$\bar{\nabla}$-HARMONIC CURVES AND SURFACES IN EUCLIDEAN SPACE E^{n}

BENGÜ KILIÇ

Abstract

In this study we consider $\bar{\nabla}$-harmonic curves and surfaces in Euclidean n-spaces \mathbb{E}^{n}. We proved that every weak biharmonic curve is $\bar{\nabla}$-harmonic. We also showed that every 1 -parallel sufface in \mathbb{E}^{4} is $\bar{\nabla}$-harmonic, but the converse is not true. Finally we give the necessary condition for Vranceanu's surface to become $\bar{\nabla}$-harmonic.

1. Introduction

Let $f: M \rightarrow \widetilde{M}$ be an isometric immersion of an n-dimensional connected Riemannian manifold M into an m-dimensional Riemannian manifold \widetilde{M}. For all local formulas and computations, we may assume f as an imbedding and thus we shall often identify $p \in M$ with $f(p) \in \widetilde{M}$. The tangent space $T_{p} M$ is identified with a subspace $f_{*}\left(T_{p} M\right)$ of $T_{p} \widetilde{M}$ where f_{*} is the differential map of f. Letters X, Y and Z (resp. ζ, μ and ξ) vector fields tangent (resp. normal) to M. We denote the tangent bundle of M (resp. \widetilde{M}) by $T M$ (resp. $T \widetilde{M}$), unit tangent bundle of M by $U M$ and the normal bundle by $T^{\perp} M$. Let $\tilde{\nabla}$ and ∇ be the Levi-Civita connections of \widetilde{M} and M, resp. Then the Gauss formula is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.1}
\end{equation*}
$$

where h denotes the second fundamental form. The Weingarten formula is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{1.2}
\end{equation*}
$$

where A denotes the shape operator and D the normal connection. Clearly $h(X, Y)=$ $h(Y, X)$ and A is related to h as $\left\langle A_{\xi} X, Y\right\rangle=\langle h(X, Y), \xi\rangle$, where \langle,$\rangle denotes the$ Riemannian metrics of M and \widetilde{M} (see [3]).

Key words and phrases. Harmonic submanifolds, biharmonic curves and surface.

Let $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}\right\}$ be an local orthonormal frame field on \widetilde{M} where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ are tangent vector and $\left\{e_{n+1}, \ldots, e_{m}\right\}$ are normal vector. The connection form w_{i}^{j} are defined by

$$
\begin{align*}
\tilde{\nabla}_{e_{i}} & =\sum_{n} w_{i}^{j} e_{j} ; w_{i}^{j}=-w_{j}^{i}, 1 \leq i, j \leq m \tag{1.3}\\
\nabla_{e_{i}} e_{j} & =\sum_{k=1}^{n} w_{j}^{k}\left(e_{i}\right) e_{k} \tag{1.4}\\
D_{e_{i}} e_{\alpha} & =\sum_{\beta=n+1}^{m} w_{\alpha}^{\beta}\left(e_{i}\right) e_{\beta} \tag{1.5}
\end{align*}
$$

The covariant derivations of h is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{1.6}
\end{equation*}
$$

where X, Y, Z tangent vector fields over M and $\bar{\nabla}$ is the van der Waerden Bortolotti connection. Then we have

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z)=\left(\bar{\nabla}_{Z} h\right)(Y, X)
$$

which is called codazzi equations.
If $\bar{\nabla} h=0$ then M is said to have parallel second fundamental form (i.e. 1 parallel) (see [7]).

It is well known that $\bar{\nabla} h$ is a normal bundle valued tensor of type $(0,3)$.We define the second covariant derivative of h by

$$
\begin{align*}
\left(\bar{\nabla}_{W} \bar{\nabla}_{X} h\right)(Y, Z)= & D_{W}\left(\left(\bar{\nabla}_{X} h\right)(Y, Z)\right)-\left(\bar{\nabla}_{X} h\right)\left(\nabla_{W} Y, Z\right) \\
& -\left(\bar{\nabla}_{X} h\right)\left(Y, \nabla_{W} Z\right)-\left(\bar{\nabla}_{\nabla_{W}} h\right)(Y, Z) \tag{1.7}
\end{align*}
$$

If $\bar{\nabla}^{2} h=0$ then M is said to have parallel third fundamental form (i.e. 2-parallel) [1].

Let $f: M \rightarrow \widetilde{M}$ be an isometric immersion of an n-dimensional connected Riemannian manifold M into an m-dimensional Riemannian manifold \widetilde{M}. For the orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ the mean curvature vector H of f is defined by

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{1.8}
\end{equation*}
$$

The Laplacian of H associated with D is defined by

$$
\begin{equation*}
\Delta^{D} H=\sum_{i=1}^{n}\left(D_{\nabla_{e_{i}} e_{i}} H-D_{e_{i}} D_{e_{i}} H\right) \tag{1.9}
\end{equation*}
$$

where D is the normal connection of M (see [5]).
If $\Delta^{D} H=0$ then M is called D-Harmonic (or weak biharmonic). If $\Delta^{D} H+c H=$ 0 then M is called harmonic 1-type (see[6]).

We give the following definition
Definition 1.1. The Laplacian of H associated with $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\Delta^{\bar{\nabla}} H=\sum_{i=1}^{n}\left(\bar{\nabla}_{\nabla_{c_{i}} e_{i}} H-\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} H\right) \tag{1.10}
\end{equation*}
$$

where $\bar{\nabla}$ is the van der Waerden Bortolotti connection of M defined by (1.6). If $\Delta{ }^{\bar{\nabla}} H=0$ then M is called $\bar{\nabla}$-harmonic.

2. $\bar{\nabla}$-Harmonic Curves

Consider an immersed curve $\beta=\beta(s): I \subset I R \rightarrow \mathbb{E}^{m}$ where s denotes the arclength parameter of β.

$$
T=T(s)=\beta^{\prime}(s)
$$

will be the unit tangent vector field of β. Assume that β is not a plane curve (it is not contained in any 2-plane of \mathbb{E}^{m}). So we can define a 2 -dimensional subbundle say ν of the normal bundle Λ of β into \mathbb{E}^{m} as

$$
\begin{equation*}
\nu(s)=\operatorname{span}\left\{\xi_{2}, \xi_{3}\right\}(s) \tag{2.1}
\end{equation*}
$$

where ξ_{2}, ξ_{3} are unit normal vector fields to β defined by

$$
\begin{gathered}
T^{\prime}(s)=k_{1}(s) \xi_{2}(s) \\
\xi_{2}^{\prime}(s)=-k_{1}(s) T(s)+k_{2}(s) \xi_{3}(s)
\end{gathered}
$$

where $k_{1}>0$ is the curvature (the first curvature if $m>3$) and k_{2} is the torsion (the second curvature with $\tau>0$ if $m>3$) of β.

Denote by ν^{\perp} the orthogonal complementary subbundle of ν in Λ. Certainly the fibers of ν^{\perp} have dimension $m-3$. Therefore the Frenet equations of β can be written as

$$
\begin{gather*}
T^{\prime}(s)=k_{1}(s) \xi_{2}(s) \tag{2.2}\\
\xi_{2}^{\prime}(s)=-k_{1}(s) T(s)+k_{2}(s) \xi_{3}(s) \tag{2.3}\\
\xi_{3}^{\prime}(s)=-k_{2}(s) \xi_{2}(s)+\delta(s) \tag{2.4}
\end{gather*}
$$

where $\delta(s) \in \nu^{\perp}(s), \delta(s)=k_{3}(s) \xi_{4}(s)$ for all $s \in I$.
The curvature vector field of β (the mean curvature vector field of β) is defined by

$$
\begin{equation*}
H(s)=T^{\prime}(s)=k_{1}(s) \xi_{2}(s)=h(T, T), \nabla_{T} T=0 \tag{2.5}
\end{equation*}
$$

Equations (2.3) and (2.4) also give how the normal connection D of β into \mathbb{E}^{m} behaves on ν

$$
\begin{gather*}
D_{T} \xi_{2}=k_{2}(s) \xi_{3}(s) \tag{2.6}\\
D_{T} \xi_{3}=-k_{2}(s) \xi_{2}(s)+\delta(s) \tag{2.7}
\end{gather*}
$$

Let Δ^{D} be the Laplacian associated with D. One can use the Frenet equations (2.6) and (2.7) to compute $\Delta^{D} H$ and so one obtains

$$
\begin{equation*}
\Delta^{D} H=\left(-\kappa_{1}^{\prime \prime}+\kappa_{1} \kappa_{2}^{2}\right) v_{2}+\left(-2 \kappa_{1}^{\prime} \kappa_{2}-\kappa_{1} \kappa_{2}^{\prime}\right) v_{3}-\kappa_{1} \kappa_{2} \kappa_{3} v_{4} \tag{2.8}
\end{equation*}
$$

In [5] it has shown that any immersed curve $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{m}$ with the mean curvature vector satisfying $\Delta H=0$, is a straight line. Recently, in [2] the authors gave a full classification of the immersed curves in an Euclidean space \mathbb{E}^{m} with the mean curvature vector satisfying $\Delta^{D} H=0$.

In [6] we give the following results.
Proposition 1. Let γ be a Frenet curve of harmonic one type (i.e. $\Delta^{D} H+c H=0$) if and only if

$$
\begin{equation*}
-\kappa_{1}^{\prime \prime}+\kappa_{1} \kappa_{2}^{2}+c \kappa_{1}=0,2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}=0, \kappa_{1} \kappa_{2} \kappa_{3}=0 \tag{2.9}
\end{equation*}
$$

By virtue of Proposition 1 one can get the following result.

Corollary 1. Let γ be a harmonic 1-type curve
i) If $\kappa_{1}=0$ then γ is a straight line.
ii) If $\kappa_{1}, \kappa_{2} \neq 0, \kappa_{3}=0$ then

$$
\begin{equation*}
\kappa_{1}(s)=\overline{+} \frac{\sqrt{c}}{\left(4 c_{1}\right)^{1 / 4}} \sqrt{\frac{e^{4 s-2 c_{2}}+1}{e^{2 s-c_{2}}}} \text { and } \kappa_{2}(s)=2 \sqrt{c_{1}}\left(\frac{e^{2 s-c_{2}}}{e^{4 x-2 c_{2}}+1}\right) . \tag{2.10}
\end{equation*}
$$

Corollary 2. Let plane curve γ be a harmonic 1-type curve. Then $\kappa_{1}^{\prime \prime} \pm c \kappa_{1}=0$. That is
a) $\kappa_{1}=b_{1} \operatorname{Cos}(\sqrt{c} s)+b_{2} \operatorname{Sin}(\sqrt{c} s)$ for $\kappa_{1}^{\prime \prime}+c \kappa_{1}=0$,
b) $\kappa_{1}=b_{1} e^{\sqrt{c s}}+b_{2} e^{-\sqrt{c s}}$, for $\kappa_{1}^{\prime \prime}-c \kappa_{1}=0$.

Corollary 3. Every weak biharmonic curve are $\bar{\nabla}$-harmonic.
Proof. Let $\beta=M$ be a space curve of \mathbb{E}^{m} with arclength parameter. Then

$$
T=T(s)=\beta^{\prime}(s) \text { and }
$$

$$
\beta^{\prime \prime}(s)=\nabla T T+h(T, T)=k_{1}(s) \xi_{2}(s)
$$

which implies that $\nabla_{T} T=0$. Therefore the equation (1.6) reduce to

$$
\left(\bar{\nabla}_{T} h\right)(T, T)=D_{T} h(T, T)
$$

So the equation (1.9) and (1.10) are equal (i.e. $\Delta^{D} H=\Delta \bar{\nabla} H$). This complete the proof of the result.
Corollary 4. Every $\bar{\nabla}$-harmonic curve β is 2-parallel.
Proof. Let β be a smooth curve in \mathbb{B}^{m} with arclength parameter. Then differentiating $T=\beta^{\prime}(s)$ we get

$$
H(s)=\beta^{\prime \prime}(s)=h(T, T)
$$

and

$$
\left(\bar{\nabla}_{T} h\right)(T, T)=D_{T} h(T, T)
$$

and

$$
\left(\bar{\nabla}_{T} \bar{\nabla}_{T} h\right)(T, T)=D_{T} D_{T} h(T, T)
$$

Therefore $\Delta \bar{\nabla} H=\left(\bar{\nabla}_{T} \bar{\nabla}_{T} h\right)(T, T)$. So $\Delta \bar{\nabla} H=0$ implies that $\bar{\nabla}^{2} h=0$ (i.e. β is 2-parallel curve). The converse of this corollary is also true.

3. $\bar{\nabla}$-Harmonic Surfaces

Let M be a surfaces in \mathbb{E}^{2+d} then the equation (1.10) reduces to

$$
\begin{equation*}
\Delta \bar{\nabla} H=\bar{\nabla}_{\nabla_{e_{1} e_{1}}} H+\bar{\nabla}_{\nabla_{e_{2} e_{2}}} H-\bar{\nabla}_{e_{1}} \bar{\nabla}_{e_{1}} H-\bar{\nabla}_{e_{2}} \bar{\nabla}_{e_{2}} H . \tag{3.1}
\end{equation*}
$$

In the present section we will consider $\bar{\nabla}$-harmonic surfaces M in \mathbb{E}^{2+d}. First, we give the following result.
Proposition 2. Every surface in \mathbb{E}^{3} is $\bar{\nabla}$-harmonic.
Proof. Let $\left\{e_{1}, e_{2}\right\}$ be an orthonormal frame field of $T_{p} M$. Then we have

$$
\begin{align*}
\nabla_{e_{1}} e_{1} & =\lambda_{1} e_{2} \\
\nabla_{e_{2}} e_{2} & =-\lambda_{2} e_{1} \tag{3.2}\\
\nabla_{e_{1}} e_{2} & =-\lambda_{1} e_{1} \\
\nabla_{e_{2}} e_{1} & =\lambda_{2} e_{2}
\end{align*}
$$

Substituting (1.6-1.8) and (3.2) into (3.1) after some calculations we get $\Delta \bar{\nabla} H=0$.This completes the proof of the proposition.

Theorem 3.1. Let $M \subset \mathbb{E}^{2+d}$ be smooth surfaces in \mathbb{E}^{2+d}. Then

$$
\Delta^{\nabla} H=\Delta^{D} H+\frac{1}{2} \sum_{i=1}^{2} D_{e_{i}} D_{e_{i}} H
$$

where $\left\{e_{1}, e_{2}\right\}$ is the orthonormal frame field of $T_{p} M$ and H is the mean curvature vector of M.

Proof. Let $\left\{e_{1}, e_{2}\right\}$ be a orthonormal frame field of $T_{p} M$. By (1.10) we get

$$
\begin{equation*}
\Delta \bar{\nabla} H=\sum_{i=1}^{2}\left(\bar{\nabla}_{\nabla_{c_{i}} e_{i}} H-\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} H\right) . \tag{3.3}
\end{equation*}
$$

Substituting $H=\frac{1}{2} \sum_{i=1}^{2} h\left(e_{i}, e_{i}\right)$ into (3.3) we obtain

$$
\begin{aligned}
2 \Delta \bar{\nabla} H= & \left(\bar{\nabla}_{\nabla_{e_{1}} e_{1}} h\right)\left(e_{1}, e_{1}\right)+\left(\bar{\nabla}_{\nabla_{e_{1}} e_{1}} h\right)\left(e_{2}, e_{2}\right)+\left(\bar{\nabla}_{\nabla_{e_{2}} e_{2}} h\right)\left(e_{1}, e_{1}\right)+ \\
& \left.+\left(\bar{\nabla}_{\nabla_{c_{2}} e_{2}} h\right)\left(e_{2}, e_{2}\right)-\left(\bar{\nabla}_{e_{1}} \bar{\nabla}_{e_{1}} h\right)\left(e_{1}, e_{1}\right)-\left(\bar{\nabla}_{e_{1}} \bar{\nabla}_{e_{1}} h\right)\left(e_{2}, e_{2}\right)+3.4\right) \\
& -\left(\bar{\nabla}_{e_{2}} \bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{1}\right)-\left(\bar{\nabla}_{e_{2}} \bar{\nabla}_{e_{2}} h\right)\left(e_{2}, e_{2}\right) .
\end{aligned}
$$

Substituting (1.4) , (1.5) and (3.2) into (3.4) and using (1.9) we get

$$
\begin{equation*}
2 \Delta^{\bar{\nabla}} H=\Delta^{D} H+\sum_{i=1}^{2} D_{\nabla_{c_{i} e_{i}}} H \tag{3.5}
\end{equation*}
$$

or similarly

$$
\begin{align*}
2 \Delta \bar{\nabla} H= & D_{\nabla_{e_{1} e_{1}}} H-D_{e_{1}} D_{e_{1}} H+D_{\nabla_{e_{2}} e_{2}} H \\
& -D_{e_{2}} D_{e_{2}} H+D_{\nabla_{e_{1}} e_{1}} H+D_{\nabla_{e_{2}} e_{2}} H . \tag{3.6}
\end{align*}
$$

Adding and subtracting the terms $D_{e_{1}} D_{e_{1}} H$ and $D_{e_{2}} D_{e_{2}} H$ into the equations (3.6) we get

$$
-2 \Delta \bar{\nabla} H+2 \Delta^{D} H+\sum_{i=1}^{2} D_{e_{i}} D_{e_{i}} H=0
$$

This completes the proof of the theorem. \square
Proposition 3. [4] Let M be a connected normally fat surfaces in $\mathbb{E}^{5} . e_{3}$ is parallel to the mean curvature vector H of M such that

$$
A_{e_{3}}=\left[\begin{array}{ll}
\lambda & 0 \tag{3.7}\\
0 & \eta
\end{array}\right], A_{e_{4}}=\left[\begin{array}{cc}
\beta & 0 \\
0 & -\beta
\end{array}\right], A_{e_{5}}=\left[\begin{array}{cc}
\gamma & 0 \\
0 & -\gamma
\end{array}\right] .
$$

Using (3.3), (3.7), (1.6), (1.7) and codazzi equations we get

$$
\begin{align*}
\Delta^{\bar{\nabla}} H= & \left\{-e_{1} e_{1}(\lambda+\eta)-e_{2} e_{2}(\lambda+\eta)+2 e_{2}(\lambda+\eta) w_{1}^{2}\left(e_{1}\right)-2 e_{1}(\lambda+\eta) w_{1}^{2}\left(e_{2}\right)\right. \\
& \left.+(\lambda+\eta)\left[\left(w_{3}^{4}\left(e_{1}\right)\right)^{2}+\left(w_{3}^{4}\left(e_{2}\right)\right)^{2}+\left(w_{3}^{5}\left(e_{1}\right)\right)^{2}+\left(w_{3}^{5}\left(e_{2}\right)\right)^{2}\right]\right\} e_{3} \\
& +\left\{2 w_{3}^{4}\left(e_{2}\right)\left[w_{1}^{2}\left(e_{1}\right)(\lambda+\eta)-e_{2}(\lambda+\eta)\right]-2 e_{1}(\lambda+\eta) w_{3}^{4}\left(e_{1}\right)\right. \\
& -2 w_{1}^{2}\left(e_{2}\right)\left[w_{3}^{4}\left(e_{1}\right)(\lambda+2 \eta)-2 \beta w_{1}^{2}\left(e_{2}\right)-e_{1}(\beta)\right] \\
& +(\lambda+\eta)\left[-e_{1}\left(w_{3}^{4}\left(e_{1}\right)\right)-e_{2}\left(w_{3}^{4}\left(e_{2}\right)\right)-w_{3}^{5}\left(e_{1}\right) w_{5}^{4}\left(e_{1}\right)\right. \tag{3.8}\\
& \left.\left.-w_{3}^{5}\left(e_{2}\right) w_{5}^{4}\left(e_{2}\right)\right]\right\} e_{4}+\left\{2 w_{3}^{5}\left(e_{2}\right)\left[w_{1}^{2}\left(e_{1}\right)(\lambda+\eta)-e_{2}(\lambda+\eta)\right]\right. \\
& -2 w_{3}^{5}\left(e_{1}\right)\left[w_{1}^{2}\left(e_{2}\right)(\lambda+\eta)+e_{1}(\lambda+\eta)\right] \\
& \left.+(\lambda+\eta)\left[-e_{1}\left(w_{3}^{5}\left(e_{1}\right)\right)-e_{2}\left(w_{3}^{5}\left(e_{2}\right)\right)-w_{3}^{4}\left(e_{1}\right) w_{4}^{5}\left(e_{1}\right)-w_{3}^{4}\left(e_{2}\right) w_{4}^{5}\left(e_{2}\right)\right]\right\} e_{5} .
\end{align*}
$$

Substuting (3.8) into (1.10) we get the following result.
Proposition 4. Let M be a connected normally flat surfaces in \mathbb{E}^{5} with e_{3} is parallel to the mean curvature vector H of M. If M is $\bar{\nabla}$-harmonic surfaces then

$$
\begin{aligned}
0= & -e_{1} e_{1}(\lambda+\eta)-e_{2} e_{2}(\lambda+\eta)+2 e_{2}(\lambda+\eta) w_{1}^{2}\left(e_{1}\right)-2 e_{1}(\lambda+\eta) w_{1}^{2}\left(e_{2}\right) \\
& +(\lambda+\eta)\left[\left(w_{3}^{4}\left(e_{1}\right)\right)^{2}+\left(w_{3}^{4}\left(e_{2}\right)\right)^{2}+\left(w_{3}^{5}\left(e_{1}\right)\right)^{2}+\left(w_{3}^{5}\left(e_{2}\right)\right)^{2}\right], \\
0= & 2 w_{3}^{4}\left(e_{2}\right)\left[w_{1}^{2}\left(e_{1}\right)(\lambda+\eta)-e_{2}(\lambda+\eta)\right]-2 e_{1}(\lambda+\eta) w_{3}^{4}\left(e_{1}\right) \\
& -2 w_{1}^{2}\left(e_{2}\right)\left[w_{3}^{4}\left(e_{1}\right)(\lambda+2 \eta)-2 \beta w_{1}^{2}\left(e_{2}\right)-e_{1}(\beta)\right] \\
& +(\lambda+\eta)\left[-e_{1}\left(w_{3}^{4}\left(e_{1}\right)\right)-e_{2}\left(w_{3}^{4}\left(e_{2}\right)\right)-w_{3}^{5}\left(e_{1}\right) w_{5}^{4}\left(e_{1}\right)-w_{3}^{5}\left(e_{2}\right) w_{5}^{4}\left(e_{2}\right)\right], \\
0= & 2 w_{3}^{5}\left(e_{2}\right)\left[w_{1}^{2}\left(e_{1}\right)(\lambda+\eta)-e_{2}(\lambda+\eta)\right] \\
& -2 w_{3}^{5}\left(e_{1}\right)\left[w_{1}^{2}\left(e_{2}\right)(\lambda+\eta)+e_{1}(\lambda+\eta)\right] \\
& +(\lambda+\eta)\left[-e_{1}\left(w_{3}^{5}\left(e_{1}\right)\right)-e_{2}\left(w_{3}^{5}\left(e_{2}\right)\right)-w_{3}^{4}\left(e_{1}\right) w_{4}^{5}\left(e_{1}\right)-w_{3}^{4}\left(e_{2}\right) w_{4}^{5}\left(e_{2}\right)\right] .
\end{aligned}
$$

Example 3.2. We give some examples;

1) The torus \mathbb{T}^{2} embedded in \mathbb{E}^{4} by

$$
\mathbb{T}^{2}=\{(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi): \theta, \varphi \in I R\}
$$

is $\bar{\nabla}$-harmonic.
2) The helical cylinder \mathbb{H}^{2} embedded in \mathbb{E}^{4} by

$$
\mathbb{H}^{2}=\{(\theta, c \cos \varphi, c \sin \varphi, d \varphi): \theta, \varphi \in I R\}
$$

is $\bar{\nabla}$-harmonic.
3) The Klein Bottle \mathbb{K}^{2} embeded in \mathbb{E}^{4} by

$$
\mathbb{K}^{2}=\{(\cos \theta \cos \varphi, \sin \theta \cos \varphi, \cos 2 \theta \sin \varphi, \sin 2 \theta \sin \varphi): \theta, \varphi \in I R\}
$$

is $\bar{\nabla}$-harmonic.
4)Möbius band \mathbb{M}^{2} embedded in \mathbb{E}^{4} by

$$
\mathbb{M}^{2}=\left\{\left(\cos \theta, \sin \theta, \varphi \cos \frac{\theta}{2}, \varphi \sin \frac{\theta}{2}\right): \theta, \varphi \in I R\right\}
$$

has

$$
\begin{aligned}
\Delta^{\nabla} H= & \left\{e_{1}^{2}\left(\frac{1}{4+\varphi^{2}}\right)+e_{2}^{2}\left(\frac{1}{4+\varphi^{2}}\right)+\frac{4 \varphi}{4+\varphi^{2}} e_{2}\left(\frac{1}{4+\varphi^{2}}\right)\right\} e_{3} \\
& \left\{\frac{3 \varphi}{4+\varphi^{2}} e_{1}\left(\frac{1}{4+\varphi^{2}}\right)+\frac{2}{4+\varphi^{2}} e_{1}\left(\frac{\varphi}{4+\varphi^{2}}\right)\right\} e_{4} .
\end{aligned}
$$

Proposition 5. [9]Let $f: M \rightarrow \mathbb{E}^{n}$ be isometric immersion. If M is 1-parallel (i.e. $\bar{\nabla} h=0$) then $f(M)$ is one of the following surfaces
i) \mathbb{E}^{2}
ii) $S^{2} \subset \mathbb{E}^{3}$
iii) $I R^{1} \times S^{1} \subset \mathbb{E}^{3}$
iv) $S^{1}(a) \times S^{1}(b) \subset \mathbb{E}^{4}$
v) $V^{2} \subset \mathbb{E}^{5}$.

Comparing above proposition with the Examples we have the following result.
Corollary 5. Every 1-parallel surface in \mathbb{E}^{4} is $\bar{\nabla}$-harmonic. But the converse is not true.

Proposition 6. Vranceanu surfaces is given by

$$
x(s, t)=(u(s) \cos s \cos t, u(s) \cos s \sin t, u(s) \sin s \cos t, u(s) \sin s \sin t)
$$

is $\bar{\nabla}$-harmonic surfaces if and only if the equation

$$
\begin{equation*}
\alpha_{s} A\left(-4 \alpha \kappa A_{s}-1\right)+\beta_{s} A\left(-2 \alpha \kappa A_{s}-1\right)-A_{s}\left(\alpha_{s s}+\beta_{s s}\right)-3 \kappa^{2} A_{s}(\alpha-\beta)=0 \tag{3.9}
\end{equation*}
$$

is satisfied, where $u=u(s)$ is a smooth function and

$$
\alpha=\frac{1}{A}, A=\sqrt{u^{2}+\left(u^{\prime}\right)^{2}}, \kappa=\frac{u^{\prime}}{u}, \beta=\frac{2\left(u^{\prime}\right)^{2}-u u^{\prime \prime}+u^{2}}{\left(u^{2}+\left(u^{\prime}\right)^{2}\right)^{\frac{3}{2}}} .
$$

Proof. We choose a moving frame $e_{1}, e_{2}, e_{3}, e_{4}$ such that e_{1}, e_{2} are tangent to M and e_{3}, e_{4} are normal to M as given by the following

$$
\begin{gathered}
e_{1}=(-\cos s \sin t, \cos s \cos t,-\sin s \sin t, \sin s \cos t) \\
e_{2}=\frac{1}{A}(B \cos t, B \sin t, C \cos t, C \sin t) \\
e_{3}=\frac{1}{A}(-C \cos t,-C \sin t, B \cos t, B \sin t) \\
e_{4}=(-\sin s \sin t, \sin s \cos t, \cos s \sin t,-\cos s \cos t)
\end{gathered}
$$

where we put $A=\sqrt{u^{2}+\left(u^{\prime}\right)^{2}}, B=u^{\prime} \cos s-u \sin s, C=u^{\prime} \sin s+u \cos s$.Then we have

$$
e_{1}=\frac{1}{u} \frac{\partial}{\partial t}, e_{2}=\frac{1}{A} \frac{\partial}{\partial s} .
$$

Using (1.1) we get

$$
\begin{gather*}
\nabla_{e_{1}} e_{1}=-\alpha \kappa e_{2} \\
\nabla_{e_{1}} e_{2}=\alpha \kappa e_{1} \tag{3.10}\\
\nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=0 \\
h\left(e_{1}, e_{1}\right)=\alpha e_{3}, h\left(e_{2}, e_{2}\right)=\beta e_{3}, h\left(e_{1}, e_{2}\right)=-\alpha e_{4} . \tag{3.11}
\end{gather*}
$$

Substituting (1.4) , (1.5), (3.10) and (3.11) into (1.10) we get the result.
ÖZET: Bu çalşsmada, n-boyutlu E^{n} Öklid uzayında $\bar{\nabla}$-harmonik eğriler ve yüzeyler gözönünde bulunduruldu. Her zayıf biharmonik eğrinin $\bar{\nabla}$ harmonik olduğu ispatlandı. E^{4} deki her 1-paralel yüzeyin $\bar{\nabla}$-harmonik olduğu fakat tersinin doğru olmadığı gösterildi. Sonuçta, Vranceanu yüzeyinin $\bar{\nabla}$-harmonik olması için gerekli koşul verildi.

References

[1] K. Arslan, U. Lumiste, C. Murathan, C. Ozgur, 2-semiparollel surfaces in space forms 1 :Two particular cases, (2000), Proc.Est.Ac., 49(3),139-148.
[2] M. Barros, O.J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 129(1995). 2545-2549.
[3] B.Y.Chen, Geometry of submanifolds,Dekker,1973.
[4] J.Deprez, Semi-parallel surfaces in Euclidean spaces, Journal of Geometry 25,(1985),192-200.
[5] I. Dimitric, Submanifolds of \mathbb{E}^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, (1992), 20, 53-65.
[6] B. Kilic, K. Arslan, On harmonic: type submamifolds, to appear.
[7] U. Lumiste, Submanifolds with parallel fundamental form, Handbook of Differential Geometry , (1999), Vol 1, Chapter 7, 86 p.
[8] U. Lumiste, Small-dimensional irreducible submanifolds with parallel third fundamental form, Tartu Ülik. Toim. Acta et. Comm. Univ. Tartuensis 734(1986), 50-62.
[9] R.Walden, Untermannigfaltigkeiten mit Paralleler Zweiter Fundamentalform in Euklidischen Räumen und Sphären, Manuscripta Math.10,91-102 (1973).
Current address: Balikesir University, Faculty of Art and Sciences, Department of Mathematics, Balikesir, TURKEY.

E-mail address: benguk@balıkesir.edu.tr

