LINK BETWEEN CONVEX ORDERING AND LTD ORDERING

YILMAZ MEHMET AND TUNCER YALÇIN

Abstract

Two new characterizations of left tail decreasing (LTD) ordering for bivariate distributions with the identical marginals are given. Some properties of this ordering are discussed by using new characterization. Some comparisons of convex ordering and LTD ordering are made, along with applications to order statistics and Farlie- Gumbel- Morgerstern family of distributions.

1. INTRODUCTION

Convexity is a useful property to compare two real-valued functions, since functions with such a property protrude at end points of the interval on which they are defined. The notion of one function being convex relative to another is first introduced by Hardy et al. (1934). On the other hand, Chan et al. (1985) have utilized Hardy et al.'s ideas in a univariate statistical theory. Yilmaz and Tuncer (2004) have made to carry this ordering notion over to bivariate case.

For the purpose, we consider $\mathcal{F}_{c}\left(F_{X}, F_{Y}\right)$ that represents a bivariate family of continuous and increasing distribution functions with the identical marginals F_{X} and F_{Y}. Also, D is assumed to denote a subset of \Re such as $\left\{y: F_{Y}(y)>0\right\}$ and also $\mathcal{K}=\left\{\mathcal{D} \cap \Re_{2}\right\}$ is given. For the pair (X, Y) jointly distributed as $F(x, y) \in \mathcal{F}_{c}$, the conditional distribution of X given $\mathcal{B}_{y}=\{Y \leq y\}$ is defined on \mathcal{K} as the point function $\frac{F(x, y)}{F_{Y}(y)}=P\left(X \leq x \mid \mathcal{B}_{y}\right)=F_{\mathcal{B}_{y}}(x)$, or shortly $F_{y}(x)$.

Let $F_{0}(x, y)=F_{X}(x) F_{Y}(y)$ denote the independence case for the family \mathcal{F}_{c}. Since F_{0} is unique in \mathcal{F}_{c}, it can be viewed as reference point and the distributions that belong the family can be ordered according to their positions relative to this reference point. This undoubtedly will also allow determination of dependence within the family.

The purpose of this note is to give new characterization of left tail decreasing (LTD) ordering introduced by Averous and Bernadet (2000) and to compare with convex ordering.

The characterizations of LTD ordering are presented in Section 2, some properties are also described. LTD ordering and convex ordering are compared in Section 3. Some dependence concepts are detected by using notion of convex ordering which is stronger than LTD ordering. Illustrative examples appear in section 4 to show the relation between convex ordering and LTD ordering.

[^0]
2. CHARACTERIZATION OF LTD ORDERING

Well known bivariate positive dependence notion is the left tail decreasing (LTD) concept introduced by Esary and Proschan (1972). Given a bivariate random vector (X, Y), they defined X to be left tail decreasing in Y if $P(X \leq x \mid Y \leq y)$ is decreasing in y. Averous and Bernadet (2000) extended this concept by analogy with the work of Capéraà and Genest (1990); let $F_{y^{\prime} y}$ stand for $F_{y^{\prime}} \circ F_{y}^{-1}$ with $y<y^{\prime}$ where F_{y}^{-1} is the inverse function. If F_{y} is continuous and increasing on its support for all y, then

$$
\begin{aligned}
F \text { is } L T D & \Longleftrightarrow \forall y<y^{\prime} \forall x \quad F_{y^{\prime}}(x) \leq F_{y}(x) \\
& \Longleftrightarrow \forall y<y^{\prime} \forall 0 \leq u \leq 1 \quad F_{y^{\prime} y}(u) \leq u .
\end{aligned}
$$

Accordingly, they defined LTD ordering for two arbitrary bivariate distribution functions,

$$
F<_{L T D} G \Longleftrightarrow \forall y<y^{\prime} \forall 0 \leq u \leq 1 \quad G_{y^{\prime} y}(u) \leq F_{y^{\prime} y}(u)
$$

The stronger notion of positive dependence ordering is stochastic increasing (SI), or positive regression dependence (PRD) ordering. An extension of this ordering is presented by Yanagimoto and Okamoto (1969); $F<_{S I} G$, if holds $F^{-1}\left(u \mid x^{\prime}\right) \geq$ $F^{-1}(v \mid x)$ implies $G^{-1}\left(u \mid x^{\prime}\right) \geq G^{-1}(u \mid x)$ for any $x^{\prime}>x$ and $0<u, v<1$. On the other hand, Hollander et al. (1987) proposed that $F \prec \prec^{S I H P S} G$ if and only if $P_{F}(X \leq x \mid Y=y)-P_{G}(X \leq x \mid Y=y)$ is non decreasing in y for all x. These lead us to propose new characterizations of LTD ordering by analogy. Following lemma which is the first result of this note gives an alternative form of the LTD ordering.
Lemma 2.1. Let F and $G \in \mathcal{F}_{c}\left(F_{X}, F_{Y}\right)$ then $F<_{L T D} G$ if and only if

$$
G_{y}\left(x^{\prime}\right) \geq F_{y}(x) \Rightarrow F_{y^{\prime}}(x) \geq G_{y^{\prime}}\left(x^{\prime}\right)
$$

for all $y, y^{\prime} \quad x, x^{\prime}$ with $y<y^{\prime}$.
Proof. (Sufficiency). Suppose that there exist $y<y^{\prime}$ and $0 \leq u \leq 1$ such that $F_{y^{\prime} y}(u)<G_{y^{\prime} y}(u)$ and if $x^{\prime}=G_{y}^{-1}(u)$ and $x=F_{y}^{-1}(u)$, then $G_{y}\left(x^{\prime}\right)=F_{y}(x)$ and $F_{y^{\prime}}(x)<G_{y^{\prime}}\left(x^{\prime}\right)$.
(Necessity). Suppose that $F_{y}(x)=u \forall 0 \leq u \leq 1$ i.e, $x=F_{y}^{-1}(u)$, thereby $G_{y}\left(x^{\prime}\right) \geq u$ i.e, $x^{\prime} \geq G_{y}^{-1}(u)$ such that $G_{y}\left(x^{\prime}\right) \geq G_{y^{\prime} y}(u)$ where $F_{y^{\prime}}(x) \geq G_{y^{\prime}}\left(x^{\prime}\right) \geq$ $G_{y^{\prime} y}(u)$. Hence $F_{y^{\prime} y}(u) \geq G_{y^{\prime} y}(u)$.

Lemma 2.2. Under the same assumption above lemma, $F<_{L T D} G \Longleftrightarrow F_{y}(x)-$ $G_{y}(x)$ is non decreasing in y for all x.
Proof. From the above lemma, if $F<_{L T D} G$ then $F_{y}(x)-G_{y}\left(x^{\prime}\right) \leq 0 \Rightarrow F_{y^{\prime}}(x)-$ $G_{y^{\prime}}\left(x^{\prime}\right) \geq 0$ holds for all $y<y^{\prime}$ and x, x^{\prime}. Hence for $x=x^{\prime}, F_{y}(x)-G_{y}(x) \leq$ $F_{y^{\prime}}(x)-G_{y^{\prime}}(x)$. Necessity part is similar.

Proposition 1. For any $F \in \mathcal{F}_{c}, F$ is LTD if and only if, $F_{0}<_{L T D} F$.
Proof. F is $L T D$ then $F_{y^{\prime}}(x) \leq F_{y}(x)$ for all $y, y^{\prime} x$ with $y<y^{\prime}$. Hence $F_{y^{\prime} y}(u) \leq$ $u=F_{0_{y^{\prime} y}}(u)=F_{Y}\left(F_{Y}^{-1}(u)\right), F_{0}<_{L T D} F$. Similarly, $F_{0}<_{L T D} F$ then $F_{y}\left(x^{\prime}\right) \geq$ $F_{Y}(y) \Rightarrow F_{y^{\prime}}\left(x^{\prime}\right) \leq F_{Y}(y)$, it follows that $F_{y^{\prime}}\left(x^{\prime}\right) \leq F_{y}\left(x^{\prime}\right)$ for all $y<y^{\prime}$ and x^{\prime}.

Proposition 2. Let F and $G \in \mathcal{F}_{c}$, then $F<_{L T D} G$ implies G is more positively quadrant dependent than F, i.e $F<_{P Q D} G$.

Proof. For any $F \in \mathcal{F}_{c}, F$ is a non decreasing function of each argument, namely $F\left(x^{\prime}, y^{\prime}\right)-F\left(x^{\prime}, y\right)-F\left(x, y^{\prime}\right)+F(x, y) \geq 0$ holds for all $x<x^{\prime}$ and $y<y^{\prime} . G_{y}\left(x^{\prime}\right) \geq$ $F_{y}(x)$ and $F_{y^{\prime}}(x) \geq G_{y^{\prime}}\left(x^{\prime}\right)$ exist for all $y<y^{\prime}$ and x, x^{\prime}. Assume that $x<x^{\prime}$ then $F\left(x^{\prime}, y^{\prime}\right)-F\left(x^{\prime}, y\right)-G\left(x^{\prime}, y^{\prime}\right)+G\left(x^{\prime}, y\right) \geq 0$, under the same margins condition, limiting $y^{\prime} \rightarrow \infty, \lim _{y^{\prime} \rightarrow \infty} F\left(x^{\prime}, y^{\prime}\right)-G\left(x^{\prime}, y^{\prime}\right)=0$ then $G\left(x^{\prime}, y\right)-F\left(x^{\prime}, y\right) \geq 0$ hence $G\left(x^{\prime}, y\right) \geq F\left(x^{\prime}, y\right)$ for all $\left(x^{\prime}, y\right)$, i.e $F<_{P Q D} G$.

3. CONVEX ORDERING VERSUS LTD ORDERING

Before stating the results in this section we give the definition of the convex ordering introduced by Yilmaz and Tuncer (2004) for bivariate distribution functions. Let $F, G \in \mathcal{F}_{c}$, then for any $y \in \mathcal{D}$, we accordingly define $\phi_{y}(t) \equiv F_{y} \circ G_{y}^{-1}(t)$: $[0,1] \rightarrow[0,1]$. If the function $\phi_{y}(t)$ convex on $(0,1)$ for some $y \in \mathcal{D}$, then F_{y} is said to be more convex relative to G_{y} and is shortly expressed as $F_{y} \succsim G_{y}$. Similarly, if the function $\phi_{y}(t)$ convex on $(0,1)$ for all $y \in \mathcal{D}$, it is denoted as $F_{\mathcal{D}} \succsim G_{\mathcal{D}}$. Following lemma is the first result for detecting $L T D$ dependence.

Lemma 3.1. For any $F \in \mathcal{F}_{c}$, if $F_{0_{\mathcal{D}}} \succsim F_{\mathcal{D}}$ then Y is LTD in X.

Proof. Recall that a function convex (concave) if and only if, its inverse is concave (convex). Thus $\psi_{y}(t)=\phi_{y}^{-1}(t)=F_{y} F_{X}^{-1}(t)$ is concave on $(0,1)$. Hence $\frac{\psi_{y}(t)}{t}$ is non increasing in t, i.e, $\frac{F_{y} F_{X}^{-1}(t)}{t} \geq \frac{F_{y} F_{X}^{-1}\left(t^{\prime}\right)}{t^{\prime}}$, for all $t, t^{\prime} \in(0,1)$ with $t<t^{\prime}$. By setting $F_{X}^{-1}(t)=x$ and $F_{X}^{-1}\left(t^{\prime}\right)=x^{\prime}, x<x^{\prime}$ then the latter inequality can be rewritten as

$$
\begin{equation*}
\frac{F_{y}(x)}{F_{X}(x)} \geq \frac{F_{y}\left(x^{\prime}\right)}{F_{X}\left(x^{\prime}\right)} \tag{3.1}
\end{equation*}
$$

using definition of $F_{y}(x)=\frac{F(x, y)}{F_{y}(y)}$, then (3.1) implies $F_{x}(y) \geq F_{x^{\prime}}(y)$ for all $x, x^{\prime} y$ with $x<x^{\prime}$.

In the next lemma, we obtain the strongest notion of positive dependence which is called totally positive of order two ($T P_{2}$) introduced by Karlin (1968). It is emphasized that $P Q D, L T D(R T I)$ and $S I(P R D)$, well known positive dependence concepts, are exhibited since F is $T P_{2}$ (Barlow and Proschan (1975), pp. 143).
Lemma 3.2. For any $F \in \mathcal{F}_{c}$, if $F_{y^{\prime}} \succsim F_{y}$ for all $y<y^{\prime}, y, y^{\prime} \in \mathcal{D}$ then F is $T P_{2}$ and F is LTD.

Proof. $F_{y^{\prime} y}(u)$ is convex on $(0,1)$ with $F_{y^{\prime} y}(0)=0$ and $F_{y^{\prime} y}(1)=1$. Hence $F_{y^{\prime} y}(u) \leq u$ for all $u \in[0,1]$, i.e, F is $L T D$. Furthermore, $\frac{F_{y^{\prime} y}(u)}{u}$ is non decreasing in u. Since $F_{y}^{-1}(u)$ is increasing and continuous $F_{y}^{-1}(u)=x$ and $F_{y}^{-1}\left(u^{\prime}\right)=x^{\prime}$, $x<x^{\prime}$ can be taken, then $\frac{F_{y^{\prime}}(x)}{F_{y}(x)} \leq \frac{F_{y^{\prime}}\left(x^{\prime}\right)}{F_{y}\left(x^{\prime}\right)}$ can be written. It follows that $F\left(x^{\prime}, y\right) F\left(x, y^{\prime}\right) \leq F\left(x^{\prime}, y^{\prime}\right) F(x, y)$ is satisfied for all $x<x^{\prime}$ and $y<y^{\prime},(x, y) \in \Re_{2}$, i.e F is $T P_{2}$.

Following lemma gives a relation between two ordering concepts:
Lemma 3.3. For any $F, G \in \mathcal{F}_{c}, F_{\mathcal{D}} \succsim G_{\mathcal{D}}$ implies $F<_{P Q D} G$ and $F<_{L T D} G$.
Proof. $\phi_{y}(t)=F_{y} G_{y}^{-1}(t)$ is convex for all $y \in \mathcal{D}$, then $\phi_{y}(t) \leq t$, since $\phi_{y}(0)=0$ and $\phi_{y}(1)=1$. Using continuity of $G_{y}^{-1}(t)$, take $G_{y}^{-1}(t)=x$ hence $F_{y}(x) \leq G_{y}(x)$. This implies $F(x, y) \leq G(x, y)$ for all $(x, y) \in \Re_{2}$.

Proof of second part is similar to proof of lemma 3 ; if $F_{\mathcal{D}} \succsim G_{\mathcal{D}}$ then $\frac{F_{y}(x)}{G_{y}(x)}$ is non decreasing in x. Hence $\frac{F_{x}(y)}{G_{x}(y)} \leq \frac{F_{x^{\prime}}(y)}{G_{x^{\prime}}(y)}$ can be obtained. Recalling the first lemma, $F<_{L T D} G \Leftrightarrow G_{x}\left(y^{\prime}\right) \geq F_{x}(y) \Rightarrow F_{x^{\prime}}(y) \geq G_{x^{\prime}}\left(y^{\prime}\right) \forall x<x^{\prime}, y, y^{\prime}$ then for $y=y^{\prime}, \frac{F_{x}(y)}{G_{x}(y)} \leq 1 \Longrightarrow \frac{F_{x^{\prime}}(y)}{G_{x^{\prime}}(y)} \geq 1$ can be written, which implies $\frac{F_{x}(y)}{G_{x}(y)} \leq \frac{F_{x^{\prime}}(y)}{G_{x^{\prime}}(y)}$. Consequently, $F<_{L T D} G$.

Remark 3.4. $X L T D$ in Y and $Y L T D$ in X differ from each other. If one holds, the other does not need to hold.

4. Applications

There are two applications, the first illustrated by Averous and Bernadet (2000) is given for univariate case, the second is given for bivariate case:

This can be viewed as an illustration from the theory of order statistics, consider two random samples $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ from univariate distributions F and G, respectively. If $X_{(i)}$ and $Y_{(i)}$ denote i th smallest order statistic from their respective sample, let $K(x, y)$ and $H(x, y)$ stand for the distributions of $\left(X_{(1)}, X_{(n)}\right)$ and $\left(Y_{(1)}, Y_{(n)}\right)$, respectively. It is then straightforward to prove that

$$
F \succsim G \Rightarrow G \prec_{r h} F \Leftrightarrow H \prec_{L T D} K
$$

where " $\prec_{r h}$ " denotes reversed hazard order (see Shaked and Shanthikumar, pp. 24).

$$
K_{y}(x)=P_{F}\left(X_{(1)} \leq x \mid X_{(n)} \leq y\right)=1-\left[1-\frac{F(x)}{F(y)}\right]^{n}, \quad x \leq y
$$

and

$$
H_{y}(x)=P_{G}\left(Y_{(1)} \leq x \mid Y_{(n)} \leq y\right)=1-\left[1-\frac{G(x)}{G(y)}\right]^{n}, \quad x \leq y
$$

are defined. Hence

$$
K_{y^{\prime} y}(u)=1-\left[1-\frac{F(y)}{F\left(y^{\prime}\right)}\left(1-(1-u)^{\frac{1}{n}}\right)\right]^{n}
$$

and

$$
H_{y^{\prime} y}(u)=1-\left[1-\frac{G(y)}{G\left(y^{\prime}\right)}\left(1-(1-u)^{\frac{1}{n}}\right)\right]^{n}, \quad y<y^{\prime}
$$

$F \succsim G \Rightarrow G \prec_{r h} F . \phi(t)=F G^{-1}(t)$ is convex on $(0,1)$ then, $\frac{F(y)}{G(y)}$ is non decreasing in $y, \frac{F(y)}{G(y)} \leq \frac{F\left(y^{\prime}\right)}{G\left(y^{\prime}\right)}, y<y^{\prime}$, it can be rewritten as

$$
\frac{G\left(y^{\prime}\right)}{F\left(y^{\prime}\right)} \leq \frac{G(y)}{F(y)}
$$

which gives us $G \prec_{r h} F$.
$G \prec_{r h} F \Leftrightarrow H \prec_{L T D} K$. By using the latter inequality, we can also rewrite that form $\frac{F(y)}{F\left(y^{\prime}\right)} \leq \frac{G(y)}{G\left(y^{\prime}\right)}$. Hence $K_{y^{\prime} y}(u) \leq H_{y^{\prime} y}(u)$. Similarly, $H \prec_{L T D} K \Rightarrow G \prec_{r h} F$.

Let F and G be continuous and increasing on their supports and belong to FGM family of distributions, where

$$
\begin{aligned}
& F(x, y)=F_{X}(x) F_{Y}(y)\left[1+\alpha\left(1-F_{X}(x)\right)\left(1-F_{Y}(y)\right)\right] \\
& G(x, y)=F_{X}(x) F_{Y}(y)\left[1+\beta\left(1-F_{X}(x)\right)\left(1-F_{Y}(y)\right)\right]
\end{aligned}
$$

with $\alpha, \beta \in[-1,1] . F_{\alpha}$ and F_{β} stand for conditional distribution functions with $\{Y \leq y\}$, i.e.,

$$
\begin{aligned}
& F_{\alpha}(x)=F_{X}(x)\left[1+\alpha\left(1-F_{X}(x)\right)\left(1-F_{Y}(y)\right)\right] \\
& F_{\beta}(x)=F_{X}(x)\left[1+\beta\left(1-F_{X}(x)\right)\left(1-F_{Y}(y)\right)\right]
\end{aligned}
$$

then for all $\beta>\alpha, F_{\alpha} \succsim F_{\beta}$ implies $F<_{L T D} G$.
For $\beta \neq 0, \phi_{y}(t)$ can be obtained as

$$
\phi_{y}(t)=F_{\alpha} F_{\beta}^{-1}(t)=\left\{\begin{array}{ll}
\frac{k_{\alpha}}{k_{\beta}} t+\frac{\left(k_{\beta}-k_{\alpha}\right)}{2 k_{\beta}^{2}}\left[1+k_{\beta}-\sqrt{\Delta}\right] & , \quad \beta \neq 0 \\
t\left[1+k_{\alpha}(1-t)\right] & , \beta=0
\end{array},\right.
$$

where $k_{i}=i\left(1-F_{Y}(y)\right), i=\alpha, \beta$ and $\Delta=\left(1+k_{\beta}\right)^{2}-4 k_{\beta} t$. Obviously, $\phi_{y}(t)$ is continuous and twice differentiable function of t, so that $\frac{\partial^{2} \phi_{y}(t)}{\partial t^{2}} \geq 0$. Hence $\phi_{y}(t)$ is convex, i.e, $F_{\alpha} \succsim F_{\beta}$. From Lemma 5, this implies $F<_{L T D}{ }^{\partial t} G$. If someone wants to desired result, $F_{x^{\prime} x}(u)$ and $G_{x^{\prime} x}(u)$ defined as

$$
F_{x^{\prime} x}(u)= \begin{cases}u \frac{1-F_{X}\left(x^{\prime}\right)}{1-F_{X}(x)}+\alpha\left(F_{X}\left(x^{\prime}\right)-F_{X}(x)\right)\left[\frac{1+m_{\alpha}-\sqrt{\Delta_{\alpha}}}{2 m_{\alpha}^{2}}\right] & , \alpha \neq 0 \\ u & , \alpha=0\end{cases}
$$

and

$$
G_{x^{\prime} x}(u)= \begin{cases}u \frac{1-F_{X}\left(x^{\prime}\right)}{1-F_{X}(x)}+\beta\left(F_{X}\left(x^{\prime}\right)-F_{X}(x)\right)\left[\frac{1+m_{\beta}-\sqrt{\Delta_{\beta}}}{2 m_{\beta}^{2}}\right] & , \beta \neq 0 \\ u & , \beta=0\end{cases}
$$

where $m_{i}=i\left(1-F_{X}(x)\right)$ and $\Delta_{i}=\left(1+m_{i}\right)^{2}-4 m_{i} u, i=\alpha, \beta$. Let $H_{x^{\prime} x}$ stand for $F_{x^{\prime} x}-G_{x^{\prime} x}$, then $H_{x^{\prime} x}(0)=0$ and $H_{x^{\prime} x}(1)=0$. There are only two roots of $H_{x^{\prime} x}$ for all α, β and x, x^{\prime}. Stationary point of $H_{x^{\prime} x}(u)$ is $u^{*}=\frac{1}{2}+\frac{(\alpha+\beta)\left(1-F_{X}(x)\right)}{4}$, $u^{*} \in[0,1]$. This point is unique for fixed α, β and x and $\left.\frac{d^{2} H_{x^{\prime}}(u)}{d u^{2}}\right|_{u=u^{*}} \leq 0$, maximizes $H_{x^{\prime} x}(u)$. Therefore $H_{x^{\prime} x}(u)$ is positive on $[0,1]$. Hence follows the result.

ÖZET:Bu çalışmada, ortak marjinallere sahip iki boyutlu dağılımlar için tanımlanmıs olan sol kuyruktan azalan bağımlılık sıralaması için iki yeni karakterizasyon verilmiştir. Bu yeni karakterizasyonların özellikleri belirtilmiş, bazı konveks dönüşümler yardımı ile bu bağımhlık sıralaması ile konveks stralama arasındaki ilişkiden uygulamalı örnekler verilerek bahsedilmiştir.

References

[1] Averous, J. and Dortet-Bernadet, J., LTD and RTI dependence orderings. The Canadian Journal of Statistics., Vol 28. No:1, (2000). 151-157.
[2] Barlow, R. and Proschan, F., Statistical Theory of Reliability and Life Testing, 1975. Holt, Rinehart and Winston, New York.
[3] Capéraà, P. and Genest, C., Concepts de dépendance et ordres stochastiques pour des lois bidimensionnelles. The Canadian Journal of Statistics., Vol 18, (1990). 315-326.
[4] Chan, W., Proschan, F. and Sethuraman, J., Convex ordering among funcions, with applications to reliability and mathematical statistics. Topics in Statistical Dependence (Somerset, PA, 1987), (1985). 121-134. IMS Lecture Notes Monogr. Ser., 16 Inst. Math. Statistics, Hayward, CA, 1990.
[5] Esary, J.D. and Proschan, F., Relationships among some concepts of bivariate dependence. Annals of Mathematical Statistics, 43; (1972). 651-665.
[6] Hardy, G.H., Littlewood, J.E. and Pólya, G., Inequalities, 1934. Cambridge at The University Press.
[7] Hollauder M., Proschan F. and Scaning J., Information, censoring, and dependence. IMS Lecture Notes Monograph Ser., 16, (1990). 315-326.
[8] Karlin, S., Total Positivity, 1968. Standford University Press.
[9] Shaked M. and Shanthikumar, J., Stochastic Orders and Their Applications, 1994. Academic Press, New York.
[10] Yanagimoto, T. and Okamoto, M., Stochastically larger component of a random variable. Ann. Inst. Statist. Math., 21, (1969). 489-506.
[11] Yılmaz, M., Tuncer, Y., Bir ve Iki Boyutlu Dağılunlar için Konveks Sıralama, (2004). "istatistik Gunleri 2004 Sempozyumu", Kuşadass-Aydın.

Current address: Ankara University, Faculty of Science, Department of Statistics, 06100 Tandogan, Ankara TURKEY

E-mail address: yilmazm@science.ankara.edu.tr,tunceryal@ttnet.net.tr

[^0]: Received by the editors Feb. 15, 2005, Accepted: Nov. 24, 2005.
 2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
 Key words and phrases. Convex ordering, left- tail decreasing dependence, left- tail decreasing dependence ordering, bivariate dependence orderings.

