ON THE ROTATION MATRICES IN THE SEMI-EUCLIDEAN SPACE

BAHADDIN BUKCU

Abstract

Chong and Andrews studied on the rotations matrix in E^{3} [2]. In this study, Cayley formula in E_{1}^{3} is obtained from a semi skew-symmetric matrix, generalizating Andrews' result with some changes. Moreover, some results about Cayley formula are given.

1. Introduction

In E_{1}^{3}, let $R(s, \theta)$ denote a right handed Lorentzian rotation about a unit spacelike vector s through an angle θ. Note that a left Lorentzian rotation can be expressed as a right handed Lorentzian rotation about $-s$ and that

$$
R^{-1}(s, \theta)=R(-s, \theta)
$$

If $r \rightarrow r^{\prime}$ is under a rotation, we may write

$$
R(s, \theta) r=r^{\prime}=A r
$$

where A is a real 3×3 semi-orthogonal matrix which will be proved to be proper semi-orthogonal (i.e., $A^{-1}=\epsilon A^{T} \epsilon$, $\operatorname{det} A=1$ and $\epsilon=\operatorname{dia}(-1,1,1)[4]$). Besides, it will also be proved that every real 3×3 proper semi-orthogonal matrix represents a Lorentzian rotation.

The Lorentzian or Minkowski 3-space E_{1}^{3} is the Euclidean 3-space provided with the Lorentzian inner product

$$
\langle\vec{x}, \vec{y}\rangle:=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

and Lorentzian vector product

$$
\vec{x} \wedge \vec{y}:=\left(x_{3} y_{2}-x_{2} y_{3}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

where $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$.

[^0]An arbitrary vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ in E_{1}^{3} can have one of three Lorentzian causal characters: it is spacelike if $\langle\vec{x}, \vec{x}\rangle>0$ or $\vec{x}=0$, timelike if $\langle\vec{x}, \vec{x}\rangle<0$ and null (light-like) if $\langle\vec{x}, \vec{x}\rangle=0$. Recall that the pseudo-norm of an arbitrary vector $\vec{x} \in E_{1}^{3}$ is given by $\|\vec{x}\|=\sqrt{|\langle\vec{x}, \vec{x}\rangle|}$.

Let us take the plane through O perpendicular to s as the Lorentz plane for timelike vector ξ. We shall use ξ to denote a vector in E_{1}^{3} and allow operations on it by matrices such as A, as well. For each unit vector s, we define the associated semi skew-symmetric matrix

$$
S=\left[\begin{array}{ccc}
0 & c & -b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right] \leftrightarrow s=(a, b, c)
$$

($S^{T}=-\epsilon S \epsilon$, matrix $\left.\epsilon=\operatorname{dia}(-1,1,1)[4]\right)$ so that s and S determine each other uniquely [1].

Also observe that $S r=s \wedge r, S \vec{s}=0$ and $s \wedge \xi=S \xi$. Here notation " \wedge " represents vectorial product in Lorentzian E_{1}^{3} and $s \wedge \xi$ is perpendicular to both s and $\xi[1]$.

Lemma 1.1. Let λ be an eigenvalue of a matrix A such that

$$
A u=\lambda u, u \neq 0
$$

Then

$$
A^{2} u=\lambda A u=\lambda^{2} u
$$

and

$$
A^{3} u=\lambda^{3} u, \text { etc. }
$$

It follows that if f is a polynomial function, $f(A) u=f(\lambda) u$, i.e., $f(\lambda)$ is an eigenvalue of $f(A)$ [3].

Lemma 1.2. Let $S_{3 \times 3}$ be a real skew-symmetric matrix. Then,
a) If $S \leftrightarrow \vec{s}$ is timelike vector, the eigenvalues of matrix S all lie on the imaginary axis [1].
b) If $S \leftrightarrow \vec{s}$ is spacelike vector, the eigenvalues of matrix S all lie on the real axis [1].

2. Quadratic Representations

Theorem 2.1. In E_{1}^{3}, let $R(\vec{s}, \theta)$ denote a righ handed Lorentzian rotation about a unit spacelike vector s through an angle θ. Then,

$$
R(\vec{s}, \theta)=A r
$$

where $A=S^{0}+S(\sinh \theta)-S^{2}(1-\cosh \theta)=f(s)$ say; also A is a proper semiorthogonal matrix.

Proof. An arbitrary vector in E_{1}^{3} is expressible as $\vec{r}=k \vec{s}+\vec{\xi}, k \in I R$. Let s be a spacelike axis (vector) and ξ be a timelike vector. Let us find the semi-orthogonal matrix to be obtained by rotating the vector ξ which is perpendicular to the s axis through an angle θ.
(i) Let r be in E_{1}^{2}. At the Lorentz plane, if ξ rotates about a unit spacelike vector s through an angle θ, we get

$$
\begin{aligned}
R(s, \theta) \xi & =(\cosh \theta) \xi+\sinh \theta(s \wedge \xi) \\
R(s, \theta) \xi & =(\cosh \theta) \xi+\sinh \theta(S \xi) \\
R(s, \theta) \xi & =(\cosh \theta) \xi+\sinh \theta(S r)
\end{aligned}
$$

(ii) Let r be in E_{1}^{3}.

$$
\begin{align*}
s \wedge(s \wedge \xi) & =\langle s, s\rangle \xi-\langle s, \xi\rangle s \tag{2.1}\\
& =1 . \xi-0 . s \\
& =\xi
\end{align*}
$$

or

$$
S^{2} \xi=\xi
$$

$r=k s+\xi,(r$ is the starting position vector)

$$
\begin{gather*}
s \wedge \xi=S \xi \\
s \wedge r=S r \\
s \wedge r=S(k s+\xi) \\
s \wedge r=k(S s)+S \xi \\
s \wedge r=S \xi \tag{2.2}
\end{gather*}
$$

In the Lorentz space, if ξ rotates about a unit spacelike vector s through an angle θ, by using (2.1) and (2.2) we get

$$
\begin{aligned}
R(s, \theta) r & =R(s, \theta)(k s+\xi) \\
& =R(s, \theta)(k s)+R(s, \theta) \xi \\
& =k s+R(s, \theta) \xi \\
& =(r-\xi)+[(\cosh \theta) \xi+\sinh \theta(S r)] \\
& =r-(1-\cosh \theta) \xi+\sinh \theta(S r) \\
& =r-(1-\cosh \theta) S^{2} \xi+\sinh \theta(S r) \\
& =r-(1-\cosh \theta) S^{2} r+\sinh \theta(S r) \\
& =\left[I-(1-\cosh \theta) S^{2}+(\sinh \theta) S\right] r \\
& =\left[S^{0}+(\sinh \theta) S^{1}-(1-\cosh \theta) S^{2}\right] r \\
& =A r
\end{aligned}
$$

as required and

$$
A=S^{0}+(\sinh \theta) S^{1}-(1-\cosh \theta) S^{2}=f(S)
$$

It remains to show that A is proper semi-orthogonal (i.e., $A^{-1}=\epsilon A^{T} \epsilon$ and $\operatorname{det} A=$ $+1)$

$$
\begin{aligned}
A^{T} & =S^{0}+(\sinh \theta) S^{T}-(1-\cosh \theta)\left(S^{2}\right)^{T} \\
\epsilon A^{T} \epsilon & =\epsilon\left[S^{0}+(\sinh \theta) S^{T}-(1-\cosh \theta)\left(S^{2}\right)^{T}\right] \epsilon \\
& =\epsilon S^{0} \epsilon+\epsilon(\sinh \theta) S^{T} \epsilon-\epsilon(1-\cosh \theta)\left(S^{2}\right)^{T} \epsilon \\
& =\epsilon^{2} S^{0}+(\sinh \theta) \epsilon S^{T} \epsilon-(1-\cosh \theta) \epsilon\left(S^{T} S^{T}\right) \epsilon \\
& =S^{0}-(\sinh \theta) S-(1-\cosh \theta) \epsilon S^{T} I_{3} S^{T} \epsilon \\
& =S^{0}-(\sinh \theta) S-(1-\cosh \theta) \epsilon S^{T} \epsilon^{2} S^{T} \epsilon \\
& =S^{0}-(\sinh \theta) S-(1-\cosh \theta)\left(\epsilon S^{T} \epsilon\right)\left(\epsilon S^{T} \epsilon\right) \\
& =S^{0}-(\sinh \theta) S-(1-\cosh \theta)(-S)(-S) \\
& =S^{0}-(\sinh \theta) S-(1-\cosh \theta) S^{2} \\
& =f(-S)
\end{aligned}
$$

$$
A^{-1}=f(-S)
$$

Hence,

$$
A^{-1}=f(-S)=R(-s, \theta)=R^{-1}(s, \theta)
$$

Therefore, A is semi-orthogonal. (This also follows from the invariance of $\|r\|$).
Also the eigenvalues of the $S \leftrightarrow s$ (spacelike) is $0,1,-1$ so from Lemma 1.2 we see that the eigenvalues of $f(S)$, i.e., of A, are i.e., $f(0), f(1), f(-1)$,i.e,

$$
\begin{aligned}
f(0) & =1+(\sinh \theta) \cdot 0-(1-\cosh \theta) \cdot 0^{2}=1 \\
f(1) & =1+(\sinh \theta) \cdot 1-(1-\cosh \theta) \cdot 1^{2}=e^{\theta} \\
f(-1) & =1+(\sinh \theta) \cdot(-1)-(1-\cosh \theta) \cdot(-1)^{2}=e^{-\theta}
\end{aligned}
$$

The product of these gives $\operatorname{det} A=+1$ i.e., $\operatorname{det} A=1 . e^{\theta} e^{-\theta}=1$. Hence A is a proper semi-orthogonal matrix.

3. Cayley Mapping

Theorem 3.1. If T is a real semi skew-symmetric 3×3 matrix then the matrix

$$
A=(I-T)^{-1}(I+T)
$$

represents a Lorentzian rotation and is a proper semi-orthogonal (This is called the Cayley mapping of T).

For $T=\left[\begin{array}{lll}0 & c & -b \\ c & 0 & -a \\ -b & a & 0\end{array}\right] \leftrightarrow$ spacelike vector $t=(a, b, c)$, we shall show that A represents the rotation $R(\widehat{t}, \theta)$, and t represents spacelike vector, where $\|t\|=$ $\sqrt{\left|-a^{2}+b^{2}+c^{2}\right|}$ and $\widehat{t}=\frac{t}{\|t\|}$.

Proof. The characteristic equation of T is $\lambda^{3}-t^{2} \lambda=0$, and so from the CayleyHamilton theorem, $T^{3}=t^{2} T$. Since t is a spacelike vector, $\operatorname{det}(I-T)$ is always different from zero. Now $(I-T)^{-1}$ is expressible in the form of $(I-T)^{-1}=$ $I+a T+b T^{2}$ if and only if

$$
(I-T)^{-1}(I-T)=I+\left(a-b t^{2}-1\right) T+(b-a) T^{2}
$$

i.e., if and only if $a-b t^{2}=1$ and $a-b=0$, i.e., $a=b=\frac{1}{1-t^{2}}$. So

$$
(I-T)^{-1}=I+\frac{1}{1-t^{2}} T+\frac{1}{1-t^{2}} T^{2}
$$

and

$$
A=(I-T)^{-1}(I+T)
$$

Then we get

$$
\begin{aligned}
A & =\left(I+\frac{1}{1-t^{2}} T+\frac{1}{1-t^{2}} T^{2}\right)(I+T) \\
& =I+\frac{2}{1-t^{2}} T+\frac{2}{1-t^{2}} T^{2}
\end{aligned}
$$

Let $\widehat{T}=\frac{T}{t}$, then

$$
\begin{aligned}
A & =I+\left(\frac{2 t}{1-t^{2}}\right) \widehat{T}+\left(\frac{2 t^{2}}{1-t^{2}}\right) \widehat{T}^{2} \\
A & =I+(\sinh \theta) \widehat{T}-(1-\cosh \theta) \widehat{T}^{2} \\
& =f(\widehat{T})
\end{aligned}
$$

It follows from Theorem 2.1 that A represents $R(\vec{s}, \theta)$, and is proper semiorthogonal. The case $\theta=0$ corresponds to the $R=I$ but $T \neq 0$ since $\|\hat{t}\|=1$.

Theorem 3.2. If $A_{3 \times 3}$ is a real proper semi-orthogonal matrix and $T=(A-$ $I)(A+I)^{-1}$ then T is semi skew-symmetric and its Cayley mapping is A.

Proof. From the definition of T we have

$$
\begin{aligned}
(A+I) T & =(A+I)(A-I)(A+I)^{-1} \\
& =(A-I)(A+I)(A+I)^{-1} \\
& =A-I)
\end{aligned}
$$

Hence

$$
T^{T}\left(A^{T}+I\right)=\left(A^{T}-I\right)
$$

and

$$
\begin{aligned}
T^{T}\left(A^{T}+I\right)(\epsilon A \epsilon) & =\left(A^{T}-I\right)(\epsilon A \epsilon) \\
T^{T}\left(A^{T} \epsilon A \epsilon+\epsilon A \epsilon\right) & =A^{T}(\epsilon A \epsilon)-\epsilon A \epsilon \\
T^{T}\left(\epsilon \epsilon A^{T} \epsilon A \epsilon+\epsilon A \epsilon\right) & =\epsilon \epsilon A^{T}(\epsilon A \epsilon)-\epsilon A \epsilon \\
T^{T}\left[\epsilon\left(\epsilon A^{T} \epsilon\right) A \epsilon+\epsilon A \epsilon\right] & =\epsilon\left(\epsilon A^{T} \epsilon\right) A \epsilon-\epsilon A \epsilon \\
T^{T}\left(\epsilon A^{-1} A \epsilon+\epsilon A \epsilon\right) & =\epsilon A^{-1} A \epsilon-\epsilon A \epsilon \\
T^{T}(\epsilon I \epsilon+\epsilon A \epsilon) & =\epsilon I \epsilon-\epsilon A \epsilon \\
T^{T}(I+\epsilon A \epsilon) & =-\epsilon A \epsilon .
\end{aligned}
$$

Since A is proper semi-orthogonal and $(I+A)$ is regular, there exists $(I+\epsilon A \epsilon)^{-1}$ where

$$
\begin{aligned}
\operatorname{det}[I+\epsilon A \epsilon]^{-1} & =\operatorname{det}[\epsilon \epsilon+\epsilon A \epsilon]^{-1} \\
& =\operatorname{det}[\epsilon(I+A) \epsilon]^{-1} \\
& =\operatorname{det}(I+A)^{-1} .
\end{aligned}
$$

So

$$
\begin{aligned}
T^{T}(I+\epsilon A \epsilon)(I+\epsilon A \epsilon)^{-1} & =(I-\epsilon A \epsilon .)(I+\epsilon A \epsilon)^{-1} \\
T^{T} & =(I-\epsilon A \epsilon)(I+\epsilon A \epsilon)^{-1} \\
& =(\epsilon \epsilon-\epsilon A \epsilon)(I+\epsilon A \epsilon)^{-1} \\
& =\epsilon(I-A) \epsilon \epsilon^{-1}(I+A)^{-1} \epsilon \\
& =\epsilon(I-A) I(I+A)^{-1} \epsilon \\
& =-\epsilon\left[(A-I)(A+I)^{-1}\right] \epsilon \\
& =-\epsilon T \epsilon,
\end{aligned}
$$

that is T is semi skew-symmetric. Also from the definition

$$
\begin{aligned}
T(A+I) & =(A-I)(A+I)^{-1}(A+I) \\
T(A+I) & =A-I \\
T A+T) & =A-I \\
(I-T) A & =I+T \\
A & =(I-T)^{-1}(I+T)
\end{aligned}
$$

and this is the Cayley mapping of T.
Corollary 1. a) $A-A^{-1}=(2 \sinh \theta) S$
b) $\operatorname{Trace} A=1+2 \cosh \theta$ (which is the sum of the eigenvalues of A)

ÖZET: Chong ve Andrews E^{3}, de dönme matrisleri üzerine çalışmışlardır[2].
Bu çalı̧̧mada, E_{1}^{3} de Cayley formülü, Andrews' un sonuçlarında bazı değişiklikler yapılarak genelleştirilip, yarı- antisimetrik bir

matristen elde ediliyor. Ayrıca Cayley formülü đ̈zerine bazı sonuçlar

 veriliyor.
References

[1] Bükcia, B., Cayley Formula and its Applications in E_{1}^{3}, Ankara University Graduate School and The Natural Science, Ph.D.Thesis, (2003).
[2] Chong, F. \& Andrews, R.J., Rotation Matrices, Australian Mathematical Society Gazette,Volume 26, Number 3 (2000), 108-119.
[3] Gantmacher, F.R.,The Theory of Matrices, 1959, First Edition, Vol.1, New York: Chealsea.
[4] O'Neill, B., Semi-Riemannian Geometry, 1983, New York: Academic Press.

Current address: Department of Mathematics, Faculty of Science and Arts, Gaziosmanpapa University, 60200-Tokat, TURKEY

E-mail address: anyone@science, ankara.edu.tr
URL: bbukcu@gop.edu.tr

[^0]: Received by the editors Dec 16, 2005, Accepted: March. 02, 2006.
 1991 Mathematics Subject Classification. 51B20,53B30,53B50.
 Key words and phrases. Cayley formula, semi-orthogonal matrix, semi-rotation matrix, timelike vector.

