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V-HARMONIC CURVES AND SURFACES IN EUCLIDEAN
SPACE E™

BENGU KILIC

ABSTRACT. In this study we consider V-harmonic curves and surfaces in Euclid-
ean n-spaces E*. We proved that every wesk bikarmonic curve is V-harmonic. We
also showed that every 1-parallel surface in B4 is V-harmonic, but the converse
is not. true. Finally we give the necessary condition for Vranceanu’s surface to
become V-harmonic.

1. INTRODUCTION

Let f : M — M be an isometric immersion of an n-dimensional connected
Riemannian manifold M into an m-dimensional Riemannian manifold M . For all
local formulas and computations, we may assume f as an imbedding and thus we
shall often identify p € M with f(p) € M. The tangent space TpM is identified
with a subspace f.(T,M) of Tpﬁ where f, is the differential map of f . Letters X,
Y and Z (resp. {,u and £ ) vector fields tangent (resp. normal) to M. We denote
the tangent bundle of M (resp. M ) by TM (resp. ™ ) , unit tangent bundle
of M by UM and the normal bundle by T+ M. Let 6 and v/ be the Levi-Civita
connections of M and M , resp. Then the Gauss formula is given by

VxY = VxY +h(X,Y) (1.1)
where h denotes the second fundamental form. The Weingarten formula is given
by

Vxé=—AcX + Dx¢ (1.2)

where A denotes the shape operator and D the normal connection. Clearly h(X,Y) =
h(Y,X) and A is related to h as (4. X,Y) = (h(X,Y),§), where (,) denotes the
Riemannian metrics of M and M (see [3]).
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Let {e1,e2,...,€n, €nt1,-..,em} be an local orthonormal frame field on M where
{e1, ez, ..., en} are tangent vector and {en41,...,em} are normal vector. The con-
nection form w! are defined by

Ve, = waej;wfz—-w;,ISi,jgm (L.3)
ve.‘e] = ZWf(ei)ek 1 (14)
k=1
m
Deea = ) wh(eieg (1.5)
B=n+1

The covariant derivations of h is defined by
(Vxh)(Y, Z) = Dxh(Y, Z) — h(VxY, Z) - h(Y,Vx 2), (16)

where X, Y, Z tangent vector fields over M and V is the van der Waerden Bortolotti
connection. Then we have

(Vxh)(Y, Z) = (Vyh)(X, Z) = (Vzh)(Y, X)

which is called codazzi equations.

If VA = 0 then M is said to have parallel second fundamental form ( i.e. I-
parallel ) (see [7]).

It is well known that Vh is a normal bundle valued tensor of type (0,3) ‘We
define the second covariant derivative of h by

(VwVxh)(Y,2) = Dw((Vxh)(Y,Z)) - (Vxh)(VwY,2)
~(Vxh)(Y,Vw2) - Vo, xh)(¥,2).  (17)

1f V2h = 0 then M is said to have parallel third fundamental form ( i.e. 2-parallel
) 1.

Let f : M — M be an isometric immersion of an n—dimensionaLconnected
Riemannian manifold M into an m-dimensional Riemannian manifold M . For the

orthonormal frame {ey, ..., en} of T, M the mean curvature vector H of f is defined
by

1 n
==Y he;e;). 1.8
w2 Heed (18)
The Laplacian of H associated with D is defined by
APH = (Dg.,e;H — D, De,H) (1.9)
i=1

where D is the normal connection of M (see {5]).

If APH = 0 then M is called D-Harmonic (or weak biharmonic). If APH+cH =
0 then M is called harmonic 1-type (see[6]).

We give the following deﬁmtlon

Definition 1 1. The Laplacian of H associated w1th V is deﬁned by

AVH = Z(chie‘.H — Ve Ve H) (1.10)

i=1
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where V is the van der Waerden Bortolotti connection of M defined by (1.6). If
AVH =0 then M is called V-harmonic.

2. y-HARMONIC CURVES

Consider an immersed curve 8 = §3(s) : I C IR — E™ where s denotes the
arclength parameter of §.

T =T(s)=fB'(s)
will be the unit tangent vector field of . Assume that 3 is not a plane curve ( it is

not contained in any 2-plane of E™ ). So we can define a 2-dimensional subbundle
say v of the normal bundle A of 8 into E™as

v(s) = span{&s,£3}(s) (2.1)

where &5, 5 are unit normal vector fields to 3 deﬁnqd by
T'(s) = ka(s)€,(s)
€2(s) = —k1(s)T(s) + ka(s)é3(s)

where k; > 0 is the curvature ( the first curvature if m > 3 ) and k; is the torsion
( the second curvature with7>0if m >3 ) of 5.
Denote by v+ the orthogonal complementary subbundle of v in A. Certainly the

fibers of v* have dimension m — 3 . Therefore the Frenet equatlons of 8 can be
written as

T'(s) = kx(s)€2(s) (2.2)
€2(8) = —k1(s)T(s) + ka(s)€5(s) (2.3)
£3(8) = —ka(s)€2(s) + 6(s) (2.4)

where §(s) € v+(s) , 6(s) = k3(s)€,(s) for all s € I.
The curvature vector field of 8 ( the mean curvature vector field of 8 ) is defined
by
H(s) =T'(s) = k(s)é5(s) = h(T,T), VT =0 (2.5)
Equations (2.3) and (2.4) also give how the normal connection D of 8 into E™
behaves on v

Dr&y = ka(s)é3(s) (26)
Drés = —kz(s)€s(s) + 6(s). 2.7)
Let AP be the Laplacian associated with D. One can use the Frenet equations

(2.6) and (2.7) to compute AP H and so one obtains
APH = (—n'; + K1k3)vg + (—2n'1n2 - nln;)v;; — K1K2K3V4. (2.8)

In [5] it has shown that any immersed curve v : ] C R — E™ with the mean
curvature vector satisfying AH = 0, is a straight line. Recently, in |[2] the authors
gave a full classification of the immersed curves in an Euclidean space E™ with the
mean curvature vector satisfying APH = 0.

In [6] we give the following results.

Proposition 1. Let v be a Frenet curve of harmonic one type (i.e. APH+cH = 0)
if and only if

—Ky + K1K3 + cky =0, 26, Kg + K1Kh = 0, KKk = 0. (2.9)

By virtue of Proposition 1 one can get the following result.
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Corollary 1. Let v be a harmonic 1-type curve
i) If k1 = 0 then 7y is a straight line.
’LZ) If K1, K 75 0, k3 =0 then

- ¢ eds—2c +1 2s —c2
k1(s) = +(4 \/)_1/4 T, and Ko (s) = 24/c1 < ) (2.10)

e4a:—2c2 +1
Corollary 2. Let plane curve v be a harmonic 1-type curve. Then
Ky £ cky = 0.That is
a) k1 = biCos(y/cs) + bg Sin( \/_s) for ki +cky =0,
b) k1 = b1V + boe= Ve, for nl —cky = 0.

Corollary 3. FEvery weak biharmonic curve are V—harmonic.

Proof. Let 8 = M be a space curve of E™ with arclength parameter. Then

T =T(s) = B'(s) and
B"(s) = vrT + M(T,T) = k1(s)&5(s)
which implies that 77T = 0. Therefore the equation (1.6) reduce to

So the equation (1.9) and (1.10) are equal (i.e. APH = AVH ). This complete the
proof of the resulit.

Corollary 4. Every \7-harmonic curve B is 2-parallel.

Proof. Let 8 be a smooth curve in E™ with arclength parameter. Then differenti-
ating T = ('(s) we get
H(s) = B"(s) = h(T,T)
and
(Vrh)(T,T) = Drh(T,T)
and
(VrVrh)(T,T) = DrDrh(T, T).

Therefore AVH = (Vrvrh)(T,T). So AVH = 0 implies that 62h =0 (le. Bis
2-parallel curve). The converse of this corollary is also true.
3. V-HARMONIC SURFACES
Let M be a surfaces in E?>*¢ then the equation (1.10) reduces to
AVH =Yg, o H + Vg, e,H ~ Ve, Ve, H— Ve, Ve, H. 3.1)

In the present section we will consider V-harmonic surfaces M in E?*¢. First,
we give the following result.

Proposition 2. Every surface in E® is V-harmonic.

Proof. Let {e1, ez} be an orthonormal frame field of T, M. Then we have

Veer = Aeg
Vez €y = —)\261 (32)
Ve ez = —Mey

Ve,e1 = Aze2
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Substituting (1.6-1.8) and (3.2) into (3.1) after some calculations we get
AV H = 0.This completes the proof of the proposition.

Theorem 3.1. Let M C E**9 be smooth surfaces in B2t4. Then

: 2
= 1
AVH = APH + 5} De,D.,.H

i=1

where {e1,ez} is the orthonormal frame field of T,M and H is the mean curvature
vector of M.

Proof. Let {ey, e} be a orthonormal frame field of T, M. By (1.10) we get

_ 2
AVH =S (T, o H ~ 0,9, H). (3.3)
Ve

i=1

2
Substituting H = 1 3" h(e;, e;) into (3.3) we obtain
i=1

2AVH = (Vy, eh)(er,e1) + (V. e h) (e, e2) + (Vo e h)(er, 1) +

+(vveg ez h)(ez, 62) - (v€1ve1 h’)(eli 61) - (vﬁl Vel h’)(eZ’ 62) "{34)
—(Vez_v_ez h)(el’ 61) - (vezvez h) (62’ 62)'

Substituting (1.4) , (1.5) and (3.2) into (3.4) and using (1.9) we get

2
20VH = APH +) Dy, oH (3.5)

i=1

or similarly

2AVH = D, e,H—De,DeH+ Dy, e, H
—De,De,H + Dy, e, H + Dy, e, H. (3.6)
Adding and subtracting the terms D, D, H and D, D, H into the equations (3.6)
we get. '

’ 2
~2AVH +20PH + Y De,De,H =0.

i=1

This completes the proof of the theorem.O

Proposition 3. [4] Let M be a connected normally flat surfaces in ES.e3 is parallel
to the mean curvature vector H of M such that

A33=[32],A34=[§ _?ﬂ],A%:[g _07] (3.7)

Using (3.3), (3.7), (1.6), (1.7) and codazzi equations we get
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AVH = {—ere1(A+1n) — ezez(A+7) + 2e2( A+ n)wi(er) — 2e1(A + n)wi(ez)
+(A +n)[(wi(e1))? + (wh(ea))? + (wg(el))2 + (wi(e2))*}es
+{2w3(e2)[wi(er)(A + 1) — ea(A +n)] — 2e1(X + n)wh(ex)
—wa(eg)[w§(el)(A +2n) — Zﬂwf(e2) —e1(5))
+(A +n)[—e1(w3(er)) — ea(wi(ez)) — wi(er)ws(er) (3.8)
—w3 (e2)ws(e2)]}eq + {2w](e2)[wi(e1)(A + 1) — e2(A +7)]
—2w3(e1)[wile2)(A + 1) +er(A + )]
+(A +n)[—e1(wi(e1)) — ea(w3(ez)) — wi(er)wf(e1) — wi(e2)ws (ez)]}es.

Substuting (3.8) into (1.10) we get the following result.

Proposition 4. Let M be a connected normally flat surfaces in E® with e3 is
parallel to the mean curvature vector H of M. If M is \y-harmonic surfaces then

0 = —eres(A+n) - ezea(A+7) + 2e2(A + n)wi(er) — 2e1 (A + )wi(es)
+A + 1) [(wi(er))® + (wi(e2))® + (wi(ex))” + (wi(e2))?],

0 = 2wi(ez)[wile))(X+n) —ea(A+n)] = 2e1(A +m)wi(er)

—2w?(eg)[wh(e1) (X + 2n) — 2Bwi(ez) — e1(B)]

+(A +n)[—e1(wi(er)) — ea(wi(e2)) — wi(er)ws(er) — wi(ez)wi(e2)],
2wj(e2)[w (e1)(A +1) — e2(A + )]

—2wj(e1)[w}(ez)(A + 1) + e (A + 1))

+(A+n)[—e1(wi(e1)) — ea(w3(e2)) — wi(er)wd(e1) — wi(e2)wf(e2)]-
Example 3.2. We give some examples;

1) The torus T2 embedded in E* by
T? = {(cos 8,sin 8, cos p,sinp) : 6, p € IR}

o
It

is V-harmonic.

2) The helical cylinder H? embedded in E* by
H2 = {(8, ccos g, csinp, dy) : 8,¢ € IR}
is V-harmonic.
3) The Klein Bottle K? embeded in E* by
K? = {(cos 8 cos @, sin § cos p, cos 20 sin p, sin 20 sin p) : 8, p € IR}
is V-harmonic.
4)Mobius band M? embedded in E* by

e,cpsme) 6,9 € IR}

M? = {(cos#,sin 8,y cos 5

has

= 1 1 4
\v — 2(__ - 2
AVH {el(4+302)+62(4+<p2)+4+<p2€2(4+<p2)}

% el ey e
4+ ¢2 4+ ¢? 4:+<,o2 4+<p2
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Proposition 5. [9]Let f : M — E™ be isometric immersion. If M is 1-parallel
(i.e. Vh =0) then f(M) is one of the following surfaces

i)E?

i) §2 c E®

iii) IR! x S' C E3

iv) Sl(a) x S'(b) c E*

v) V2 C ES.

Comparing above proposition with the Examples we have the following result.

Corollary 5. Every 1-parallel surface in E* is V-harmonic. But the converse is
not true.

Proposition 6. Vranceanu surfaces is given by
z(s,t) = (u(s) cos scost, u(s) cos ssint, u(s) sin s cost, u(s) sin ssint)
is \7-harmonic surfaces if and only if the equation
a, A(—dakAs — 1) + B A(—20kAs — 1) — Ag(ass + B,s) — 362 A,(a— B) =0 (3.9)
is satisfied, where u = u(s) is a smooth function and
wm A= VIR = = T

Proof. We choose a moving frame ey, eq, e3 ey such that e;, e; are tangent to M
and e3, e4 are normal to M as given by the following

e; = (—cos ssint, cos s cost, — sin s sin ¢, sin s cos t)
1 . .
ey = Z(B cost, Bsint, C cost, Csint)

1
e3 = Z(—C cost,—C'sint, Bcost, Bsint)

e4 = (—sin ssint, sin s cost, cos ssin ¢, — cos s cost)
where we put A = \/u? + (v')?, B = v/coss —usins, C = u'sins + ucoss.Then

we have
17 wot 2T Ads
Using (1.1) we get
Ve,e1 = —okKes,
Ve,e2 = akey, (3.10)
Ve2€1 = 0, vezez =0
h(e1,e1) = aes, h(ez,e2) = Pes, h(ey,e2) = —aeq. (3.11)

Substituting (1.4) , (1.5), (3.10) and (3.11) into (1.10) we get the result. U

OZET: Bu cahsmada, n-boyutlu E™ Oklid uzayinda V-harmonik egriler
ve yiizeyler gézoniinde bulunduruldu. Her zayif biharmonik egrinin V-
harmonik oldugu ispatlandi. E4 deki her 1-paralel ytizeyin V-harmonik
oldugu fakat tersinin dogru olmadig gosterildi. Sonugta, Vranceanu
yiizeyinin V-harmonik olmas: i¢in gerekli kogul verildi.



20

(1]
2

BENGU KILIG

REFERENCES

K. Arslan, U. Lumiste, C. Murathan, C. Ozgur, 2-semiparallel surfaces in space forms 1:Two
particular cases, (2000), Proc.Est.Ac., 49(3),139-148.

M. Barros, O.J. Garay,On submanifolds with harmonic mean curvature, Proc. Amer. Math.
Soc. 129(1995). 2545-2549.

B.Y.Chen, Geometry of submanifolds,Dekker,1973.

J.Deprez, Semi-parallel surfaces in Euclidean spaces, Journal of Geometry 25,(1985),192-200.
I. Dimitric, Submanifolds of E™ with harmonic mean curvature vector, Bull. Inst. Math. Acad.
Sinica, (1992), 20, 53-65.

B. Kilic, K. Arslan, On harmonic type submanifolds, to appear.

U. Lumiste, Submanifolds with parallel fundamental form, Handbook of Differential Geometry
, (1999),Vol 1, Chapter 7, 86 p.

U. Lumiste, Small-dimensional irreducible submanifolds with parallel third fundamental form,
Tartu Ulik. Toim. Acta et. Comm. Univ. Tartuensis 734(1986), 50-62.

R.Walden, Untermannigfaltigkeiten mit Paralleler Zweiter Fundamentalform in Euklidischen
Réumen und Sphiren, Manuscripta Math.10,91-102 (1973).

Current address: Balikesir University, Faculty of Art and Sciences, Department of Mathemat-

ics, Balikesir, TURKEY.

E-mail address: benguk@balikesir.edu.tr





