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ABSTRACT

We obtain a new and simple splitting of Einstein field equations with respect to the (1+ 1+ 3)
threading of a 5D universe (M,g). The study is based on the spatial tensor fields and on the
Riemannian spatial connection, which behave as 3D geometric objects. All the equations are
expressed with respect to the adapted frame field and the adapted coframe field induced by the
(1+ 1+ 3) threading of (M, ). In particular, we obtain the splitting of the Einstein field equations
in a 5D Robertson-Walker universe.
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1. Introduction

This paper is a continuation of the papers [1, 2] of the first author devoted to Raychaudhuri equations and
to equations of motion in a 5D universe. According to the new approach presented in the above mentioned
papers, the 5D universe M = M x K is studied by means of the submersion of M on the 4D spacetime M. We
should stress that in all the other theories of a 5D universe, the study was performed by considering M as a
submanifold embedded in M ( cf. [4, 5])

The spatial tensor fields, the kinematic quantities and the covariant derivatives induced by the Riemannian
spatial connection, are the main tools used in the paper. We start from the coordinate-free form of the Einstein
field equations (EFE) and by using the adapted frame field on M, we obtain the local form of the 15 (EFE). As
an application we write down the (EFE) for a 5D Robertson-Walker universe.

Now, we outline the content of the paper. In Sect. 2 we recall from [1] the geometric configuration of a 5D
universe. The structure equations induced by the (1 4 1 + 3) threading of a 5D universe are obtained in Sect.3
(cf. (3.9)-(3.12)). These equations are splitting in Gauss equations, Codazzi equations and Ricci equations for
the spatial distribution of the 5D universe (1, g). In Sect.4 we obtain the local components of the Ricci tensor of
(M, g) with respect to the adapted frame field (cf.(4.6)), and the scalar curvature of (M, g) (cf. (4.9)). The spatial
Ricci tensor and the spatial scalar curvature characterize the geometry of the spatial distribution, which in our
study is not necessarily integrable. These geometric objects enable us in Sect.5 to proceed to the splitting of
(EFE) in (M, g) (cf. (5.6), (5.8)-(5.12)). We succeed to pick out the six spatial Einstein field equations (SEFE) (5.6)
in which appears for the first time in literature the spatial Einstein gravitational tensor field. In Sect.6 we apply
the general theory to the 5D Robertson-Walker universe. We should note that equations (6.13), (6.16) and (6.17)
show us that some local components of the energy-momentum tensor must vanish, and the warping function
should be a solution for two PDE. We close the paper with Conclusions and an Appendix.
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2. The geometric configuration of a 5D Universe

In this section we present the main geometric objects induced by the (1 + 1 + 3) threading of a 5D universe
1, 2].

Let M and K be manifolds of dimension four and one respectively, and M = M x K be the product bundle
over M with fibre K. We have a coordinate system (z*) = (%, z*) on M, where z* is the fibre coordinate and
(z") is a coordinate system on M. Suppose that M is endowed with a Lorentz metric g such that

g(n,n) = ¥2, (2.1)

where 7 is a globally defined vector field on M that is locally given by 9/9z*. Denote by VM the line bundle
spanned by  and by HM the complementary orthogonal vector bundle to VM in the tangent bundle TM of
M. We call VM (resp. HM) the vertical distribution (resp.horizontal distribution) on M. Now, suppose that on M
exists a globally defined horizontal vector field U such that locally we have U = 9/9z°. Then it is proved in [1]
that there exists a globally defined horizontal vector field £ on M, which is locally given by

1) 0 0
520 ~ a0 Mo (22)
and it is timelike with respect to g, that is, we have
R ) 9
g(@? 5?) =—%°. (2-3)

The timelike vector field ¢ and the spacelike vector field 7 are called the 4D wvelocity and the 5D wvelocity,
respectively. The line bundle spanned by ¢ on M is denoted by 7M and it is called temporal distribution. The
complementary orthogonal bundle to 7M in HM is denoted by SM, and it is called the spatial distribution.
Then we have the orthogonal decomposition of the tangent bundle of M

TM =TM & SM & VM. (2.4)

Throughout the paper we use the following ranges of indices: a,b,¢, ... € {0,1,2,3,4}, i, .k, ... € {0,1,2, 3},
and «, 3,7, ... € {1,2,3}. For any vector bundle E over M denote by I'(E) the F(M)-module of smooth sections
of E, where F(M) is the algebra of smooth functions on M.Also, to express in a simple way some long formulas,
we use notations like this:

A {wap®y + Waply} = Wap Py — War s + Waply — War|s-

The decomposition (2.4) enables us to use in the study the adapted frame field {5/62°,6/62*,0/0x"} and the
adapted coframe field {0z°, dz®,5xz*} on M, where we put

(a>5iafBaan

Sz™ — Oz 50 aPgds

_ (2.5)
(b) 2% = da® + Bodx®, (c¢) da* = da* + A;dz’.

As the fibres of 7 M are timelike, the Lorentz metric g induces on S(M) a Riemannian metric h with local

components
) _( 6 6
haﬁ"”‘(wusxa) —9<w’m>- (2:6)

Thus, the line element on M with respect to the adapted coframe field has the form

ds* = —0%(32°)° + hapdade” + U*(52*)*. (2.7)

Next, we recall from [1] the kinematic quantities on M.
First, the 4D vorticity w3 and the 5D vorticity 1,4 are given by

6B
(@) wap = 3A(p) {M‘f }

0A
(®) Map = 5A(ap) {W’f + Ba%} :

Then, the 4D expansion tensor field ©,p and the 5D expansion tensor field K,z are expressed as follows:

(2.8)
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1 6hag 1 0hag

(a)gaﬂ:§5x0’ () T

(2.9)

The trace of these spatial tensor fields define the 4D expansion function © and the 5D expansion function K given
by

(@) ©=0,3h"?, (b) K= K,zh". (2.10)

Also, the trace-free spatial tensor fields 0,3 and H,s given by

1
— —Khag, (2.11)

1
(a) Oap =Oap — 36has, (b) Hap = Kap 3

are called the 4D shear tensor field and the 5D shear tensor field on M, respectively.
The Lie brackets of vector fields from the adapted frame field are expressed as follows:

(@) [529> 595 ] = 2wapzpe + 2apgor

(®) (555 500) = bages + Gagor, (21
() [52% 597] = dagas + Cagon,

() [530: 527] = 0507,

From (2.12d) we see that the distribution 7M @ VM is integrable.
Next, we denote by V the Levi-Civita connection defined by g on M, and recall from [1] the Riemannian spatial
connection V on the spatial distribution SM given by

VxSY =8VxSY, V X,Y € I(TM), (2.13)

where § is the projection morphism of TM on SM with respect to the decomposition (2.4). Locally, V is given
by

oe (2.14)

where we put

vy o1 5hm 48 Shag
(a) T 5= hw{ T+ e = sR

(b) TJ)o=02+d%2, (c) T)J,=KI—V.

(2.15)

The pair (M, ) with the geometric configuration described in this section is called a 5D universe. As it was
explained in [1] this 5D universe is different from the ones considered in both the brane-world theory [3, 4] and
the space-time-matter theory [5, 6].

We close this section with the local expressions of Levi-Civita connection V on the 5D universe (M, g) (cf.

[1]):
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(a) Vs 522 =T, 5525 + (was + 2 Oup) 52
+ (1lap — ¥ Kag) o1,

(0) Vs 55 =T 055 + (Pa — ba) 52
+1(22da T2 — aa) 321,

(€) Voo 520 =T 155 + 1 (020,072 — dy) 525

+ (\Il(l - Coé) %7

(d) Vs 325 =T, 055 + Gazis + 3 (92da¥ ™% + a0) 52, (2.16)
(€) Vs g2 =T uses + 3 (V2aa® 2+ do) 325 + Yapla,
(1) V2, 5% = 3 (Va7 = @0) s + bl + (Vo — ao) o,
9) ?%% % (\I’Q‘ﬂ - ‘1’2&) 5ov T 1 50 50t Vo 52 9z
(h) V_s 525 = 0 (6" —17) 505 + dogow + D 0a V75l
(4) ?%% = W2 (7 — W) 55 + U (g — ag)® 2585 + Wa s,
where we put
(@) @i=07'5, () Wi=VTlg, (2.17)

(c) ®4=0"12%  (d) Uy=0"12%,

3. Structure equations induced by the (1 + 1 + 3) threading of a 5D Universe

The Riemannian spatial connection V defined in [1] is a metric linear connection on the spatial distribution
SM, and its curvature tensor field is given by

R(X,Y,82) = VxVySZ — VyVx8Z — VixySZ, (3.1)
forall X,Y,Z € T'(TM). Locally, we put:

R(% Lﬁ 61%): a,@’yéz“’
s 5 6 "
S
R (550 g9 5om) = Rd'an5oms
R (55 gm0 5ew) = Rl sozan
Then by direct calculations using (3.1), (3.2), (2.12) and (2.14) we obtain

sTh or
((],) Raﬂ,@’y_ 52775 §:r5 +1—W5F FZ"YFlljﬂ

_2w3’YFaO - 277571—‘a47

sTH or
(b) R(X#O’y = 5;70 - 5390 +FV OFV F(ux'yF50
—b,Thy —a Th
- - Y+ a0 Y ad (33)
I o
(C) Rauélfy = 5;74 - 8974W + FZ 4FV FZ"YI‘le‘l

n m
—d FaO - C’Yraéb

sTH N
(@) RSyo= §§04 - u ¢ +T5 ),
_Fl& OFV 4~ aollyy
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Now, let R be the curvature tensor field of the Levi-Civia connection V on the 5D universe (M, g). Then with
respect to the adapted frame field {525, 2=, 52;} we express R as follows:

x) Oxd

B, 1) [ 5 __ DO ) D K [ D 4 Lol
(@) R (525 595 50m) = R gy 500 + Ry gy 5w + Rl gy g

P, 5 5 5 D ) P,
(b) R (525 550 5ow) = R oy5e0 + B0y 5w + Ral oy o (3.4)
(C) R(Lii)fpbo L+Ru + R4

dxV 0 Ozt Sz ) T a4y §x0 o 4 (5.’,2“‘ C!4’Y¢93c4’

B, ) a ) D0 [ D, ) 4

(d) R(5% 595 525) = Rsos2 + Ry 052 + Rl yoges

In this section we use the calculation performed in the Appendix. First, by comparing (3.4a) with (A4), we
deduce that

(@) Ry, =Ry

o gy + Ay { (@ap + @ 2005)T 1,

+(as — V2 Kap)T 'y}

(b) Raoﬂ’y = A(s) {Waﬁlv +o7? (eaﬁ\'y + ecwq)ﬂ) T Wap®y

+3 (PP, @72 +dy) (11 — U Kap) |

—2(®y — by )wpy — (V2a,d2 — da )Ny

(©) Ry = Ay {Naply + 072 (Kayjs + KapPy) +0as¥y

+5(P2d, U2 + ay) (Wap + P 0ap) | — 2(Ya — o)y

—(D%da U2 — aq)wpy-
Similarly, by comparing (3.4b), (3.4c) and (3.4d) with (As), (4¢) and (A7) respectively, we obtain
(@) RY oy =Rl o)+ (®a —ba)T)
+1(92d, V2% — a,) r;gl — (Oary + D%way) (B — 1)
3 (May — V2 Kqy) (PPak — B2dH),
(b) Rioy = Pajy = bajy — (wa’y + ¢729a7)|0
—(wap + @729au)rwuo + (Pa = ba) (P = by)
P (Way + P %00y) — Pu(nay — ¥V 2K,,)
+1(3daay — andy + ®2dod, U2 — 3V%a,a, P 2),
(€) Ry oy =13 (2%da®™? —aa)  — (Nay — ¥ ?Kay)
- (na# - \I’_QKCW) PVMO + % (Pa —ba) (‘I’de\I’_Q + av)
+3 (U — ¢y) (P2da V2 — a,)
— D20, 02 (wary + D 200y) — Vo (N — Y 2Ka)

—(Vq — Ca)aw
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L 3 (W2aa® % —dy) T + (U, — co) T,

. B

—3 (Wary + 27204,) (V2at — B2dH)
+ (U2nay — Kay) (¢ — TH),

() RY ., =3(¥2an® 2 —da)y — (way + ¢2em)‘4
— (Wap + 27200) T + 3 (V200 @2 — dy )V,
+3 (Vo — ca)(P2aa @2 + do) — P4 (Wary + P726,,)
—U20~2(Wg — ag) (Nay — ¥ 2Kay) — (Pa — ba)d,

_%(\112%‘@*2 —da)cy,
o 4y = (Ya = Ca)ly = (o — \IFQKM)M

—(Map — \I/_QKW)F fat g ( — ®%d, U ?)(3dy + U2a, P ?)

(c) Ry

+H(Wa = €a)(Ty = ) = (Way + @200y ) (Yo — ao)

+\II4 (na'y - \I/_QKa'y) )

and

(a) RYyo=RE4 o+ 3 {(PPaq — P2dy)(PH — WH 4 — bH)

+ (o — Po + ba — o) (V2ar — ®2dH)},
(b) RLyo=13{(P2aa® 2 —da)jo+ (V2aa® 2 — do)(Po — Vo) }

—(To = ba)ja + Pa(Vo — o + by — ca), (3.8)
(¢) Riso=Ya—ca)o—3 {((I)zdaq’_z — Qo)

+(P4 + Ua)(P?d0 U2 — ay) }

+(To—ag) (Vo — Po + b — ¢a).

Next, by using the local components for R and R of type (0,4) from (Ag) and (A1), and taking into account
(3.5), (3.6), (3.7), and (3.8), we infer than

(@) Rapyw = Rapyw + Apy) {272(Oay + P2way ) (g, + P2wg,)
*‘1’72(Ka’y - ‘Iﬂna’y)(Kﬂv - ‘IJZWBV)} )

(1) Raoyw = Ay {Oavly + Oay @y + @2 (Wary + war Ps)

+3 (P2ay + 92d,) (Naw — V2K40) }

+282(Pp, — by )wr + (P2an — D2da) 0w,

(¢) Rasyy = Ay {KQVW + Kon 0, + 92 (77117\ + Ny ¥ ) +
+3 (V2a, + 92d,) (way + ¥ 7204,) }

—20%(y,, — Ca)Nyv + (V2a, — <I>2da)ww,
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(@) Ragoy = Rapoy + A(ap) {(®a — ba) (O + P*wp,)
+3(P%do U2 — ay)(Kpy — Vnp,) },

(b) Raooy = Po(Ony + P*wary) + (O + P%we, ) (0 + P2wY)
+®2 {ba|'y — @4y + (Way + <I>*2@M)|O —(Po — ba)(Dy — by)

+0y (o — U 2Ka,) — 2(3daay — agd, + ®2d,d, T2

(3.10)
—30%aqa,®7%)},
(¢) Rasoy = V2 {3(P%da¥ ™2 — aa)jy — (Nay — V"2 Kar)j0
—(Vo = ca)ay} + (Kap — U210,) (04 4+ P20+
3 {(®a — ba)(P%dy + V2ay) + (Vg — ) (P2do — ¥2a,) }
—®4(O0y + qﬂwav) + Wo(Kay — ‘11277017)»
(a) Ropiy = Rapay + Aap) {3 (V200 P72 — do) (O + P2wp,)
+H(Wa — ca)(Kpgy — U2ng,)},
(b) Raosy = ©? {(way + @ 7200y) s — 5(V2aa® 2 — do)
+(Po — ba)dy} + (Oaw + P2way) (KX — UnY)
_% (V2aq — ®%da) (Vs — cy)
+(P2ay + @) (Vo — co) } + Pa (Oay + PPwasy) (3.11)
+(¥o — ao) (Y ™"*Nay — Kay) ,
(c) Ra447 =92 {(‘I’a - Ca)lv - (77047 - \II_QKCW)\AL
(Vo — ca)(Uy — ¢y) = (Yo — ao)(wary + (1)72@a'y)}
+(Kow — \Ilznay)(Kfy’ - \Ilzn,’;) + % {3\Ilzaad,y — \IIQa,Yda
—302dody + Vtaga, @2} — Uy (Ko — U21,,),
and
(a) Rapao = Rapao
+5A(p) { (PPaa — ©%da)(Ps — Up +c5 —bg) },
(b) Raoso = P? {(Pa — ba)js + Pa(Pa — Vg + ca — ba)
+3(da — V2aq® )0} + 2(P2de — V2aq) (o — ao), (3.12)

(¢) Raaao =2 {(¥a — ca)jo + 5 (a0 — P?*da¥™2)4
—(\IJO — ao)((I)a — \I’a + Co — ba)}
+2(@%dy — V2an) (s + Ty).

The equations (3.9) - (3.12) are called structure equations for the spatial distribution with respect to the (1 + 1 + 3)
threading of the 5D universe (M, §). Moreover, in analogy with theory of the submanifolds, we call {(3.9a)},
{(3.90), (3.9¢), (3.10a), (3.11a) } and {(3.100), (3.10¢), (3.11b), (3.11¢), (3.12)}, the Gauss equations, Codazzi equations
and Ricci equations respectively, for the spatial distribution.
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Now, taking into account the symmetries of R we deduce some important identities for the curvature tensor
field of the Riemannian spatial connection and for the kinematic quantities of (M, g). First, from (3.9a) we
obtain

(a) RQB"/I/ + RQBV’Y = 07 (b) RaB'yu + R,@a'yu = 07
(€) Rapyw — Ryvap = 2A(0) {wyaOus + wrp01a (3.13)
1ok + nupKyat -
Then, taking into account that
R(XO’YV = _R’YVOOH
and using (3.9b) and (3.10a), we infer that

Royvoa = Ay {¥2(bywia + Woaly + dyua) + Oualy + ay Kaw

(3.14)
+b,O0u } + 202 (Py — bo)wiy + (V2aq — D2dy )1y -
Similarly, from (3.9c) and (3.11a), we deduce that
R'yuOoz = A(ufy) {Kow|'y —+ \112(77047\1/ + 27704'7\1111)
+1 ((92dy + V2a,)way + (V2a, — 92d, 4 29%a,97%)0,,) (3.15)

ey (Kpa — U2nua) } — 202(Vg — o)y + (PPaq — P%do)wy,.

Finally, taking into account that both RaO’yO and Ra474 are symmetric tensor fields with respect to the indices
(ay), from (3.10b) and (3.11c) we obtain

Raor0 = —P0Oay — 000 — ®Hwapw? — 02 {3 (bajy + byja

—By1y = Pya) + (27O0ary)j0 — (Pa — ba) (P4 — by) (3.16)
— 04U 2Ky — F(aady + aydq
+02d,da U2 — 39%a,a,072) ),
and
Ratys = VaKoy — Ko K2 — Wha,n2 — 02 {1 (W, + 0,
—Caly = Cyja) + (U7 Kay) s + (Yo — o) (Uy — ¢y)
(3.17)

—(g —ag)® %04y — i(aad7 + aydq
+0%aqa, 072 — 30%d0d, U ~2)} .

4. Ricci tensor and scalar curvature of a 5D universe

Let (M, g) be a 5D universe and {E,} be an orthonormal basis in I'(SM). Then {®~* L5, By, U1 3o 2} is an
orthonormal frame field locally defined on M. Thus the Ricci tensor of (M, g) is given by

3
Ric(X,Y) = —®2R(%5, X, 25, Y) + > {R(Ea, X, Ea,Y)} @)
a=1 :
+U2R(3%, X, 32%,Y),
forall X,Y € I'(T'M). Now, we put
B = - (4.2)
o adx,yv
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and obtain

3
Wt =" ElEL. (4.3)

a=1

For local components of Ric it is more convenient to use the adapted frame field {325, 5%, 52}, instead of the

S’ Oxt
above orthonormal frame field. Thus we have
(@) Rap= RZC( %) (b) Rao = ch(éi %)
() Roo = I%c(% %) (d) Ros = RE'c(% %) (4.4)
(6) R44 = Rlc(di di) (f) R40 = ]{ZC(Bi di)

By using (4.1) and (Ay) into (4.4), we obtain

(a) Rap=—P 2Raopo + M"Y Rappy + ¥ 2Raap4,

(b) Rao = h*YRopoy + V2 Raaou,

(¢) Roo = h* Rouoy + 2 Roaou,

(@) Ros = —-Rooio 4 b oy, (4.5)
(€) Ras = —P 2Ragao + W7 Ryya,

(

f) R40 = hl“{R4u0'y-

Next, by some long calculations using [(3.9) - (3.12)] into (4.5), we deduce that
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where we put

(@) Rap=Rag+ 5 {(ba+ca—Pa— Vo) 5+ (bg+cs
~®5 — V)i } + (2 7?Oup)j0 — (P2 Kap)

+072(Pg+ Up—ag+©O)Oup + UV 2(Vy — &y — K)K,p
—(Pa = ba) (s — bg) = (Vo — ca) (Vg — cp),

() Rao =R g, + (ca — Wa)jo + (@24 U2 — a0

—(Wo — ao) (Vo — co) + (K — &4 — Uy)(22d U2 — a,)
+(@ + o — ao)(fI)a - ba) - ((I)7 - b’y)(@av + (I)chw)
_%((I)de\ljiz —a")(Kay — \Ijzna'y)v

() Roo = (co— ¥y — ) + (¢2<I>4\I/72)|4 + ®o0 — 0205

+(\I/o — ao)(<I>0 — \IJO —|— ao) + ‘1)2 {‘1)7

—b =D
|y [y a

vy
(DY =) (D) — by — V) — KU 2

+3(9%d, VU2 — V2a,a7d )},

(d) Roa=R] 4 (ba — Pa)ja + 5(¥2aa® 2 —do)o

+(K + @) (Vo — ca) + Pa(ba — Do) + 5 {(a0 — Bo + 0)¥2a, 2
+(ag — o — O)do — (¥2a7P 72 — d7)(Ony + P2way) }

(7 = ) (Kay = ¥*nay),

— g7

(€) Rua=3WaK — Ky~ KIKS + 30%d,d + w2 {07,

|y
—\112773’(]2‘ + (I’_Q(\I/o — ao)(@ + Wy — Py — ao)

—(U =)V + @y — ¢y — by) — 2V2a,a7D 2}

(f) R40 =30,0 + (ao — \I/())K — @‘4 + \IJQ(I,Y(\I/'Y - C'y)
(O] + D) (K — W) 4+ @ {d, (87 — 1)

Hae ),

1
RQB = §(R’Y

o By

~
+ Ry a'y)'

The spatial tensor field R, is called the spatial Ricci tensor of the 5D universe (M, g).

Finally, we obtain a formula for the scalar curvature R in terms of spatial tensor fields. First, we have

R= 7(1)72]*%00 + hm’R’W + \1172]%44.

Then by direct calculations using (4.5a), (4.5¢) and (4.5e) into (4.8), we obtain

(4.8)
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(@) R=R+2{(0" +c" =" — V7)., — (B — b7)(Py — by)
(U7 = )Ty — )} + P2wIwg — Vindng

+072 {02 — 2800 + 2(¥( — ag)(© + Vo — ag — D) (4.9)
+(Wo — ag)jo + 200 — (P?P4¥2), + ©707 }

U {K? + Kjy + (4 — 70K + KJKS

where we put

R=h"R,,. (4.10)

We call R the spatial scalar curvature of the 5D universe (M,g). It is important to mention that R,z and R
characterize the geometry of the spatial distribution, which in our study is not necessarily integrable.

5. Splitting of the Einstein field equations of (M, g)
In the first part of this section we obtain the local components of the Einstein gravitational tensor field G

of (M, g) with respect to the adapted frame field {2, 52, 52, }. We start with the coordinate-free form of G
given by

G(X,Y) = Rie(X,Y) - %g(X, Y), VX,Y eT(TM). (5.1)

Then we have the following local components:

Next, by using (4.6) and (4.9) into (5.2), we obtain
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(@) Gap=Gap+ 2{(ba+ca—Pa—Ua)5+ (bs+cs
—®p —Up)ja} + (27%Oap)o — (¥ Kap)ja
+072(Pg+ Vg —ag+O)Oup + UV 2(Vy — &y — K)K,p
+(Pa — ba)(Pp — bg) = (Vo — ca)(¥p — c5)

—3 { Q2w — WY +2 (07 4 — Y - UY)),
(27 = 07)(®y = by) = (U7 = ") (¥y — ¢y))
+072 (02 — 2800 + 2(¥g — ag)(0 + Vo — ag — Do)
+(Wo — ap)jo + 20 — (P2P4¥2), + ©)64)
—U2 (K2 4 (04 — TU4)K + Ky + KJK!) } hog,

(b) Gao=R]

o 0y + (Ca - \Ija)lo + ((I)Zd(x\ll—Q - aa)\4

—(\I’Q — a0)<\11a - Ca) + (@ + Wy — ao)(q)a — ba)
(@7 1)@y + D) + 3 (K — By — W) (02,02 — a)

—(P*D T2 a”)(Kay — \11277a"/)} )

(C) éoo = % {@2 + (ao — \Ifo)‘o + ((1)2@4\1’_2)|4 + 2(\1/0 — ao)@
+@% (R4 @*(dVd, U2 — wlw?) — V2 (a’a, @72 + nlng)
—2(Wy = ¢)) (BT + WY — b7 — V) = 2K Py + 26 — 207

—U 2 (K% + (Pg — TU)K + K4 +K3K$))}’

(d) Gas =R 4y + (o — Pa) s + 5(V2a0® % — do)jo
+(K + ®4) (Vo — ca) + Pa(ba — Do) + 5 {(a0 — Po + 0)¥2a, P2
+(ag — Po — O)do — (¥2a7® 72 — d7)(Ony + P2way) }

(U7 = ) (Kay = ¥*nay), (5.3)
(€) Guu=3{K?+ (P4 —Vy)K — K|y — KJKS + ®*dd" }
P2 {(B7 = W 4 = D7) (B~ by) — (e + Vg

+0%a,a"® 2+ R)+ @7 — b

GRS

+1(0% + (o — ag)jp — (P20, T72);, +0202))},

(f) Gao =340 + (ag — Vo) K — Oy + ¥2a, (U7 — )
(8 + B2)(K3 — W) + 0% {d, (87 — b7)
+1(V20"2 —d7), .

Next, we consider the coordinate-free form of the Einstein field equations expressed as follows

G(X,Y)+A\g(X,Y) =cT(X,Y), VX,Y eT(TM), (5.4)

where A and ¢ are constants and 7' is the energy-momentum tensor field of the 5D universe (M, g). The local
components of T with respect to the adapted frame field are given by
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Then, we take X = §/62” and Y = §/6z“ into (5.4), and by using (5.3a), (5.5) and (2.6), we deduce that

Gag + {A— 5 (PwWjwh — Wit +2 (07 + 7 — B — ¥7),,
—(®7 = 07)(Py — by) — (U7 — ) (Vy —¢y))

+072 (0% — 2800 + 2(¥g — ag)(© + Vo — ag — D)

+(Wo — ap)jo + 20 — (P204¥2) ), + ©)04)

—U 2 (K24 (P4 — TU4)K + Ky + KJK2)) } hag

+3 ((ba +ca = o = Va)js + (b +c5 — D5 — Vg)ja)
+(@720up) 10 — (T2 Koap)ja + P7%(Pg + ¥g — ag + ©)Oqp
FU2(Wy — Dy — K)Kop + (P — ba)(Ps — bp)

~(Va — ca)(¥p — ¢5) = Tap,

where we put

Gag = Rag —

hag.
g tap

(5.6)

(5.7)

We call (5.6) the spatial Einstein field equations (SEFE) of the 5D universe (M, g). Also, we call G,z the spatial

Einstein gravitational tensor field.

Similarly, taking pairs of vector fields from the adapted frame field into (5.4), we deduce the last 9(EFE) for

(M, g):
Ra’YO'y - (\Ila - Ca)lO + ((I)2da\11_2 - aa>\4
—(\Ifa — CQ)(\IJO — ao) + (@ + Wy — a())((ba — ba)
—(DY = b7)(Oay + P2way) + 5 {(K — @4 — Uy)(P2d V™2 — ay)

—(®2dVU 2 — a")(Kay — U?10r) } = cTho,

Roj4fy - (q)a - ba)\4 =+ %(\112(1&‘1)72 - da)\o
(K + Py) (Vo — ca) = Pa(Pa — ba) — (¥ = )(Kay — \Il27704'y)
+5 {(0 +ag — 20)W?aa ™ + (a0 — B0 — O)da

—(V207® 72 = d7)(Oqy + P*waq) } = Ty 4,

02 + (ao — \Ilo)|0 + (<I>2<I)4\I/_2)‘4 + 2(‘130 — ao)@
+02 {2A + R+ ®*(d"d, U2 — wlws) — W (aTa, @72 4+ n2ng)
~2(Wy — ) (BT WY — b — ) — 2Ky 4267 — 207

—U2 (K? + (04 — TV4)K + Ky + KJKS) } = 2cTio,

(5.9)

(5.10)
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K2+ (04 — U)K — Ky — KJK® + ®2d,d"

FU2{2(07 — WY 47 = b7)(Dy — by) — 2\ — R — D*w]w?

—\112773773 — U2a,a7P72% + 2(1)7\“/ — 21)7'7 — \11_2(2@|0 — 20,0 (5-11)
+02 4 (Vo — ag)jo — (P2P4V2) 4 + ©202) } = 2¢Ty,

3040 — (Vo —ag)K — Oy + Vi, (U7 — )

—(0 + P2w) ) (K — U2n%) + &2 {d, (P7 — b7) (5.12)

+%(‘1120ﬂ(1)72 — d’y)h} = CT40.

It is worth mentioning that all the (EFE) obtained above are expressed in terms of spatial tensor fields and their
covariant derivatives with respect to the Riemannian spatial connection.

6. Splitting of (EFE) for a 5D Robertson-Walker universe

In this section we consider the 5D Robertson-Walker universe (M, ) whose Lorentz metric g is given by the
line element (cf. [2])

ds? = —(dz®)? + f2(2°, 2% gap(at, 2%, 2%)dxda’ + (da*)?. (6.1)
In this case we have

q)a:\:[ja:o7 66'*%7 ai:Ai:07

(6.2)
ba:ca:da:Ba:Oy wa,@’:naﬂzoa
foralla € {0,1,2,3,4}, i € {0,1,2,3}, a, 3, ... € {1,2,3}. As the spatial Riemannian metric & is given by
hag = 290, 17 = ["2gag, (6.3)
from (2.9) and (2.10) we deduce that
Ous = [ 5590, OL = [ 5502,
) . (6.4)
Kop = f5kgap, K= f7' 55062,
and
_, Of 4, 0f
_ 191 _ 191
O=3/"15%. K=3f"2", (6.5)
respectively. Also, from (2.11) we obtain
Oap = Haﬂ = 0. (6.6)

Next, we note that the spatial distribution of a 5D Robertson-Walker universe is integrable, and its leaves are
locally given by 2° = constant, z* = constant. Thus from (6.4) we deduce that

Oup = Kop =0, (6.7)
on the leaves of SM. Then, by using (6.2), (6.6) and (6.7) we can state the following result.

Theorem 6.1. Let (M, g) be a 5D Robertson-Walker universe. Then we have the following assertions:
(i) (M, g) is both vorticity-free and shear-free 5D universe. B
(ii) The leaves of the spatial distribution are totally geodesic immersed in (M, g).

Now, from (2.15)we see that the local coefficients of the Riemannian spatial connection on (M, g) are given
by
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Y o _ 1 v 99ua 99us _ 99as
(a) L)s=139 {Bwﬁ + Hge dzk [

(6.8)
(0) TJo=F"5501 (o) TJy=f"5562
By using (6.8a) into (3.3a) we obtain
or* Or M
4 a B o v v
R, BY T 9xr 8x3’y +La s —Ta WFVMB' (6.9)

Thus R, s from (4.7) depend only on variables (z!, 22, 2%) and represent the local coefficients of a Ricci tensor of
a Riemannian manifold with the metric g.(z', 2%, 2%). However, by (4.10) the spatial scalar curvature is given

by
R = f72gWLR'ym

and therefore, in general, it depends on all variables (z*). Also, by using (6.8) and (6.2) into (3.3b), (3.3¢c) and
(3.3d), we deduce that

(@) R}y, =0, (b) RY, =0, (¢) RY) =0. (6.10)

a0y — ady T
According to (6.9) and (6.10) we can state the following theorem.
Theorem 6.2. (i) The local components of the curvature tensor field of the Riemannian spatial connection V depend

only on (zt, 22, 23).

(i) The curvature of V coincides with the curvature of a Riemannian manifold with metric gop(x', 2*

%),
Next, from (6.4) and (6.5) we obtain the following covariant derivatives:

Oaplo = {f(é?m% - (%)2} Jap;

Kapja = {fwajifp - (%)2} Gas

00 =32 {idn - (25)°}.

Ko =32 {1 s — (25)°}-

Then, by direct calculations using (6.2), (6.4), (6.5), (6.10) and (6.11) into (5.6) we obtain the following six spatial
Einstein field equations for the 5D Robertson-Walker universe:

(6.11)

2 2 2
Gap+ {2+ 1 (1ide +5(25)°) - 21 e

, (6.12)

~ (50) }gaﬁ = cTap-

In a similar way, from (5.8)-(5.12) we deduce that the last nine (EFE) for (M, g) are given by
(a) TaO = 07 (b) Ta4 = 07 (613)
_ af\> [of\’ L 82f _

2 ) N _ 1 _
9f ((%0) <8x4> 3f R + 2\ + R = 2cTy, (6.14)
{3(35)" ~2(8h)" - rets - 2/ e | .

2\ —R= 20T44,

o 0%f -

3f ! (8$0)2 = _CT4O' (616)
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We note that the equations from (6.13) have been obtained from (5.8) and (5.9) taking into account (6.2), (6.10a)
and (6.10b), and using the hypothesis that c is a positive constant. As a consequence of (6.13) we see that there
are only 9 local components of the energy-momentum tensor field which are not yet determined so far. Also,
we note that by adding (6.14) and (6.15), we obtain

- af \2 %f *f
3f 2{(@) *QfW*fW}

= QC(TOO + T44).

(6.17)

Thus the warping function f(z°, z*) must satisfy two PDE given by (6.16) and (6.17).

7. Conclusions

The splitting of (EFE) is performed with respect to the (14 1 + 3) threading of a 5D universe developed
by the first author in [1, 2]. We obtain six (SEFE) given by (5.6) and other nine (EFE) given by [(5.8)-(5.12)].
It is worth mentioning that such a splitting was expressed in terms of spatial tensor fields and by using
the Riemannian spatial connection. This approach is totally different from the ones performed in both the
brane-world theory [3, 4] and the space-time-matter theory [5, 6]. The main differences are consequences of
the geometrical configuration of a 5D universe we consider in the paper. Namely, in our approach the 4D
spacetime M is the base of a submersion on the 5D universe of M, while in the above mentioned references, M
is an embedded submanifold of M.

In particular, we obtain the splitting of (EFE) in a 5D Robertson-Walker universe given by [(6.12)-(6.16)]. The
simplicity of these equations is stressing the main role of spatial tensor fields into the study. The vanishing
of the six local components of the energy-momentum tensor field 7' [cf.(6.13)], and the two PDE satisfied
by the warping function [cf.(6.16), (6.17)] are important constraints on the geometrical configuration of a 5D
Robertson-Walker universe. For example, if Ty = 0, then from (6.16) we conclude that the warping function
must be linear function with respect to the time coordinate.

Finally, we should mention that our study is mainly developed on the mathematical part of Einstein field
equations in a 5D universe M. The experimental physics might bring more light on the local components of the
energy-momentum tensor field of M. This will bring more insights on the 4D physics under the assumption of
the existence of the fifth dimension.

8. Appendix

In order to obtain the formulas for the local components of R from Sect. 3, we start with the well known
formula

R(X.Y.Z) = VxVyZ - VyVxZ — Vixy 2, (A1)

forall X,Y,Z € TI'(TM). Then by using (2.16a), (2.16d) and (2.16€), we obtain

S o LN ’ -
ViV 5 :{ S AT T 4 (wap + ©2045)T

oxY

_ _ Swea
+(1ap — ¥ 2Ka/5)r~/64} 6%-5 + {(WM + @ 26#7)Fo7ﬂ + o

20720, 0,5 + & 22022 4 L0200 2 + d,) (1jas — U2 Kap) (A2)

dxY

dxY

Hwap + (1)72@0‘5)(1)“/} % + {657.7;75 + 2\1172\117Kaf3 20K

+(Nap — V2 Kap) ¥y + %(@2617\1;72 + ay)(wap + ¢72®a5)} 8%'
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Also, by using (2.12a), (2.16b) and (2.16c), we deduce that

W, [ S § 0
Vi e = 2{ws Tdo + 15, Tda} 5

+2{(Py — ba)wsy + 3(W2aa® 2 — do)npy } 520 (43)

+2{(To = Ca)npy + 5(D%da®2 — an)wpy } 521

Next, by using (A1), (As2), (43), and taking into account (3.3a), we obtain

D ) [ [
R (557 5070 5aw) = {Ra“m + Ay (Wap

+O200p) T o + (Nap — Y Kap)TVy) } 52

+ {A(ﬁv) (waﬁh + @7 (Oaply + Oar Pp) + wWasPsy
+5(P2a, @72 + dy ) (11ap — ¥ Kap))

—2(Po — ba)wsy — (V2a0®™? — do)npy } 520
+{Ay) (Magly + 92 (Karyp + Kap¥s)

+00pVy + 2(22d, U2 + a,) (wap + P 2045))

—2(Vqy — Ca)Npy — (q)Qda\I/_Q - aa)wﬁv} %'

By similar calculations using (A1), (2.12), (2.14), (3.3) and the covariant derivatives induced by the Riemannian
spatial connection, we deduce that

R (555 5000 70w) = {Rdo,

+ (Do — b)) T

+L(D2d0 U2 — a0 )THy — (O + D 2wy ) (BH — b

Loy — UK ) (W20 — 3241} 55

+ {(I)al“/ — bajy = (Way + @_29047)\0

—(Wap + 27200, )T + (Po — ba) (R — by)

=P (wWary + (Irz@a“/) — 410y — \Ij72Ka'v)

+1(8daay — angdy + ®2dad, U2 — 39%a,a,072)} 5
{5(22da¥™ — aa)py = (lay — ¥ Kasy)jo

—(Nap — \I’_QKOCM)F’YMO + 5(Pa — ba)(®*d, U2 +a,)
+2 (T, —)) (@20 T2 — ay)

—D2P, U 2wy + P20,)

—Wo(Nay — \IlizKory) — (v, - C’y)a'y} %7
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+‘1/2(7704*7 - \IjizKow/)(CH - \Im)}

—U2Pp-

+{(v

+O4(T,,

R(&%’%’M%) {Ra 4y 2(\11 aa®” 2 da)FWMO

+(T, — ca)F,Y“4 — 5(”(1'7 + ®7204, ) (P2a* — D2dH)

+ {3(V2aq®% = da )},

Sxh

—(Wary + P20y )ja — (Wap + D204, )TV + 3(V2a0 072 — do) T,

+3 (T — ca)(P2a, @72 4+ dy) — Pu(Way + 27204,) — (P — ba)d,,

$(Wo — ao)(Nay — ¥ ?Kay) — %(‘1’2%@72 - da)cv} % o
= Ca)ly = (Nary = \1172Ka7)|4 = (Nap — \Ij72Kau)F'yH4
+3(aq — ©2do¥~2)(3d, + V2a,07?)
(U — ca)(Uy — ) + Vs (ay — V2K,
—(¥o — ao)(way + @‘2@(!7)} %.
(527 50> 50w) = {Ra'ao + 3 (¥2a0 — 2da) (@4 — W
et —b) + (T — Py + ba — ca)(U2a" — 92dH)) } 55
+{3(¥2aa @2 — da)jp + (Pa — ba)a
— P+ by — ca) + (o — Vo) (P20 @2 —dy) } 525 (A7)

+{ —Ca 0—*((1)2d U 2—(1a)|4
+<\IJO — ao)(\I’a — (I)a + ba — Ca)

— (P4 + V) (P20t — aa) } 54

Finally we consider the curvature tensor fields R and R of the type (0,4) of V and V respectively, given by

(a‘) R(Xv}/’ Z, U) = g(R(XaK Z)v U)v

(b) R(X,Y,8%,8U) = h(R(X,Y,8U),8%), (As)
forall X,Y,Z,U € T(TM). The local components of these tensor fields are listed below:
(@) Rapyw = R (52, 555+ 507 50%) = houBd'su,
(b) RaOWZR(égu,é%7%’ML@) :_¢2RO?W’
(¢) Rapor = R (5%, 5%, 525, 525 ) = hgu R,
(d) Raoow = R (557, 500, 537 53w) = —®*Rd 0,
() Rasyw =R (55,55, 524, 52=) = V2R,
(f) Raﬁ@ZR(éi,j,%,%’%) = hg R, "
(9) Rosaw = R (55, 32, 52, 52 ) = U2R} 4, 9
) Foon = R e o ) = R0,
) Fasor = (g o e 82) = VPR
(4) Ra04o=R(6%ﬂ,%,%’6%) = —®2R0 ,,,
(k) Roaso = R (535, 320, 220, 505 ) = V2R L 4o,
(1) R0404—R(%,%7%M%) — V2R,
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and
(@) Ragy =R (55, 525, 52 525 ) = hguRL .
(b) Rapov =R (5£V , %7 (S%ﬂ’ &%) = hguR o,
(© Ross = R(shes e st 58e) = iRl (A0
() Ropio = R (s o g2r0 252) = bRl
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