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Abstract
In many applications involving discrete time Markov chains, the autocorrelation between
states corresponding to nearby time points is too high to use all of these states as part of
an approximate random sample from a specified target distribution. In these situations,
it is common to use the output of a thinned chain, where we take samples every h steps,
and h is a positive integer, in order to reduce autocorrelation. In order to justify using
central limit theorems in analyses based on the output of a thinned chain, it is necessary
to show that the thinned chain is geometrically ergodic. A common way to do this is to
show that the chain satisfies a minorization condition and an associated drift condition.
In this manuscript, we extend previous results pertaining to one-step transition kernels
to handle numerical estimation of minorization and drift coefficients for h-step transition
kernels for Metropolis algorithms.
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1. Introduction
In many applications of statistics, Bayesian inference requires sampling from intractable

probability distributions. When this problem arises, it is common to use Markov chain
Monte Carlo (MCMC) methods to obtain samples from these distributions. When MCMC
methods are used, it is important to have an understanding of the behavior of the under-
lying Markov chain. For example, if a chain is geometrically ergodic, then central limit
theorems are available for inference that is carried out based on the output of the chain
[18]. A problem that is often encountered is that geometric ergodicity can be a difficult
property to verify analytically. A common way to show that a chain is geometrically er-
godic is to demonstrate that its transition kernel satisfies a minorization condition and an
associated drift condition. This problem, however, is analytically intractable in most prac-
tical settings, so often, the best that can be done is to rely on output-based convergence
diagnostics, such as those presented by [6–8,23,24] to make a determination as to whether
or not the chain has approximately reached its target distribution. These diagnostics each
suffer from their own significant limitations, so Cowles and Rosenthal [3] constructed an
approach based on auxiliary simulations that numerically estimates drift and minorization
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coefficients. While this method is useful in fairly general settings, it requires dividing the
state space into tiny bins and counting how many chains land in each of these bins. This
process becomes prohibitively expensive even in moderate-dimensional settings, so a clear
need exists for methodology that can be carried out more efficiently.

For certain MCMC algorithms, the need for more efficient methods of estimating these
coefficients has been addressed. For example, Spade [20] presents an efficient method
based on numerical integration for estimating minorization and drift coefficients for a
version of a Metropolis algorithm, called the random-scan Metropolis (RSM) algorithm,
that chooses one variable at random at each step and updates the selected variable using
a Metropolis-style accept/reject decision. This method leverages a result from [4]. The
clear limitation of this method is its lack of generalizability. The method is only appli-
cable to RSM samplers and does not extend naturally to full-updating schemes. In order
to address this limitation, Spade [21] exploits a result presented by [10] to construct a
Monte Carlo integration-based method for approximately verifying geometric ergodicity
of a full-updating random-walk Metropolis sampler. The methods described therein also
use a result given by [19] to bound the mixing time of these samplers using the estimated
drift and minorization coefficients. The key limitation of this method is the requirement
of a symmetric density from which an increment to the current state is proposed. In other
words, the method does not work well for more general Metropolis-Hastings algorithms.
Spade [22] adapted the approach presented in [21] to approximately verify geometric er-
godicity for Metropolis-Hastings algorithms with asymmetric proposal densities, thus pro-
viding a class of techniques for estimating drift and minorization coefficients that works
by exploiting the accept/reject nature of the Metropolis-Hastings algorithm.

In many settings, a near-random sample cannot be obtained simply by taking a sequence
of states from the chain. For example, if a sample of size n is desired, it is not enough simply
to use the first n post-burn-in states. This is because there is often high autocorrelation
between states that are observed at nearby time points. Consequently, it is common
to “thin” the output of the chain. In other words, every, say hth post-burn-in state is
selected. If we want central limit theorems to be available for the thinned chain, then it
is necessary to verify geometric ergodicity for the h-step transition kernel. This is at least
as difficult to do analytically as it is for the one-step transition kernel, and aside from the
Cowles and Rosenthal [3] approach, the techniques described above are ill-suited to handle
h-step transition kernels. The primary goal of this manuscript is to introduce a method
of approximately verifying geometric ergodicity for RWM samplers that are thinned by
a factor of h efficiently and without a need to rely on the output-based convergence
diagnostics. The extension of this methodology to more general h-step Metropolis-Hastings
can be justified mathematically, but is technically much more difficult to do. Therefore,
this will not be taken up here.

For the h-step RWM sampler, a computational technique for estimating minorization
and drift coefficients is presented. While the point of the manuscript is to approximately
verify geometric ergodicity of h-step RWM samplers, we will also use the estimates of the
minorization and drift coefficients to give a conservative upper bound on the mixing times
for each of the chains examined later in the manuscript using the Rosenthal [19] formula.

The remainder of this manuscript is organized as follows. Section 2 presents the back-
ground on Markov chains that is necessary for an understanding of the work presented in
later sections. Section 3 details the proposed method of estimating minorization and drift
coefficients, and Section 4 illustrates the use of this method and examines its performance
in four examples. The manuscript concludes with a discussion of the implications and the
limitations of the work presented herein, as well as a discussion of some open questions
that will remain to be investigated.
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2. Preliminaries
This section gives the background on Markov chains that is necessary for an under-

standing of the method presented in Section 3. Section 2.1 provides some background on
the theory of general state space Markov chains, and Section 2.2 provides a full description
of the RWM sampler.

2.1. Background on Markov chain convergence
Let (Rm,B(Rm), P) be a probability space, where B(Rm) is the σ-field consisting of

Borel subsets of Rm and P is a probability measure. Let (Xt)t≥0 be an ergodic Markov
chain on Rm with transition kernel K : (Rm,B(Rm)) 7→ [0, 1] and stationary measure π
having probability density p(·). If h is a positive integer, then the h-step transition kernel
Kh(·, ·) is such that for all x ∈ Rm, Kh(x, ·) is a probability measure on B(Rm), for all
A ∈ B(Rm), Kh(·, A) is a measurable function on Rm, and

Kh(x, A) = P(Xt+h ∈ A|Xt = x). (2.1)

In order to examine geometric ergodicity, we need the total variation distance.

Definition 2.1. The total variation distance between Kt(·, ·) and π(·) is given by

δ(Kt, π) = sup
x∈Rm

sup
A∈B(Rm)

‖Kt(x, A) − π(A)‖.

We say that at time t, the chain (Xt)t≥0 has achieved ε-mixing if δ(Kt, π) ≤ ε.

Definition 2.2. The mixing time of (Xt)t≥0 for a given threshold ε is given by

τmix(ε) = min
{

t > 0 : δ(Kt, π) ≤ ε
}

.

At this point, we are ready to provide a definition of geometric ergodicity.

Definition 2.3. The Markov chain (Xt)t≥0 is said to be geometrically ergodic if for all
t > 0, and for some constants C(x) and ρ < 1,

δ(Kt, π) ≤ C(x)ρt.

The property of geometric ergodicity is difficult to verify in practice, but it is well-known
that, if (Xt)t≥0 satisfies a minorization condition and an associated drift condition, then
(Xt)t≥0 is geometrically ergodic. Before defining these terms, we need the notion of a small
set.

Definition 2.4. A set C ∈ B(Rm) is called a small set if there exists an integer m > 0
and a non-trivial measure νm on B(Rm) such that for all x ∈ C and for all A ∈ B(Rm),

Km(x, A) ≥ νm(A).

Definition 2.5. A Markov chain (Xt)t≥0 satisfies a minorization condition if there exist
ε ∈ (0, 1) a small set C ∈ B(Rm), a positive integer k, and a probability measure ν(·) such
that for all x ∈ C and for all A ∈ B(Rm),

Kk(x, A) ≥ εν(A). (2.2)
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Definition 2.6. A Markov chain (Xt)t≥0 satisfies a drift condition if there exist constants
λ ∈ (0, 1) and b < ∞, a function V : Rm 7→ [1, ∞), a positive integer h, and a small set
C ∈ B(Rm) such that for all x ∈ Rm,

KhV (x) ≤ λV (x) + bIC(x), (2.3)
where KhV (x) = E[V (Xt+h)|Xt = x] and the expectation is taken with respect to the
h-step transition kernel.

If a Markov chain is geometrically ergodic, then central limit theorems are available for
samples taken from the states of the chain [18]. Rosenthal [19] uses drift and minorization
coefficients to obtain a conservative upper bound on the total variation distance between
the n-step transition kernel for a geometrically ergodic Markov chain (Xt)t≥0 and its
stationary measure.

Theorem 2.7. [19] Assume that for a function V : Rm 7→ [1, ∞), a positive integer h,
and constants λ ∈ (0, 1) and b < ∞, (Xt)t≥0 satisfies

KhV (x) ≤ λV (x) + bIC(x)

for all x ∈ Rm, where C = {x : V (x) ≤ d} and d > 2b
1−λ − 1. Assume that for some ε > 0,

some probability measure ν(·) on B(Rm), and some positive integer k0,

Khk0(x, B) ≥ εν(B)
for all x ∈ C and for all B ∈ B(Rm). Then for any r ∈ (0, 1) with (Xt)t≥0 beginning in
the initial distribution Ψ and for any positive integer n,

δ(Kn, π) ≤ (1 − ε)

[
rn

hk0

]
+ (αA)−1

(
α−(1−rk0)Ar

)[ h
n ]

×
(

1 + b

1 − λ
+ EΨ[V (X0)]

)
, where (2.4)

α−1 = 1 + 2b + λd

1 + d
,

A = 1 + 2(λd + b), and (2.5)
[·] denotes the greatest integer function.

2.2. The random-walk Metropolis algorithm
In this section, we describe the RWM algorithm. Let x0 denote the initial state of the

Markov chain (Xt)t≥0 and assume that x0 falls within the support of the target density
p(·). Given the state xt at time t, Xt+1 is obtained by first choosing an increment vector
y from a density q(·) that is symmetric about 0. A proposed update x∗ is given by xt + y.
Then Xt+1 = x∗ with probability

α(xt, x∗) = min
{

1,
p(x∗)
p(xt)

}
,

and Xt+1 = xt with probability 1 − α(xt, x∗). This results in the following transition
density k(·|·) for the RWM sampler:

k(xt+1|xt) = α(xt, xt + y)

+

 ∫
Rm

[1 − α(xt, xt + y)] q(y) dy

 δxt(Xt+1),

where δx(·) is the Dirac mass measure concentrated at x. Jarner and Hansen [10] present
a set of conditions that are sufficient to ensure that the target density is positive and
continuous over Rm or some open, unbounded subset of Rm, that the transition density
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is bounded away from 0 on compact sets, and that the tails of the target density decrease
quickly enough to ensure geometric ergodicity of the chain. Since we do not verify these
conditions analytically in our examples, we do not state them here. However, Jarner and
Hansen [10] also provide a drift function for RWM samplers that satisfy their conditions,
and it will be seen in Section 4 that this drift function is suitable for the RWM samplers
in each of our settings. This drift function is Vs(x) = c[p(x)]−s for some c > 0 and for
any s ∈ (0, 1). We will use several different choices of s in the illustrative examples of
Section 4.

3. Estimating drift and minorization coefficients
In this section, the technique for estimating drift and minorization coefficients is pre-

sented. In Section 3.1, we detail the estimation of the drift coefficients, and in Section 3.2,
the estimation of the minorization coefficient is described.

3.1. Estimation of drift coefficients
In order to estimate drift coefficients, we first select a drift function V (x). The process

begins with the estimation of λ. Let d be some positive constant that is larger than 2b
1−λ −1.

Since estimates of λ and b have not yet been obtained, it is best to choose a comfortably
large value of d. Once estimates λ̂ and b̂ of λ and b have been found, if 2b̂

1−λ̂
> d, choose

a larger value of d and try again. Once d is selected, choose the set C = {x : V (x) ≤ d}
as a small set. Rosenthal [19] shows that this set is indeed small for transition kernels
that satisfy a drift condition. To begin estimating λ, choose some number NC′ of points
outside of C to be initial values. The choice of NC′ may require some experimentation,
but this value should be chosen in such a way that the resulting estimate of λ is fairly
stable. Once the initial states are chosen, for a given integer h ≥ 1 that is specified by
the researcher but that corresponds to the factor by which the output of the chain is to
be thinned, run N0 h-step chains from each of the initial states inside the sampled set
Ĉ ′. Since Equation (2.3) implies that for x /∈ C, λ ≤ E[V (Xt+h)|Xt=x]

V (x) , compute the average
value

λ̂x = 1
N0

 1
V (x)

N0∑
i=1

V (x(i)
t+h)

 ,

where x(i)
t+h is the ending state of the ith h-step chain initialized at x. Then a fairly

conservative estimate of λ is obtained by taking
λ̂ = max

x∈Ĉ′
λ̂x.

If λ̂ < 1, then this is evidence that we have a suitable drift function. Otherwise, we may
need to try again with a different drift function.

Now that an estimate of λ is available, our attention turns to estimating b. To begin,
choose some number NCb

of points inside C from which to initialize an h-step chain. Much
like NC′ , the choice of NCb

may require some experimentation in order to ensure that the
estimate of b is fairly stable. For a given value of x in the sampled set Ĉb, run a reasonably
large number, say N1 of h-step chains. At this point, we take a brief aside to point out
that, until this point, estimating b has been done in a similar fashion to the estimation of
λ. However, in estimating b, an issue that can arise that we do not encounter in estimating
λ but that is often a major one in estimating b for RWM samplers is dependence of the
drift function on the normalizing constant of the target density. This constant cancels out
in the ratio during the estimation of λ, but it does not in the estimation of b. If the drift
function depends on the target density, then it will depend on the marginal density of x
in most cases. Therefore, we need to estimate the marginal density m(x). The simplest
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method for doing this is as follows. Let L(x) denote the likelihood function based on x.
Sample some number, say M , of points x1, x2, . . . , xM from the prior density. Then an
estimate m̂(x) of m(x) can be obtained by taking

m̂(x) = 1
M

M∑
j=1

L(x).

In some cases, this approach may not be feasible. In these situations, one may try one
of the numerous other methods of marginal density estimation that exist in the literature,
including adaptive importance sampling [15], annealed importance sampling [14], or one
of several other techniques that are available [2, 9, 12].

In the remainder of this discussion of estimating b, assume that marginal density es-
timation is necessary. Once an estimate of the marginal density has been obtained, let
V̂ (x) denote the estimated drift function based on m̂(x). As the N1 h-step chains are run
from each initial state, the process proceeds in the following way. Given an initial state xt,
for the resulting value of x(i)

t+h resulting from chain i, compute V̂ (x(i)
t+h). An intermediate

estimate b̂xt given that xt is the initial state is obtained partly by taking the average
value of V̂ (x(i)

t+h) over the N1 chains. However, recall that for chains that satisfy a drift
condition and for xt ∈ C,

E[V (Xt+h)|Xt = xt] ≤ λV (xt) + b.

Thus, we complete the computation of b̂xt by taking

b̂xt = 1
N1

N1∑
i=1

V̂ (x(i)
t+h) − λ̂V̂ (xt).

A final estimate b̂ of b is obtained by taking

b̂ = max
t=1,2,...,NCb

b̂xt .

3.2. Estimating the minorization coefficient
The estimation of the minorization coefficient for h-step transition kernels is much

more complicated mathematically than it is for one-step transition densities. Cowles and
Rosenthal [3] gives the following expression for ε:

ε =
∫
Rm

(
inf

xt∈C
k(xt+h|xt)

)
dxt+h. (3.1)

To begin, note that for an RWM sampler with increment density q(y),

k(xt+h|xt) =
∫
Rm

. . .

∫
Rm

n−1∏
i=1

k(xt+i|xt+i−1)dxt+h−1 . . . dxt+1

=
∫
Rm

. . .

∫
Rm

n−1∏
i=1

k(xt+i|xt+i−1)dyh−1 . . . dy1, (3.2)

where yi denotes the increment proposed at the ith step of the h-step chain. Our approach
is designed to estimate the integral in Equation (3.1). In order to do this, we choose some
number NC of initial states in C. We also choose some number N2 of possible increments
from q(y). We observe here that since the RWM update depends on the increment in
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such a way that the one-step transition density may be viewed as a function of y given
the current state, we can write the integral in Equation (3.2) as

k(xt+h|xt) =
h−1∏
i=1

∫
Rm

k(xt+i−1 + y|xt+i−1)q(y) dy.

Consequently, each of the integrals in the product may be viewed as the expected value of
the transition density with respect to the increment density. With this in mind, in order to
estimate one of these integrals, we propose each of the increments yi, i = 1, . . . , N2 to the
current state x, and we carry out an RWM accept/reject step. If the proposal is accepted,
we store α(x, x + yi). If the proposal is rejected, we store 1 − α(x, x + y). Once this step
has been completed for each of the N2 increments, the average of the stored values from
the accept/reject step is taken as a Monte Carlo estimate of∫

Rm

k(x + y|x)q(y) dy. (3.3)

The resulting values of each accept/reject step, either x or x + y are stored as the initial
states for the next set of proposed updates. We compute this Monte Carlo estimate of
the expected one-step transition density for each of the points in our sampled small set
Ĉ. Letting ε̂

(i)
xt denote the estimate for the point xt ∈ Ĉ for the ith step of the chain, we

use as a conservative estimate of the integral in Equation (3.3)

ε̂(i) = min
xt∈Ĉ

ε̂
(i)
xt .

This procedure is repeated for each step of the chain. We rely on the fact that, since the
one-step transition density is nonnegative, the ε̂(i) values are also nonnegative. Thus, for
a finite set A of nonnegative real numbers comprising elements ai, i = 1, . . . , m,

min
i=1,...,m

m∏
i=1

ai ≥
m∏

i=1
min

i=1,...,m
ai

to construct the estimate final estimate ε̂ of ε. This estimate is given by

ε̂ =
h−1∏
i=1

ε̂(i).

The processes described in Sections 3.1 and 3.2 will be seen in Section 4 to provide
stable estimates of the drift and minorization coefficients without incurring a prohibitive
computational cost.

4. Illustrative examples
In this section, we describe four examples that are designed to demonstrate the usefulness
of the methods described in Section 3. For each example, we provide average values of
the estimated drift and minorization coefficients from 50 runs of the estimation procedure,
along with stability measures for these estimates. We also examine the computing time
and the upper bound on the mixing time. The first of these examples deals with allele
frequency, and the second involves sampling from a mixture of bivariate normal densities.
The third example is designed as a more real-world example involving coronary heart
disease (CHD), and the fourth example is a higher-dimensional problem involving low
birth weight (LBW). All results are summarized in Table 1.
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4.1. Allele frequency
In a given population, the major allele “0” occurs with probability p, and the minor allele
occurs with probability 1 − p. In a set of 1,000 individual allele pairs, we aim to estimate
the probability of the major allele. Let n0 denote the number of 00 allele pairs, nH denote
the number of heterozygous (01 or 10) allele pairs, and let n1 denote the number of 11
allele pairs. The likelihood function for p given the genetic data D is

L(p|D) ∝ pnH+2n0(1 − p)nH+2n1 .

The prior density of p is the U[0,1] distribution due to a lack of prior information about
p. This yields the target density

p(p|D) ∝ pnH+2n0(1 − p)nH+2n1I[0,1](p).
Increments to p are proposed from the N(0,0.0009) distribution. This selection gives an
acceptance rate of 30.93%, which is approximately optimal for mixing [5]. We typically
want an acceptance rate between 20% and 40%. The chain is thinned so that samples are
taken every h = 10 steps. In order to estimate the drift and minorization coefficients, we
use the drift function

V̂ (p) = [p̂(p|D)]−0.005 ,

where p̂(·|D) is the estimated target density that results from using an estimate of the
marginal density. The value of d is set at 1,000. In estimating λ, we take 200 points
outside of C =

{
p : V̂ (p) ≤ 1, 000

}
and run 500 10-step chains from each of the selected

initial states. The resulting estimate of λ is 0.033. To estimate b, 400 points are chosen
from inside C, and 1,000 10-step chains are run from each. This leads to an estimate b̂ =
31.651 of b. We can see that 2b̂/(1− λ̂)−1 = 64.455, so the choice of d is sufficiently large.
To estimate ε, 500 points are chosen from inside C, and 1,000 increments are selected from
the N(0,0.0009) density. The resulting estimate ε̂ of ε is 0.323. These estimates give an
upper bound of 8,510 steps on the mixing time of the chain.
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Figure 1. Trace plot of Allele Frequency Chain.
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The trace plots in Figure 1 suggest that this is a sufficient burn-in time. The process
took 66.564 CPU seconds to complete. We repeated the process 50 times. The histograms
of λ̂, b̂, and ε̂ are in Figure 2. The average value of λ̂ was 0.0322 with standard error 0.001,
the mean value of b̂ was 31.675 with standard error 0.005, and the mean value of ε̂ was
0.313 with standard error 0.002. This gave an average upper bound on the mixing time
of 8,534 steps with standard error 73.793 steps. For this example, our choices of tuning
parameters gave estimates that are quite stable.

4.2. Mixture of bivariate normal densities
This example is a generic one in which we draw samples from a mixture of bivariate

normal densities. Let X denote a sample. Then X is distributed according to a 0.5N(0, Σ1)
+ 0.5N(0, Σ2) density, where Σ1 = diag(0.5, 1) and Σ2 = diag(1, 0.5). Here, bivariate
increments are proposed from a pair of independent uniform densities on [-1.5, 1.5]. This
choice yields an acceptance rate of 27.02%. The drift function is V (x) = [p(x)]−0.05, where
p(x) is the target density. We thin the chain output by a factor of h = 5. The choice of d
here is 30. In estimating λ, we choose 200 points outside the set C = {x : V (x) ≤ 30} and
run 500 five-step chains from each. The resulting estimate of λ is λ̂ = 0.144. To estimate
b, we use 400 initial states inside C and run 500 five-step chains from each one of them.
This gave an estimate b̂ = 1.018 of b. The resulting value of 2b̂/(1 − λ̂) − 1 is 1.378, so
the choice of 30 for d is sufficiently large. Estimation of ε begins with the selection of 500
initial states inside C and 1,000 proposed increments from the increment density. The
resulting estimate of ε is ε̂ = 0.4375, yielding an upper bound of 3,015 steps on the mixing
time of the chain. In 50 runs of this process for this example, the average value of λ̂
was 0.153 with standard error 0.004, the average value of b̂ was 1.018 with standard error
0.0013, and the average value of ε̂ was 0.4353 with standard error 0.0014. The average
bound on the mixing time was 2,867 steps with standard error 23.305 steps. The process
produces fairly stable estimates of drift and minorization coefficients. The process took
an average of 31.961 CPU seconds to complete, with standard error 0.354 seconds. It is
seen, then, that the estimation procedure is rather efficient in a computational sense for
this example.

4.3. An example pertaining to CHD
This example examines a logistic regression model that relates the incidence of coronary
heart disease to age. The data consist of information about 100 males aged 20 to 69 years.
We let X denote the design matrix, which has dimension 100× 2, where the first column
is a column of ones and the second column contains ages. The presence yi of CHD in
individual i is assumed to follow a Bernoulli distribution with success probability pi(β),
where

pi(β) = exiβ

1 + exiβ
,

and xi is the ith row of X. A priori, β is assumed to follow a bivariate normal distribution
with mean vector [−5, 0]T and covariance matrix Σ = diag(0.25, 0.0625). This gives an
acceptance rate of 27.17%. The posterior density of β is given by

p(β|y) ∝
[100∏

i=1
(pi(β))yi (1 − pi(β))1−yi

]
e−2(β0+5)2−8β2

1 .

In this example, the drift function is

V̂ (β) = [p̂(β|y)]−0.04 .
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The small set is chosen to be the set
{

β : V̂ (β) ≤ 100
]
. Here, the chains are thinned by

a factor of h = 10. To estimate λ, 200 initial states are selected from outside C, and 400
ten-step chains are run from each. The resulting estimate λ̂ of λ is 0.091. To estimate b,
500 points in C are selected as initial states, and 1,000 ten-step chains are run from each.
The resulting estimate of b is b̂ = 2.451. The value of 2b̂/(1 − λ̂) − 1 is 4.392. The choice
of d = 100 is sufficiently large. In estimating λ, 500 initial states are chosen from inside
C, and 1,000 y increments are chosen from the bivariate normal density with mean vector
0 and covariance matrix Σ, where Σ is specified as above. The resulting estimate of ε is
ε̂ = 0.556. This gave an upper bound of 4,010 steps on the mixing time. In the stability
analysis, the mean value of λ̂ is 0.093 with standard error 0.014, the mean value of b̂ is
2.332 with standard error 0.059, and the mean value of ε̂ is 0.564 with standard error
0.035. This gave an average bound of 3,970 steps on the mixing time with standard error
39.982 steps. The process took an average of 398.37 CPU seconds to run with standard
error 12.069 seconds.

4.4. Low birth weight application
This example aims to illustrate the performance of this method in moderate dimensions.

We examine a logistic regression model that connects the incidence of LBW to several
predictors related to the mother. Among these are age, whether the mother smokes, and
seven others. Let xi denote the ith row of the design matrix X, and let β be a vector of
regression coefficients. The response vector y contains 0s and 1s, where yi = 0 if the ith
neonate weighs 2,500 grams or more, and yi = 1, otherwise, where i = 1, . . . , 189. The
random variable Yi follows a Bernoulli(pi(β)) distribution, where

pi(β) = exiβ

1 + exiβ
.

A priori, β is assumed normal with mean vector

β0 = [1, 0, 0, 1, 1, 1, 0.5, 2, 0.75, 0]T

and covariance matrix
Σ = diag(0.25, 0.0625, 0.0625, . . . , 0.0625).

This gives the target density

p(β|y) ∝
[189∏

i=1
(pi(β))yi (1 − pi(β))1−yi

]
e− 1

2 (β−β0)T Σ−1(β−β0).

If βt is the current state of the chain, an update βt+y is proposed by drawing y from a nor-
mal density with mean 0 and covariance matrix diag(0.0004, 0.0001, 0.0001, . . . , 0.0001).
This increment density gave an acceptance rate of 25.12%. The drift function here is

V̂ (β) = [p̂(β|y)]−0.005 ,

and the set C is chosen as C =
{

β : V̂ (β) ≤ 1, 000
}

. We thin the chain by a factor of
h = 20 steps. For estimating λ, 500 initial states outside C are selected, from each of which
400 20-step chains are run. The resulting estimate of λ is λ̂ = 0.002. For the estimation of
b, we chose 200 initial states inside C and ran 1,000 20-step chains from each. From these
choices, we get an estimate b̂ = 1.600 of b. The value of 2b̂/(1 − λ̂) − 1 is 2.206, so 1,000 is
a sufficiently large threshold for inclusion in C. To estimate ε, we choose 500 initial states
in C and 500 increments from the increment density. The estimate of ε is ε̂ = 0.232. This
gives an upper bound of 24,220 steps on the mixing time. The process took 886.893 CPU
seconds to run. In the stability analysis, the mean value of λ̂ was 0.0021 with standard
error 0.0005, the mean value of b̂ was 1.603 with standard error 0.0009, and the mean
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value of ε̂ was 0.241 with standard error 0.003. The average bound on the mixing time
was 23,093.64 steps with standard error 310.514 steps. The process took an average of
984.750 CPU seconds to complete with standard error 88.893 seconds. In Table 1, the
mean values of λ̂, b̂, and ε̂, as well as the bound on the mixing time, are given along
with their standard errors in parentheses. The AF row corresponds to the allele frequency
example, the BVN row corresponds to the mixture bivariate normal example, and the
CHD and LBW rows correspond to the CHD and LBW examples, respectively.

Table 1. Stability results.

λ̂ b̂ ε̂ Mixing Time

AF 0.032(0.001) 31.675(0.005) 0.313(0.005) 8,534(73.793)
BVN 0.153(0.002) 1.018(0.0013) 0.435(0.0014) 2,867(23.305)
CHD 0.093(0.014) 2.332(0.059) 0.564(0.035) 3,970(39.982)
LBW 0.0021(0.0005) 1.603(0.0009) 0.241(0.003) 23,093(310.514)

5. Conclusion
In this manuscript, we present a novel technique for approximate verification of geomet-

ric ergodicity of h-step RWM transition kernels. While it does not guarantee geometric
ergodicity of these chains, it is a useful method of making determinations as to whether it
would be reasonably safe to treat the chain as though it were geometrically ergodic. Herein,
we demonstrate through illustrative examples that the proposed technique provides sta-
ble estimates of drift and minorization coefficients. This method is also computationally
efficient in moderate dimensions. This is one property that the Cowles and Rosenthal [3]
approach does have since that technique of estimating a minorization coefficient requires
division of the state space into bins and that enough chains be run from each initial state
to ensure adequate coverage of those bins. With that in mind, our method is certainly
not without its limitations. One of these limitations is that, in many cases, it is necessary
to estimate the marginal density. While in the examples that we present, this is not a
difficult task, in other practical settings with complicated prior densities from which it
is difficult to obtain samples, marginal density estimation can be very difficult to do. A
second limitation is that our approach to estimating the minorization coefficient relies
on the multiplication of h terms that lie between 0 and 1. This means that for chains
with substantial autocorrelation where thinning factors are in the hundreds or thousands,
estimated minorization coefficients can be very small. While this is not of concern if the
goal is strictly to gather evidence for geometric ergodicity, if it is also desired to use the
estimated drift and minorization coefficients to bound the mixing time, the estimated mi-
norization coefficient may be too small to provide a practically useful bound. While this
approach is able to handle moderate dimensional situations fairly easily, it will eventually
come across the curse of dimensionality. As the dimension gets large, the number of ini-
tial states needs to increase accordingly in order to ensure a representative sampled set.
The number of chains that need to be run from each of them will also need to increase.
Without increasing both of these tuning parameters with the dimension, we lose stability
in the estimation process. This leads to highly variable bounds on the mixing time. One
way to reduce the size of the sets of initial states is to choose values near the boundaries
of the small set that is specified.

While this method is useful in verifying geometric ergodicity of h-step RWM transition
kernels, there are better methods of bounding mixing times that warrant further investi-
gation in terms of extension to h-step transition kernels. For example, Johnson [11] uses
coupled sampling paths to estimate mixing times. The method presented in that paper
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works well for several classes of MCMC algorithms. Roberts and Rosenthal [17] also use
couplings to establish geometric ergodicity of adaptive MCMC algorithms. Atchadé [1]
uses an approximate spectral gap to bound the mixing time. The aim is to extend these
results to multiple-step transition kernels. Another avenue to pursue is to see how the
method presented in this manuscript might be used to approximately establish geometric
ergodicity of dimension-switching algorithms such as reversible-jump MCMC. It is also
important to investigate adaptations of this approach to Metropolis-Hastings samplers
with asymmetric proposal densities. This is a more involved task, but the work presented
here represents a useful beginning to attacking these problems.
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