LORENTZIAN CYLINDER LIE GROUP IN \mathbb{R}^5_1 AND ITS A C^{∞} -ACTION

HALIT GÜNDOĞAN AND KADRIYE PEKTAS

ABSTRACT. In this paper, two binary operations on Lorentzian sphere in \mathbf{R}_1^4 and on Lorentzian cylinder in \mathbf{R}_1^5 are defined. Also, it has been shown that Lorentzian sphere in \mathbf{R}_1^4 and Lorentzian cylinder in \mathbf{R}_1^5 with the corresponding binary operation form Lie groups. A C^∞ -action on Lorentzian cylinder of arbitrary radius of Lorentzian cylinder of radius one is defined in \mathbf{R}_1^5 and its some properties are given. Finally, the action is expanded to \mathbf{R}_1^5 .

1. Introduction

Let G be a group and also be differentiable manifold. G is called a Lie group if the group function on G as a manifold is differentiable [2].

Let G be a Lie group and M be a differentiable manifold. Then Lie group G is said to act on differentiable manifold M, if there is a mapping $\theta: G \times M \to M$ satisfying the following two conditions:

i) If $g_1, g_2 \in G$, then

$$\theta\left(g_1,\theta\left(g_2,x\right)\right)=\theta\left(g_1g_2,x\right), \quad \text{ for all } x\in M.$$

ii) If e is the identity element of G then

$$\theta(e, x) = x$$
 for all $x \in M$.

When M is a C^{∞} -manifold and θ is a C^{∞} , then we speak of a C^{∞} -action[1].

If $p \in M$ the set $G_p = \{\theta(g, p) | g \in G\}$ is called the orbit of p under the C^{∞} -action θ of G [1].

G is said to act transitively on M if, given any two points $m_1, m_2 \in M$ there is an element $g \in G$ such that $m_2 = \theta(g, m_1)$. G is said to act effectively on M if e is the only element of G such that $\theta(g, m) = m$ for all $m \in M[2]$.

Let \mathbf{R}_1^n be the vector space \mathbf{R}^n provided with Lorentzian inner product

$$\langle x,y\rangle = -x_1y_1 + \sum_{i=2}^n x_iy_i$$
, for $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$.

 \mathbf{R}_{1}^{n} is called Lorentz spaces of n-dimension[4]. Let $d \in \mathbf{R}^{+}$,

$$S_1^n = \left\{ (x_1, x_2, ..., x_{n+1}) \in \mathbf{R}_1^{n+1} \middle| -x_1^2 + \sum_{i=2}^{n+1} x_i^2 = 1 \right\}$$

Received by the editors Nov. 10, 2005, Accepted: Dec.09, 2005.

Key words and phrases. Lorentzian space, Lie Group, C^{∞} -Action, Lorentzian Sphere, Lorentzian Cylinder.

$$S^{n-1} = \{(x_1, x_2, ..., x_n) \in \mathbf{R}^n | \sum_{i=1}^n x_i^2 = 1\}$$

$$\overline{S_1^1} = \{(x_1, x_2) \in S_1^2 | x_1 \ge 1\}$$

$$\overline{S^1} = \{(x_1, x_2) \in S^1 | x_1 \ge 0\}$$

$$LC_d^n = \{(x_1, x_2, ..., x_{n+1}) \in \mathbf{R}_1^{n+1} | -x_1^2 + \sum_{i=0}^n x_i^2 = d^2\}.$$

The function & Lorentz spherical product is defined by

$$\otimes: \overline{S_1^1} \times S^{n-1} \to S_1^n \ , \ \otimes ((a,b),(x_1,x_2,...,x_n)) = (ax_1,ax_2,...,ax_n,b) \, .$$

The function \(\subseteq \text{Lorentz cylinderical product is defined by} \)

$$\boxtimes : (\{d\} \times IR) \times S_1^{n-1} \to LC_d^n \ , \ \boxtimes ((d,a),(x_1,x_2,...,x_n)) = (dx_1,dx_2,...,dx_n,a).$$

These functions are one-to-one and onto[5].

2. Lie Group Structure of Lorentzian Sphere S_1^3

We consider the Lorentz spherical product in \mathbb{R}^4_1 by

$$\otimes : \overline{S^1} \times S_1^2 \to S_1^3 , \otimes ((a,b),(x_1,x_2,x_3)) = (ax_1,ax_2,ax_3,b).$$

We define a binary operation on S_1^3 by

$$x \odot y = \begin{pmatrix} \left(\sqrt{1 - x_4^2} \sqrt{1 - y_4^2} - x_4 y_4\right) \left(\frac{\sqrt{1 - \frac{x_3^2}{1 - x_4^2}} \sqrt{1 - \frac{y_3^2}{1 - y_4^2}} - \frac{x_3 y_3}{\sqrt{1 - x_4^2} \sqrt{1 - y_4^2}}}{\sqrt{1 - \frac{x_3^2}{1 - x_4^2}} \sqrt{1 - \frac{y_3^2}{1 - y_4^2}} \sqrt{1 - x_4^2} \sqrt{1 - y_4^2}} \right) \\ \left(x_1 y_2 + x_2 y_1, x_1 y_1 + x_2 y_2\right), \\ \left(\sqrt{1 - x_4^2} \sqrt{1 - y_4^2} - x_4 y_4\right) \left(\frac{x_3}{\sqrt{1 - x_4^2}} \sqrt{1 - \frac{y_3^2}{1 - y_4^2}} + \frac{y_3}{\sqrt{1 - y_4^2}} \sqrt{1 - \frac{x_3^2}{1 - x_4^2}}\right), \\ \sqrt{1 - x_4^2} y_4 + \sqrt{1 - y_4^2} x_4 \end{pmatrix}$$

for $x = (x_1, x_2, x_3, x_4)$, $y = (y_1, y_2, y_3, y_4)$, where the function \odot is defined by the function \otimes .

The function \odot is associative. The identity element e of S_1^3 according to the function \odot is (0,1,0,0). Also, the inverse element of all $x=(x_1,x_2,x_3,x_4)\in S_1^3$ is $(-x_1,x_2,-x_3,-x_4)$. Consequently, (S_1^3,\odot) is a group.

Let

$$U_{i} = \left\{ (x_{1}, x_{2}, x_{3}, x_{4}) \in S_{1}^{3} \middle| \begin{array}{l} x_{i+1} > 0, 1 \leq i \leq 3 \\ x_{i-2} < 0, 4 \leq i \leq 6 \end{array} \right\}, 1 \leq i \leq 6.$$

$$\varphi_{i} : U_{i} \to \mathbf{R}_{1}^{3}, \ \varphi_{i} (x_{1}, x_{2}, x_{3}, x_{4}) = \begin{cases} (x_{1}, ..., \widehat{x}_{i+1}, ..., x_{4}) & \text{if } 1 \leq i \leq 3 \\ (x_{1}, ..., \widehat{x}_{i-2}, ..., x_{4}) & \text{if } 4 \leq i \leq 6 \end{cases}$$

then S^3_1 is a differentiable manifold together with its C^{∞} -structure $\{(U_i, \varphi_i)\}_{1 \leq i \leq 6}$.

From the above diagram, the function ϕ , which is the coordinate representative of the function \odot is differentiable. Consequently, S_1^3 is a Lie group.

3. Lie Group Structure of Lorentzian Cylinder LC_d^4 and Its A $C^\infty ext{-}\mathrm{Action}$

We define a binary operation on Lorentzian cylinder LC_d^4 in \mathbf{R}_1^5 by

$$\Box: LC_d^4 \times LC_d^4 \to LC_d^4,$$

$$x \dot{\boxdot} y = \begin{pmatrix} \left(\frac{\sqrt{d^2 - x_4^2} \sqrt{d^2 - y_4^2} - x_4 y_4}{d}\right) \left(\frac{\sqrt{1 - \frac{x_3^2}{d^2 - x_4^2}} \sqrt{1 - \frac{y_3^2}{d^2 - y_4^2}} - \frac{x_3 y_3}{\sqrt{d^2 - x_4^2} \sqrt{d^2 - y_4^2}}}{\sqrt{1 - \frac{x_3^2}{d^2 - x_4^2}} \sqrt{1 - \frac{y_3^2}{d^2 - y_4^2}} \sqrt{d^2 - x_4^2} \sqrt{d^2 - y_4^2}} \right) \\ \left(\frac{x_1 y_2 + x_2 y_1, x_1 y_1 + x_2 y_2}{d}\right), \\ \left(\frac{\sqrt{d^2 - x_4^2} \sqrt{d^2 - y_4^2} - x_4 y_4}}{d}\right) \left(\frac{x_3}{\sqrt{d^2 - x_4^2}} \sqrt{1 - \frac{y_3^2}{d^2 - y_4^2}} + \frac{y_3}{\sqrt{d^2 - y_4^2}} \sqrt{1 - \frac{x_3^2}{d^2 - x_4^2}}}\right), \\ \frac{\sqrt{d^2 - x_4^2} y_4 + \sqrt{d^2 - y_4^2} x_4}}{d}, x_5 + y_5 \end{pmatrix}$$

for $x=(x_1,x_2,x_3,x_4,x_5)$, $y=(y_1,y_2,y_3,y_4,y_5)$, where the function \boxdot is defined by Lorentz cylinderical product and by Lorentz spherical product in section 2.

The function \Box is associative. The identity element e of LC_d^4 according to the function \Box is (0, d, 0, 0, 0). Also, the inverse element of all $x = (x_1, x_2, x_3, x_4, x_5) \in LC_d^4$ is $(-x_1, x_2, -x_3, -x_4, -x_5)$. Consequently, (LC_d^4, \Box) is a group.

The function π is defined by

$$\pi: \{d\} \times \mathbf{R} \to \mathbf{R}, \ \pi(d, a) = a.$$

 $\begin{array}{l} \{d\} \times \mathbf{R} \text{ is a differentiable manifold together with its C^{∞}-structure $\{d\} \times \mathbf{R}, \pi\}$.} \\ \text{Let $V_i = (\{d\} \times \mathbf{R}) \boxtimes U_i$, $1 \leq i \leq 6$, where $\{(U_i, \varphi_i)\}_{1 \leq i \leq 6}$ is C^{∞}-structure of S_1^3. Then, LC_d^4 is a differentiable manifold together with its C^{∞}-structure $\{(V_i, (\pi \times \varphi_i) \circ \boxtimes^{-1})\}_{1 \leq i \leq 6}$.} \end{array}$

From the above diagram, the function ψ , which is the coordinate representative of the function \square is differentiable. Consequently, LC_d^4 is a Lie group.

Let us consider the function

$$\theta: LC_1^4 \times LC_d^4 \to LC_d^4,$$

which is defined by

$$\theta\left(x,y\right) = \begin{pmatrix} \left(\sqrt{1-x_{4}^{2}}\sqrt{d^{2}-y_{4}^{2}}-x_{4}y_{4}\right) \left(\frac{\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}}\sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}-\frac{x_{3}y_{3}}{\sqrt{1-x_{4}^{2}}\sqrt{d^{2}-y_{4}^{2}}}}\right) \\ \left(x_{1}y_{2}+x_{2}y_{1},x_{1}y_{1}+x_{2}y_{2}\right), \\ \left(\sqrt{1-x_{4}^{2}}\sqrt{d^{2}-y_{4}^{2}}-x_{4}y_{4}}\right) \left(\frac{x_{3}}{\sqrt{1-x_{4}^{2}}}\sqrt{1-\frac{y_{3}^{2}}{d^{2}-y_{4}^{2}}}+\frac{y_{3}}{\sqrt{d^{2}-y_{4}^{2}}}\sqrt{1-\frac{x_{3}^{2}}{1-x_{4}^{2}}}}\right), \\ \sqrt{1-x_{4}^{2}}y_{4}+\sqrt{d^{2}-y_{4}^{2}}x_{4},x_{5}+y_{5} \end{pmatrix},$$

for every $x = (x_1, x_2, x_3, x_4, x_5) \in LC_1^4$ and every $y = (y_1, y_2, y_3, y_4, y_5) \in LC_d^4$. Thus the following theorem can be given.

Theorem 3.1. The function θ is a C^{∞} -action of the Lie group LC_1^4 on the differentiable manifold LC_d^4 .

Proof. i) The differentiability of the function θ can be shown analogously to the differentiability of the function \square .

ii)
$$\theta(x, \theta(y, p)) = \theta(x \boxdot y, p)$$
 for every $x, y \in LC_1^4$ and every $p \in LC_d^4$.
iii) $\theta(e, p) = p$ for $e = (0, 1, 0, 0, 0) \in LC_1^4$ and every $p \in LC_d^4$.

Theorem 3.2. The C^{∞} -action θ is transitive.

Proof. For any $p, q \in LC_d^4$, there exists $x \in LC_1^4$ such that $p = \theta(x, q)$.

Corollary 1. Let $(LC_1^4)_{\{p\}}$ for any $p \in LC_d^4$ denotes the orbit of p with respect to the action θ . Then

$$(LC_1^4)_{\{p\}} = LC_d^4.$$

Theorem 3.3. The Lie group LC_1^4 acts effectively on the differentiable manifold LC_d^4 .

Proof. For any $m \in LC_d^4$ the equality $\theta(g,m) = m$ is satisfied only for g = e. Let $\left(\mathbf{R}_1^5\right)_B = \left\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}_1^5 \middle| |x_1| < \sqrt{x_2^2 + x_3^2 + x_4^2}\right\}$. $LC_d^4 \subset \left(\mathbf{R}_1^5\right)_B$ for any $d \in \mathbf{R}^+$. Let us define the function θ by

$$\theta: LC_1^4 \times \left(\mathbf{R}_1^5\right)_R \to \left(\mathbf{R}_1^5\right)_R , \ \theta(x,y) = \theta(x,y).$$

The function θ is a C^{∞} -action.

Let the orbit under the action θ of any point $p = (p_1, p_2, p_3, p_4, p_5) \in (IR_1^5)_B$ is denoted by $(LC_1^4)_{\{p\}}$ and $d^2 = -p_1^2 + p_2^2 + p_3^2 + p_4^2$. Then

$$\left(LC_1^4\right)'_{\{p\}}=LC_d^4.$$

ÖZET: Bu çalışmada R_1^4 de Lorentz birim küresi ve R_1^5 de Lorentz silindiri üzerinde birer grup işlemi tanımlandı ve bu işlemlerle birlikte bunların birer Lie grubu olduğu gösterildi. R_1^5 de 1-yarıçaplı Lorentz silindir Lie grubunun, keyfi yarıçaplı Lorentz silindir manifoldu üzerine bir C^{∞} -etkisi tanımlanarak bu etkinin bazı özellikleri incelendi. Ayrıca bu etki R_1^5 üzerine genişletildi.

REFERENCES

- Boothby, W. M., "An Introduction to Differentiable Manifolds and Riemanian Geometry" Acedemic Press, New York, 1975.
- [2] Brickel, F.-Clark, R. S., "Differentiable Manifolds An Introduction" Van Nostrand Reinhold Comp., London, 1970.
- [3] Gündoğan, H., "The Cylinder Lie Group in E⁵ and Its Action As Lie Transformation Group" Algebras, Groups and Geometries 14, 453-459 (1997).
- [4] O'Neill, B., "Semi-Riemann Geometry with Application to Relativity" Academic Press, New York, 1983.
- [5] Uğurlu, H. H., " IR_1^3 Minkowski 3-Uzayında Lie Grup Yapıları ve C^{∞} -Etkiler" (Doktora Tezi (Ph. D. Thesis)), Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1991.