LORENTZIAN CYLINDER LIE GROUP IN R ${ }_{1}^{5}$ AND ITS A C^{∞}-ACTION

HALIT GUNDOĞAN AND KADRIYE PEKTAŞ

Abstract

In this paper, two binary operations on Lorentzian sphere in \mathbf{R}_{1}^{4} and on Lorentzian cylinder in \mathbf{R}_{1}^{5} are defined. Also, it has been shown that Lorentzian sphere in \mathbf{R}_{1}^{4} and Lorentzian cylinder in \mathbf{R}_{1}^{5} with the corresponding binary operation form Lie groups. A C^{∞}-action on Lorentzian cylinder of arbitrary radius of Lorentzian cylinder of radius one is defined in \mathbf{R}_{1}^{5} and its some properties are given. Finally, the action is expanded to \mathbf{R}_{1}^{5}.

1. Introduction

Let G be a group and also be differentiable manifold. G is called a Lie group if the group function on G as a manifold is differentiable[2].

Let G be a Lie group and M be a differentiable manifold. Then Lie group G is said to act on differentiable manifold M, if there is a mapping $\theta: G \times M \rightarrow M$ satisfying the following two conditions:
i) If $g_{1}, g_{2} \in G$, then

$$
\theta\left(g_{1}, \theta\left(g_{2}, x\right)\right)=\theta\left(g_{1} g_{2}, x\right), \quad \text { for all } x \in M
$$

ii) If e is the identity element of G then

$$
\theta(e, x)=x \quad \text { for all } x \in M
$$

When M is a C^{∞}-manifold and θ is a C^{∞}, then we speak of a C^{∞}-action[1].
If $p \in M$ the set $G_{p}=\{\theta(g, p) \mid g \in G\}$ is called the orbit of p under the $C^{\infty}{ }_{-}$ action θ of G [1].
G is said to act transitively on M if, given any two points $m_{1}, m_{2} \in M$ there is an element $g \in G$ such that $m_{2}=\theta\left(g, m_{1}\right) . G$ is said to act effectively on M if e is the only element of G such that $\theta(g, m)=m$ for all $m \in M[2]$.

Let \mathbf{R}_{1}^{n} be the vector space \mathbf{R}^{n} provided with Lorentzian inner product

$$
\langle x, y\rangle=-x_{1} y_{1}+\sum_{i=2}^{n} x_{i} y_{i}, \quad \text { for } x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

\mathbf{R}_{1}^{n} is called Lorentz spaces of n-dimension[4].
Let $d \in \mathbf{R}^{+}$,

$$
S_{1}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbf{R}_{1}^{n+1} \mid-x_{1}^{2}+\sum_{i=2}^{n+1} x_{i}^{2}=1\right\}
$$

Received by the editors Nov. 10, 2005, Accepted: Dec.09, 2005.
Key words and phrases. Lorentzian space, Lie Group, C^{∞}-Action, Lorentzian Sphere, Lorentzian Cylinder.

$$
\begin{gathered}
S^{n-1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2}=1\right\} \\
\overline{S_{1}^{1}}=\left\{\left(x_{1}, x_{2}\right) \in S_{1}^{2} \mid x_{1} \geq 1\right\} \\
\overline{S^{1}}=\left\{\left(x_{1}, x_{2}\right) \in S^{1} \mid x_{1} \geq 0\right\} \\
L C_{d}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbf{R}_{1}^{n+1} \mid-x_{1}^{2}+\sum_{i=2}^{n} x_{i}^{2}=d^{2}\right\}
\end{gathered}
$$

The function \otimes Lorentz spherical product is defined by

$$
\otimes: \overline{S_{1}^{1}} \times S^{n-1} \rightarrow S_{1}^{n}, \otimes\left((a, b),\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\left(a x_{1}, a x_{2}, \ldots, a x_{n}, b\right)
$$

The function \boxtimes Lorentz cylinderical product is defined by $\boxtimes:(\{d\} \times I R) \times S_{1}^{n-1} \rightarrow L C_{d}^{n}, \boxtimes\left((d, a),\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\left(d x_{1}, d x_{2}, \ldots, d x_{n}, a\right)$. These functions are one-to-one and onto[5].

2. Lie Group Structure of Lorentzian Sphere S_{1}^{3}

We consider the Lorentz spherical product in \mathbf{R}_{1}^{4} by

$$
\otimes: \overline{S^{1}} \times S_{1}^{2} \rightarrow S_{1}^{3}, \otimes\left((a, b),\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(a x_{1}, a x_{2}, a x_{3}, b\right) .
$$

We define a binary operation on S_{1}^{3} by

$$
\odot: S_{1}^{3} \times S_{1}^{3} \rightarrow S_{1}^{3}
$$

$x \odot y=\left(\begin{array}{c}\left(\sqrt{1-x_{4}^{2}} \sqrt{1-y_{4}^{2}}-x_{4} y_{4}\right)\left(\frac{\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{1-y_{4}^{2}}}-\frac{x_{3} y_{3}}{\sqrt{1-x_{4}^{2}} \sqrt{1-y_{4}^{2}}}}{\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{1-y_{4}^{2}}} \sqrt{1-x_{4}^{2}} \sqrt{1-y_{4}^{2}}}\right) \\ \left(x_{1} y_{2}+x_{2} y_{1}, x_{1} y_{1}+x_{2} y_{2}\right), \\ \left(\sqrt{1-x_{4}^{2}} \sqrt{1-y_{4}^{2}}-x_{4} y_{4}\right)\left(\frac{x_{3}}{\sqrt{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{1-y_{4}^{2}}}+\frac{y_{3}}{\sqrt{1-y_{4}^{2}}} \sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}}\right.\end{array}\right), ~\left(\sqrt{1-x_{4}^{2} y_{4}+\sqrt{1-y_{4}^{2}} x_{4}}\right.$.
for $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, where the function \odot is defined by the function \otimes.

The function \odot is associative. The identity element e of S_{1}^{3} according to the function \odot is $(0,1,0,0)$. Also, the inverse element of all $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S_{1}^{3}$ is $\left(-x_{1}, x_{2},-x_{3},-x_{4}\right)$. Consequently, $\left(S_{1}^{3}, \odot\right)$ is a group.

Let

$$
\begin{gathered}
U_{i}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in S_{1}^{3} \left\lvert\, \begin{array}{l}
x_{i+1}>0,1 \leq i \leq 3 \\
x_{i-2}<0,4 \leq i \leq 6
\end{array}\right.\right\}, 1 \leq i \leq 6 . \\
\varphi_{i}: U_{i} \rightarrow \mathbf{R}_{1}^{3}, \varphi_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{l}
\left(x_{1}, \ldots, \widehat{x}_{i+1}, \ldots, x_{4}\right) \text { if } 1 \leq i \leq 3 \\
\left(x_{1}, \ldots, \widehat{x}_{i-2}, \ldots, x_{4}\right) \text { if } 4 \leq i \leq 6
\end{array}\right.
\end{gathered}
$$

then S_{1}^{3} is a differentiable manifold together with its C^{∞}-structure $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{1 \leq i \leq 6}$.

$S_{1}^{3} \times S_{1}^{3}$	\odot	S_{1}^{3}
$\downarrow \varphi_{i} \times \varphi_{j}$		$\downarrow \varphi_{k} \quad 1 \leq i, j, k \leq 6$.
$\mathbf{R}_{1}^{3} \times \mathbf{R}_{1}^{3}$	$\xrightarrow{\phi}$	\mathbf{R}_{1}^{3}

From the above diagram, the function ϕ, which is the coordinate representative of the function \odot is differentiable. Consequently, S_{1}^{3} is a Lie group.

3. Lie Group Structure of Lorentzian Cylinder $L C_{d}^{4}$ and Its A C^{∞}-Action

We define a binary operation on Lorentzian cylinder $L C_{d}^{4}$ in \mathbf{R}_{1}^{5} by

$$
\boxtimes: L C_{d}^{4} \times L C_{d}^{4} \rightarrow L C_{d}^{4}
$$

$$
x \boxminus y=\left(\begin{array}{c}
\left(\frac{\sqrt{d^{2}-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}-x_{4} y_{4}}{d}\right)\left(\frac{\sqrt{1-\frac{x_{3}^{2}}{d^{2}-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}-\frac{x_{3} y_{3}}{\sqrt{d^{2}-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}}}{\sqrt{1-\frac{x_{3}^{2}}{d^{2}-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}} \sqrt{d^{2}-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}}\right) \\
\left(x_{1} y_{2}+x_{2} y_{1}, x_{1} y_{1}+x_{2} y_{2}\right), \\
\left(\frac{\sqrt{d^{2}-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}-x_{4} y_{4}}{d}\right)\left(\frac{x_{3}}{\sqrt{d^{2}-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}+\frac{y_{3}}{\sqrt{d^{2}-y_{4}^{2}}} \sqrt{1-\frac{x_{3}^{2}}{d^{2}-x_{4}^{2}}}\right), \\
\frac{\sqrt{d^{2}-x_{4}^{2}} y_{4}+\sqrt{d^{2}-y_{4}^{2}} x_{4}}{d}, x_{5}+y_{5}
\end{array}\right)
$$

for $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right), y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$, where the function \square is defined by Lorentz cylinderical product and by Lorentz spherical product in section 2.

The function is associative. The identity element e of $L C_{d}^{4}$ according to the function \square is $(0, d, 0,0,0)$. Also, the inverse element of all $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in$ $L C_{d}^{4}$ is $\left(-x_{1}, x_{2},-x_{3},-x_{4},-x_{5}\right)$. Consequently, $\left(L C_{d}^{4}, \boxtimes\right)$ is a group.

The function π is defined by

$$
\pi:\{d\} \times \mathbf{R} \rightarrow \mathbf{R}, \pi(d, a)=a
$$

$\{d\} \times \mathbf{R}$ is a differentiable manifold together with its C^{∞}-structure $\{\{d\} \times \mathbf{R}, \pi\}$.
Let $V_{i}=(\{d\} \times \mathbf{R}) \boxtimes U_{i}, 1 \leq i \leq 6$, where $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{1 \leq i \leq 6}$ is C^{∞}-structure of S_{1}^{3}. Then, $L C_{d}^{4}$ is a differentiable manifold together with its C^{∞}-structure $\left\{\left(V_{i},\left(\pi \times \varphi_{i}\right) \circ \mathbb{Q}^{-1}\right)\right\}_{1 \leq i \leq 6}$.

$$
\begin{array}{lcl}
L C_{d}^{4} \times L C_{d}^{4} & \square & L C_{d}^{4} \\
\downarrow\left(\left(\pi \times \varphi_{i}\right) \circ \boxtimes^{-1}\right) \times\left(\left(\pi \times \varphi_{j}\right) \circ \boxtimes^{-1}\right) & & \downarrow\left(\pi \times \varphi_{k}\right) \circ \boxtimes^{-1} 1 \leq i, j, k \leq 6 . \\
\mathbf{R}_{1}^{4} \times \mathbf{R}_{1}^{4} & \xrightarrow{\psi} & \mathbf{R}_{1}^{4}
\end{array}
$$

From the above diagram, the function ψ, which is the coordinate representative of the function is differentiable. Consequently, $L C_{d}^{4}$ is a Lie group.

Let us consider the function

$$
\theta: L C_{1}^{4} \times L C_{d}^{4} \rightarrow L C_{d}^{4}
$$

which is defined by

$$
\theta(x, y)=\left(\begin{array}{c}
\left(\sqrt{1-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}-x_{4} y_{4}\right)\left(\frac{\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}-\frac{x_{3} y_{3}}{\sqrt{1-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}}}{\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}} \sqrt{1-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}}\right) \\
\left(x_{1} y_{2}+x_{2} y_{1}, x_{1} y_{1}+x_{2} y_{2}\right), \\
\left(\sqrt{1-x_{4}^{2}} \sqrt{d^{2}-y_{4}^{2}}-x_{4} y_{4}\right)\left(\frac{x_{3}}{\sqrt{1-x_{4}^{2}}} \sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}+\frac{y_{3}}{\sqrt{d^{2}-y_{4}^{2}}} \sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}}\right.
\end{array}\right), ~\left(\sqrt{1-x_{4}^{2} y_{4}+\sqrt{d^{2}-y_{4}^{2}} x_{4}, x_{5}+y_{5}} .\right)
$$

for every $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in L C_{1}^{4}$ and every $y=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right) \in L C_{d}^{4}$.
Thus the following theorem can be given.
Theorem 3.1. The function θ is a C^{∞}-action of the Lie group $L C_{1}^{4}$ on the differentiable manifold $L C_{d}^{4}$.

Proof. i) The differentiability of the function θ can be shown analogously to the differentiability of the function \square.
ii) $\theta(x, \theta(y, p))=\theta(x \boxtimes y, p)$ for every $x, y \in L C_{1}^{4}$ and every $p \in L C_{d}^{4}$.
iii) $\theta(e, p)=p$ for $e=(0,1,0,0,0) \in L C_{1}^{4}$ and every $p \in L C_{d}^{4}$.

Theorem 3.2. The C^{∞}-action θ is transitive.
Proof. For any $p, q \in L C_{d}^{4}$, there exists $x \in L C_{1}^{4}$ such that $p=\theta(x, q)$.
Corollary 1. Let $\left(L C_{1}^{4}\right)_{\{p\}}$ for any $p \in L C_{d}^{4}$ denotes the orbit of p with respect to the action θ. Then

$$
\left(L C_{1}^{4}\right)_{\{p\}}=L C_{d}^{4}
$$

Theorem 3.3. The Lie group $L C_{1}^{4}$ acts effectively on the differentiable manifold $L C_{d}^{4}$.

Proof. For any $m \in L C_{d}^{4}$ the equality $\theta(g, m)=m$ is satisfied only for $g=e$. Let $\left(\mathbf{R}_{1}^{5}\right)_{B}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbf{R}_{1}^{5}| | x_{1} \mid<\sqrt{x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}\right\} . L C_{d}^{4} \subset\left(\mathbf{R}_{1}^{5}\right)_{B}$ for any $d \in \mathbf{R}^{+}$. Let us define the function θ by

$$
\theta: L C_{1}^{4} \times\left(\mathbf{R}_{1}^{5}\right)_{B} \rightarrow\left(\mathbf{R}_{1}^{5}\right)_{B}, \theta(x, y)=\theta(x, y)
$$

The function θ is a C^{∞}-action.
Let the orbit under the action θ of any point $p=\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right) \in\left(I R_{1}^{5}\right)_{B}$ is denoted by $\left(L C_{1}^{4}\right)^{\prime}\{p\}$ and $d^{2}=-p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}$. Then

$$
\left(L C_{1}^{4}\right)^{\prime}\{p\}=L C_{d}^{4} .
$$

ÖZET: Bu çalışmada R_{1}^{4} de Lorentz birim küresi ve R_{1}^{5} de Lorentz silindiri üzerinde birer grup işlemi tanımlandı ve bu işlemlerle birlikte bunların birer Lie grubu olduğu gösterildi. R_{1}^{5} de 1-yarıçaph Lorentz silindir Lie grubunun, keyfi yarıçaph Lorentz silindir manifoldu üzerine bir C^{∞}-etkisi tanımlanarak bu etkinin bazı özellikleri incelendi. Ayrıca bu etki R_{1}^{5} uzerine genişletildi.

References

[1] Boothby, W. M.,"An Introduction to Differentiable Manifolds and Riemanian Geometry" Acedemic Press, New York, 1975.
[2] Brickel, F.-Clark, R. S., "Differentiable Manifolds An Introduction" Van Nostrand Reinhold Comp., London, 1970.
[3] Güdoğan, H., "The Cylinder Lie Group in E^{5} and Its Action As Lie Transformation Group" Algebras, Groups and Geometries 14, 453-459 (1997).
[4] O'Neill, B., "Semi-Riemann Geometry with Application to Relativity" Academic Press, New York,1983.
[5] Uğurlu, H. H., "I R_{1}^{3} Minkowski 3-Uzayında Lie Grup Yapıları ve C^{∞}-Etkiler" (Doktora Tezi (Ph. D. Thesis)), Gazi Üniversitesi Fen Bilimleri Enstitüsí, Ankara, 1991.

