U^*=\{z:0<|z|<1\}$  delik yuvarında reguler olan ve  $n\in N_0=\{0,1,2,\ldots\}$  için

$$D^{n} f(z) = \frac{a_{-1}}{z} + \sum_{k=2}^{\infty} k^{n} a_{k-2} z^{k-2}.$$

olmak üzere

$$\operatorname{Re}\left\{\frac{\left(D^{n+1}f\left(z\right)\right)'}{\left(D^{n}f\left(z\right)\right)'}-2\right\}<-\alpha,\ 0\leq\alpha<1,|z|<1,$$

koşulunu gerçekleyen

$$f(z) = \frac{a_{-1}}{z} + \sum_{k=0}^{\infty} a_k z^k \quad (a_{-1} \neq 0)$$

formundaki fonksiyonların sınıfı olsun.

Bu çalışmada  $Q_{n+1}(\alpha) \subset Q_n(\alpha)$  olduğu gösterilmiştir.  $Q_0(\alpha)$ ,  $\alpha$  yıncı mertebeden  $(0 \le \alpha < 1)$  meromorfik konveks fonksiyonların sınıfı olduğundan  $Q_n(\alpha)$  nın elemanları da meromorfik konvekstir.

Ayrıca özelik koruyan integraller de incelenmiştir.

## REFERENCES

- S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl. 22 (1977), 295-297.
- [2] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat. 17 (1981), 19-28.
- [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 2 (1971), no. 3, 469-474.
- [4] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 43 (1991), 137-140.

Current address: Mathematics Department Girls Collage of Education, Science Section Sitteen Street, MALAZ RIYADH, SAUDI ARABIA

E-mail address: fma34@yahoo.com , majbh2001@yahoo.com