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Abstract
A right Johns ring is a right Noetherian ring in which every right ideal is a right annihilator.
It is known that in a Johns ring R the Jacobson radical J(R) of R is nilpotent and Soc(R)
is an essential right ideal of R. Moreover, every right Johns ring R is right Kasch, that is,
every simple right R-module can be embedded in R. For a M ∈ R-Mod we use the concept
of M -annihilator and define a Johns module (resp. quasi-Johns) as a Noetherian module
M such that every submodule is an M -annihilator. A module M is called quasi-Johns
if any essential submodule of M is an M -annihilator and the set of essential submodules
of M satisfies the ascending chain condition. In this paper we extend classical results on
Johns rings, as those mentioned above and we also provide new ones. We investigate when
a Johns module is Artinian and we give some information about its prime submodules.
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1. Introduction
In [13] Baxter Johns studies right Noetherian rings in which every right ideal is a right

annihilator. In [13, Theorem 1] it is stated that if a ring R is right Noehterian and every
right ideal is a right annihilator then R is right Artinian. Fifteen years later, in [10] Faith
and Menal give a counterexample to the theorem of Johns [13, Theorem 1]. Faith and
Menal’s example is a trivial extension of a non Artinian right Noetherian domain A and a
simple A-module W . Faith and Menal define a right Johns ring as a right Noetherian ring
in which every right ideal is a right annihilator. A Johns ring R shares nice properties
with Artinian rings, namely the Jacobson radical J(R) of R is nilpotent [13, Lemma 1]
and Soc(RR) is an essential right ideal of R [13, Lemma 4]. Moreover, every right Johns
ring R is a right Kasch ring, that is, every simple right R-module can be embedded in
R. Also, it can be shown that for a right Johns ring R, the factor ring R/J(R) is a right
V-ring [10, Theorem 2.3]. Some positive answers to the Johns statement, regarding when
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a right Johns ring is right Artinian are also presented in [10]. For example, if R is a
right Johns ring with finite left uniform dimension or R/J(R) is semisimple Artinian (i.e.
semilocal) then R is right Artinian [10, Proposition 3.3]. In 2012, L. Shen studied those
rings whose their right essential ideals are right annihilators and satisfy acc, and called
them quasi-Johns rings [18].

The aim of this paper is to translate the concept of Johns rings to modules and extend
the results given by Johns, Faith and Menal, and Shen as well as to provide new results in
the module theoretic context. For, given an R-module M , we will consider M -annihilators,
that is, submodules of the form

∩
{Ker f | f ∈ X} with X a subset of EndR(M). So, we

define a Johns module as a Noetherian module M such that every submodule is an M -
annihilator. We also make use of a product of modules. This product is defined as follows:
Let M and N be two modules and let K ≤ M . The product of K with N is given by

KM N =
∑

{f(K) | f ∈ HomR(M, N)}.

This product extends the product of an ideal of a ring R with an R-module. In particular,
this product defines a product of submodules of a given module. The product −M − in
general is not associative nor distributive over sums from the left. General properties of
this product are listed in [8, Proposition 1.3]. In order to get a nice product, that is,
associative and distributive, of submodules of a module M , we impose on M the condition
of being projective in σ[M ], where σ[M ] is the full subcategory of R-Mod consisting of all
M -subgenerated modules. With the above product, given a module M , it is possible to
define prime, semiprime and nilpotent submodule, in a natural way. Very close to Johns
modules are Kasch modules. A module M is Kasch if every simple module in σ[M ] can be
embedded in M . These modules extend the concept of left Kasch ring and were introduced
in [1]. We will provide new characterizations of Kasch modules and show that under some
circumstances, Kasch modules and Johns modules coincide.

The paper is divided in five sections. The first section is this introduction and in Sec-
tion 2 we present some preliminaries needed for the development of the other sections.
In Section 3, we are interested in to give conditions on a module M in order to know
when M is Artinian. Also, we investigate under which conditions an Artinian module is
Noetherian and vice-versa. For example, for an Artinian module M projective in σ[M ],
if Rad(M) has finite length, then M is Noetherian (Corollary 3.9). Also, the concepts of
being Artinian and Noetherian coincide in a module M projective and generator of σ[M ]
such that Rad(M) is a nilpotent submodule and M/ Rad(M) is semisimple (Proposition
3.15). Section 4 is devoted to study those modules M whose all their submodules are
M -annihilators. The section starts first with those modules whose their essential sub-
modules are M -annihilators. We prove that the non M -singular modules such that every
essential submodule is an M -annihilator are precisely the semisimple modules (Proposi-
tion 4.4). If M is a module such that every essential submodule is an M -annihilator, then
Rad(M) and Soc(M) are M -annihilators (Corollary 4.8). We call a module M annular if
every submodule of M is an M -annihilator. It is proved that an annular module M is a
Kasch module (Corollary 4.22), and the concepts coincide provided that M is M -injective
(Proposition 4.24). In the last section, Section 5, we introduce the quasi-Johns and Johns
modules. Some examples are given and some Johns’, Faith and Menal’s and Shen’s results
are extended. We show that (essential) fully invariant submodules of (quasi-) Johns mod-
ules inherit the property (Proposition 5.3 and Proposition 5.9). For a quasi-projective
Johns module M , it is proved that the lattice of fully invariant submodules of M has
finite length (Proposition 5.16), as a consequence, Rad(M) is a nilpotent submodule of M
(Corollary 5.17). Moreover, every commutative Johns ring is Artinian (Corollary 5.19).
It is also proved that for a Johns module M , M/ Rad(M) is cosemisimple provided that
M is quasi-projective and generates all its submodules. As a corollary, the spectrum of
M (the set of prime submodules) is finite and consists of the annihilators of the simple



(Quasi-)Johns modules 1031

modules in σ[M ] (Corollary 5.27). We finish the paper with some conditions on a Johns
module M implying that M is Artinian (Theorem 5.29 and Proposition 5.34). As conse-
quences, we prove that if every maximal left ideal of a Johns ring R is two-sided then R
is left Artinian (Corollary 5.31), and if R is a left fully bounded Johns ring, then R is left
Artinian (Corollary 5.33).

Throughout this paper R will denote an associative ring with unit and all modules will be
left R-modules. The category of all R-modules is denoted by R-Mod. The homomorphisms
will act from the left and will commute with the elements of R. The notations N ≤ M
and N ≤ess M will stand for N is a submodule of M and N is an essential submodule
of M , respectively. Rad(M) and Soc(M) denote the radical (intersection of all maximal
submodules) and socle (sum of all simple submodules) of M respectively.

2. Preliminaries
Let M and N be left R-modules. It is said that M is N -projective if for any epimorphism

ρ : N → L and any homomorphism α : M → L, there exists α : M → N such that
ρα = α. It is true that if M is Ni-projective for a finite family of modules {N1, ..., Nℓ},
then M is

⊕ℓ
i=1 Ni-projective [19, 18.2]. In general, this is not true for arbitrary families.

A module M is called quasi-projective if, M is M -projective. In most of the results in
this paper, we will assume that M is projective in the category σ[M ], where σ[M ] is the
category consisting of all M -subgenerated modules. This hypothesis is satisfied by every
finitely generated quasi-projective module for example [19, 18.2]. The condition that M

is projective in σ[M ] is equivalent to say that M is M (Λ)-projective for every index set Λ
[19, 18.3]. The category σ[M ] is a Grothendieck category where the subobjects, factors
and coproducts coincide with those in R-Mod. The M -injective hull E[M ](N) of a module
N ∈ σ[M ] can be described as the trace of M in the injective hull of N in R-Mod. For the
module M , we will write M̂ instead of E[M ](M). Finally, consider a generator U of σ[M ]
and {Ni}i∈I a family of modules in σ[M ]. The product of the family {Ni}i∈I in σ[M ] is
given by the trace of U in the product of the family taken in R-Mod.

Definition 2.1. Let M be a module and L, K ≤ M . The product of K with L in M is
defined as

KM L =
∑

{f(K) | f ∈ HomR(M, L)}.

If M is projective in σ[M ], this product gives an associative operation in the lattice
of submodules of M . Moreover, if N and K are fully invariant submodules of M , then
NM K is fully invariant. For N ≤ M , the powers of N are defined recursively as follows:
N1 = N and N ℓ+1 = N ℓ

M N . † It is said that a submodule N ≤ M is nilpotent if N ℓ = 0
for some ℓ > 0. Some general properties of this product are listed in [8, Proposition 1.3].
Using this product, prime and semiprime submodules can be defined in a natural way, as
follows:

Definition 2.2. Let N be a proper fully invariant submodule of a module M .
(1) It is said that N is a prime submodule (of M) if for any fully invariant submodules

K, L ≤ M such that KM L ≤ N , then K ≤ N or L ≤ N . It is said that M is a
prime module if 0 is a prime submodule.

(2) It is said that N is a semiprime submodule (of M) if for any fully invariant sub-
module K ≤ M such that KM K ≤ N , then K ≤ N . It is said that M is a
semiprime module if 0 is a semiprime submodule.

It is clear that an intersection of prime submodules is a semiprime submodule. If M is
projective in σ[M ], in [19, 22.3] it is shown that Rad(M) ̸= M , that is, M has maximal

†Do not confuse the notation with the direct product of ℓ + 1 copies of N which will be denoted by N (ℓ+1).
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submodules. Moreover, if M is projective in σ[M ], then Rad(M) is a semiprime submodule
by [14, Propositions 3.4 and 3.6].

Since there is a product of submodules, it is natural to define an annihilator. Given
a module M and a submodule N ≤ M , the annihilator of N in M is defined as the
submodule AnnM (N) =

∩
{Ker f | f ∈ HomR(M, N)}. It can be seen that AnnM (N)

is a fully invariant submodule of M and it is the greatest submodule of M such that
AnnM (N)M N = 0 [3].

3. Some results of Artinian and Noetherian modules
In this section, using the product of submodules of a given module M , we are interested

in some conditions which imply that the module M is Artinian and also when being
Artinian and Noetherian coincide for the module M . We start with the following easy
lemma.

Lemma 3.1. Let M be an R-module. Let N ∈ σ[M ] such that there exists a chain of
submodules

0 = An+1 ⊆ An ⊆ · · · ⊆ A2 ⊆ A1 = N

whose quotients Ai/Ai+1 have finite length. Then N is Artinian if and only if N is
Noetherian.

Proof. Suppose N is Artinian. Since every quotient Ai/Ai+1 has finite length then they
are Noetherian. Consider the short exact sequence

0 → An → An−1 → An−1/An → 0
Since An and An−1/An are Noetherian then An−1 is Noetherian. Continuing with this
process M is Noetherian. �
Proposition 3.2. Let M be an R-module such that any submodule has a maximal sub-
module. If M is Artinian then M is Noetherian.

Proof. Consider the descending chain
M ≥ Rad(M) ≥ Rad(Rad(M)) ≥ · · ·

By hypothesis, this is a strict descending chain. Since M is Artinian, the chain must stop
in finitely many steps,

M > Rad(M) > Rad(Rad(M)) > · · · > Radn(M) > 0.

It follows from [19, 31.2] that every quotient of this chain is a semisimple module. Thus,
by Lemma 3.1 M is Noetherian. �

Recall that a ring R is left Max if every left R-module has a maximal submodule. In
particular, every left perfect ring is left Max.

Corollary 3.3. Let M be an R-module over a left Max ring R. If M is Artinian then M
is Noetherian.

Proposition 3.4. Let M be a quasi-projective module and N be a fully invariant submod-
ule of M . If M/N ∼=

⊕
i∈I Si is an homogeneous semisimple module, then N is a prime

submodule.

Proof. It is not difficult to see that an homogeneous semisimple module is a prime module,
in fact, it has no nontrivial fully invariant submodules. It follows from [16, Proposition
18] that N is a prime submodule. �
Corollary 3.5. Let M be a quasi-projective module. If M/ Rad(M) is homogeneous
semisimple, then Rad(M) is a prime submodule.
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The following example shows that Proposition 3.4 might not be true if the module is
not quasi-projective.

Example 3.6. Consider the ring R = Z2 o (Z2 ⊕ Z2), the trivial extension of the ring
Z2 by the Z2-module Z2 ⊕ Z2. The ring R is a finite local ring, hence there is only one
simple R-module up to isomorphism, say S. Let M denote an injective hull of S in R-Mod.
Following the notation in [8, Example 1.12], {S, N, K, L} are the proper fully invariant
submodules of M . In [5, Sec. 3, Ex. 4] it is proved that those submodules are all the
proper submodules of M . We have that Rad(M) = S and M/ Rad(M) ∼= S ⊕ S. On
the other hand, KM L = S but K * S neither L * S. Thus Rad(M) is not a prime
submodule. Note that M is not quasi-projective.

Remark 3.7. Recall that a module M is said to be retractable if HomR(M, N) ̸= 0 for
all 0 ̸= N ≤ M . It can be seen that every semiprime module M projective in σ[M ], is
retractable [5, Lemma 1.24].

Proposition 3.8. Let M be projective in σ[M ] and Artinian. If N is a semiprime sub-
module of M and has finite length then M is Noetherian.

Proof. If N = 0 then M is an Artinian semiprime module, then M is semisimple by
[5, Theorem 1.17]. Suppose 0 ̸= N . Since N is a semiprime submodule, by [17] M/N is
a semiprime module, so again by [5, Theorem 1.17] M/N is semisimple. Hence M has a
chain 0 ≤ N ≤ M with quotients of finite length. By Lemma 3.1 M is Noetherian. �
Corollary 3.9. Let M be projective in σ[M ] and Artinian. If Rad(M) has finite length
then M is Noetherian.

Definition 3.10. A module M is called semiprimary if Rad(M) is nilpotent and
M/ Rad(M) is semisimple.

Remark 3.11. Let M and N be R-modules. Since Rad is a preradical, then f(Rad(M)) ≤
Rad(N) for all f ∈ HomR(M, N). Thus Rad(M)M N ≤ Rad(N).

Compare the following lemma with The Nakayama’s Lemma.

Lemma 3.12. Let N be an R-module such that Rad(N) ̸= N . Then AM N ̸= N for all
A ≤ Rad(M).

Proof. Let A ≤ Rad(M). By [8, Proposition 1.3] and Remark 3.11
AM N ≤ Rad(M)M N ≤ Rad(N) ̸= N.

�
Proposition 3.13. Let M be projective in σ[M ] and Artinian. Then M is semiprimary.

Proof. By [19, 31.2] M/ Rad(M) is semisimple. Consider the chain of powers of Rad(M)
Rad(M) ≥ Rad(M)2 ≥ · · ·

Since M is Artinian, there exists n > 0 such that Rad(M)n = Rad(M)n+1. Suppose
Rad(M)n ̸= 0. Set Γ = {K ≤ M | Rad(M)n

M K ̸= 0}. Since Rad(M) ∈ Γ, Γ ̸= ∅. Then
Γ has minimal elements. Let K ∈ Γ be a minimal one, then 0 ̸= Rad(M)n

M K. We have
that K =

∑
{Rk | k ∈ K}, hence by [6, Lemma 2.1]

0 ̸= Rad(M)n
M

(∑
Rk

)
=

∑
(Rad(M)n

M Rk) .

Thus there exists k ∈ K such that Rad(M)n
M Rk ̸= 0. It follows that K = Rk. Therefore

Rad(M)n
M (Rad(M)M Rk) = (Rad(M)n

M Rad(M))M Rk = Rad(M)n
M Rk ̸= 0.

Since Rk is a minimal element in Γ, Rad(M)M Rk = Rk but this is a contradiction to
Lemma 3.12. �
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In the following propositions we will suppose M is a progenerator of σ[M ], that is, M
is projective in σ[M ] and a generator of σ[M ], in order to get stronger results. Since it
is not assumed that M is finitely generated, even in this case the category σ[M ] might
not be equivalent to a category R-Mod for some ring R, hence σ[M ] still gives us a more
general framework.
Remark 3.14. Let N ∈ σ[M ]. Suppose M is a progenerator of σ[M ] and M/ Rad(M) is
semisimple. Since M is projective in σ[M ], it follows that

Rad(M)M

(
N

Rad(M)M N

)
= 0.

By [7, Proposition 1.5], N
Rad(M)M N ∈ σ[M/ Rad(M)] so N

Rad(M)M N is semisimple, hence
Rad

(
N

Rad(M)M N

)
= 0. By Remark 3.11, Rad(N) = Rad(M)M N . Thus N/ Rad(N) is

semisimple.
Proposition 3.15. Suppose M is a progenerator of σ[M ] and semiprimary. Let N ∈
σ[M ]. Then N is Artinian if and only if N is Noetherian.
Proof. Let N ∈ σ[M ]. Since M is semiprimary, there exists n > 1 such that Rad(M)n =
0. We have the following chain

0 ≤ Rad(N)n−1 ≤ Rad(N)n−2 ≤ · · · ≤ Rad(N) ≤ N

By Remark 3.14, every quotient of this chain is semisimple. By Lemma 3.1 we have the
result. �
Proposition 3.16. Let M be progenerator of σ[M ] and suppose M/ Rad(M) is semisim-
ple. Let N ∈ σ[M ]. Then Soc(N) is the largest submodule of N such that
Rad(M)M Soc(N) = 0. This implies that Soc(N) =

∑
{L ≤ N | Rad(M)M L = 0}.

Proof. It is clear that Rad(M)M Soc(N) = 0. Now let L ≤ N such that Rad(M)M L = 0.
Then Rad(M) ≤ AnnM (L), so by [7, Proposition 1.5] L ∈ σ[M/ Rad(M)]. Hence L is
semisimple which implies that L ≤ Soc(N). �

4. Modules whose their submodules are annihilators
Definition 4.1. Let M be an R-module. An M -annihilator is a submodule of M of the
form

rM (X) =
∩

{Ker f | f ∈ X}
for some X ⊆ EndR(M).

These kind of submodules have appeared many times in the literature, we are taking
the name from [9, pp. 2]. Other authors call these submodules right annihilators in M
or just annihilators in M . We will focus first on those modules M whose their essential
submodules are M -annihilators.
Definition 4.2. Let N ≤ M and S = EndR(M). For every subset Y ⊆ N we define

lNM (Y ) = {f : N → M |f(Y ) = 0}.

In case N = M , we write lMM = lS .

Remark 4.3. For every submodule N ≤ M and every subset Y ⊆ N , lNM (Y ) is a left
S-module. In the case Y is a fully invariant submodule of M , lS(Y ) is an ideal of S.

Notice that
lS (rM (lS(Y ))) = lS(Y )

for all Y ⊆ M and
rM (X) = rM (lS(rM (X)))

for all X ⊆ S
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Let M and N be two modules with N in σ[M ]. It is said that N is M -singular if
there exists an exact sequence 0 → K → L → N → 0 in σ[M ] such that K ≤ess L. The
class of all M -singular modules is a pretorsion class and hence every module U in σ[M ]
has a maximal M -singular submodule denoted Z(U). It is said that the module N is non
M -singular if Z(N) = 0. Non M -singular modules are known also as polyform modules
[20, Sec. 10 and 11].

Proposition 4.4. The following conditions are equivalent for a module M :
(a) M is non M -singular (polyform) and every essential submodule is an M -

annihilator.
(b) M is semisimple.

Proof. Let L ≤ess M . By hypothesis, L =
∩

f∈X Ker f for some X ⊆ EndR(M). Since
L is essential, Ker f ≤ess M for all f ∈ X. It follows that X = {0} because M is non
M -singular. Hence L = M . Thus, M is semisimple. The converse is clear. �
Proposition 4.5. The following conditions are equivalent for a module M :

(a) Every essential submodule of M is an M -annihilator.
(b) Every submodule of M is a direct summand of an M -annihilator.
(c) rM (lS(N)) = N for every essential submodule N of M .

Proof. (a)⇒(b) Let N be any submodule of M . If N ≤ess M , then N is an M -annihilator
by hypothesis. If N is not essential in M , there exists a submodule L such that N ⊕L ≤ess

M .
(b)⇒(a) Let N be an essential submodule of M . By hypothesis there exists L ≤ M such

that N ⊕L is an M -annihilator. Since N is essential, L = 0. Thus, N is an M -annihilator.
(a)⇔(c) follows from Remark 4.3. �

Proposition 4.6. Let M be a module such that every essential submodule is an M -
annihilator and let N be a fully invariant essential submodule of M . Then, every essential
submodule of N is an N -annihilator.

Proof. Let L be an essential submodule of N . Hence, L ≤ess M . By hypothesis there
exists a subset X ⊆ EndR(M) such that L =

∩
f∈X Ker f . Since N is fully invariant in

M , f |N ∈ EndR(N). Consider Y = {f |N | f ∈ X} ⊆ EndR(N). Then,

∩
f |N ∈Y

Ker f |N =
∩

f |N ∈Y

(Ker f ∩ N) =

 ∩
f∈X

Ker f

 ∩ N = L ∩ N = L.

�
Proposition 4.7. If every essential submodule of M is an M -annihilator, then every
maximal submodule of M is an M -annihilator.

Proof. Let N be a maximal submodule of M . If N ≤ess M , then N is an M -annihilator
by hypothesis. If N is not essential, there exists L ≤ M such that L ∩ N = 0. Since N is
maximal, M = N ⊕ L. Let i : L → M and π : M → L be the canonical inclusion and the
canonical projection respectively. Hence N = Ker iπ, that is, N is an M -annihilator. �
Corollary 4.8. Let M be a module such that every essential submodule is an M -
annihilator. Then Rad(M) and Soc(M) are M -annihilators.

Proof. Since Soc(M) =
∩

{N | N ≤ess M} and each essential submodule is an M -
annihilator, Soc(M) is an M -annihilator. On the other hand, if Rad(M) = M , then
Rad(M) is an M -annihilator. Suppose Rad(M) ≠ M . By Proposition 4.7, every maximal
submodule of M is an M -annihilator. It follows that Rad(M) is an M -annihilator since
Rad(M) is the intersection of all maximal submodules. �
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Corollary 4.9. Let M be a module such that every essential submodule is an M -
annihilator. Then,

(1) rM (lS(N)) = N for every maximal submodule N of M .
(2) rM (lS(Soc(M))) = Soc(M).
(3) rM (lS(Rad(M))) = Rad(M).

Proof. The proofs of the statements follow directly using Remark 4.3. �
Proposition 4.10. Let M be projective in σ[M ]. Suppose that every essential submodule
of M is an M -annihilator. If HomR(M,Z(M)) ̸= 0, then Soc(M) = AnnM (Z(M)).

Proof. Given a nonzero f : M → Z(M), by [7, Proposition 1.2], Ker f ≤ess M . It
follows that Soc(M) ⊆ AnnM (Z(M)). Now, let N ≤ess M . By hypothesis, N = rM (X)
for some X ⊆ EndR(M). This implies that Ker f ≤ess M for all f ∈ X. Therefore
f(M) ⊆ Z(M) for all f ∈ X. Hence, we can consider X ⊆ HomR(M,Z(M)). Thus,
AnnM (Z(M)) ⊆ rM (X) = N . Since Soc(M) is the intersection of all essential submodules
on M , AnnM (Z(M)) ⊆ Soc(M). �

Definition 4.11. An R-module M is a Kasch module if M̂ is an injective cogenerator of
σ[M ].

Proposition 4.12 ([1, Proposition 2.6]). The following conditions are equivalent for an
R-module M :

(a) M is a Kasch module.
(b) Every simple module in σ[M ] can be embedded in M .
(c) Every simple module in σ[M ] is cogenerated by M .
(d) HomR(C, M) ̸= 0 for all (cyclic) module C in σ[M ].

Proposition 4.13. The following conditions are equivalent for an R-module M :
(a) M is a Kasch module.
(b) Let X < N ≤ M with X maximal in N . Then

lNM (X) = {f : N → M |f(X) = 0} ̸= 0
(c) Let X < N ≤ M with X maximal in N . Then

X = rM (lNM (X)).

Proof. (a)⇒(b) Since X is maximal in N , N/X is a simple module. By Proposition
4.12(b), there exists a monomorphism α : N/X → M . If π : N → N/X is the canonical
projection then 0 ̸= f = α ◦ π and f(X) = 0. Thus lNM (X) ̸= 0.

(b)⇒(c) We have that X ⊆ rM (lNM (X)) ⊆ N . If rM (lNM (X)) = N then lNM (X) = 0,
which is a contradiction. Then X = rM (lNM (X)).

(c)⇒(a) Let T be a simple module in σ[M ]. Then T is isomorphic to a subfactor of M
i.e. there exists X ≤ N ≤ M such that T ∼= N/X. By hypothesis X = rM (lNM (X)), so
there exists a monomorphism T ∼= N/X → M I where I = lNM (X). Hence every simple in
σ[M ] is cogenerated by M . Therefore M is a Kasch module by Proposition 4.12. �
Corollary 4.14. Consider the following conditions for a module M :

(1) M is a Kasch module.
(2) Each maximal submodule of M is an M -annihilator.

Then (1) ⇒ (2). In addition, if M generates every simple module in σ[M ], then the two
conditions are equivalent.

Proof. (1) ⇒ (2) follows from Proposition 4.13. For the converse, assume M generates
every simple module in σ[M ]. Let S be a simple module in σ[M ]. Hence, there exists
an epimorphism f : M → S. By hypotesis K = Ker f =

∩
g∈X Ker g for some subset
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X ⊆ EndR(M). Since N ̸= M , we can assume that g ̸= 0 for all g ∈ X. Since N is
maximal, then N = Ker g for all g ∈ X. This implies that S ∼= M/ Ker g can be embedded
in M . Thus, M is a Kasch module by Proposition 4.12. �
Example 4.15. Consider the Z-module M = Q. Then σ[M ] = Z-Mod. Since M has no
maximal submodules, M satisfies the condition (2) of Corollary 4.14. Note that M is not
a Kasch module and M does not generate the simple modules in σ[M ].

Corollary 4.16. Let M be a module which generates every simple module in σ[M ]. If
every essential submodule of M is an M -annihilator, then M is Kasch.

Proof. By Proposition 4.7 every maximal submodule of M is an M -annihilator. Then M
is a Kasch module by Corollary 4.14. �
Definition 4.17. Let M and N be two modules. The module N is called M -torsionless
if N can be embedded in a direct product of copies of M .

It is clear that every direct summand of a module M is M -torsionless. Also, if M is
Kasch, then by definition every module in σ[M ] is M̂ -torsionless.

Proposition 4.18. The following conditions are equivalent for N ≤ M :
(a) N = rM (lS(N)).
(b) M/N is M -torsionless.

Proof. (a)⇒(b) If N = rM (lS(N)) then M/N can be embedded in M lS(N).
(b)⇒(a) Suppose that there exists a monomorphism α : M/N → MX for some index set

X. Let m ∈ rM (lS(N)), ρ : M → M/N be the canonical projection and πx : MX → M be
the canonical projections for every x ∈ X. Consider the composition πx ◦ α ◦ ρ : M → M ,
then

0 = πx(α(ρ(m))) = πx(α(m + N))
for all x ∈ X, thus α(m + N) = 0. Since α is a monomorphism m + N = 0, so m ∈ N .
Thus N = rM (lS(N)). �
Corollary 4.19. Let M be a module. Then N = rM (lS(N)) for every direct summand N
of M .

In [11, pp. 1072], a ring R is called left annular if every left ideal is a left annihilator.
Following this, we introduce the next definition.

Definition 4.20. An R-module M is called annular if every submodule is an M -
annihilator.

Corollary 4.21. A module M is annular if and only if every factor module of M is
M -torsionless.

Corollary 4.22. If M is a nonzero annular module, then M is a Kasch module. In
particular, Soc(M) ̸= 0.

Proof. Let X < N ≤ M with X maximal in N . By Corollary 4.21, M/X is M -torsionless.
Hence by Proposition 4.18

X = rM (lS(X)).
Since X ̸= N there exists 0 ̸= f ∈ lS(X) such that f(N) ̸= 0, hence f |N ∈ lNM (X). Thus,
by Proposition 4.13(c) M is Kasch. �
Proposition 4.23. Let N be a fully invariant submodule of a module M . If M is an
annular module, then so is N .

Proof. The proof is similar to that of Proposition 4.6. �
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It follows from Proposition 4.23 that if R is a commutative annular ring, then every
ideal of R is an annular module.

Proposition 4.24. The following conditions are equivalent for an M -injective module M :
(a) M is a Kasch module.
(b) M is an annular module.
(c) N = rM (lS(N)) for all N ≤ M .

Proof. (a)⇒(b) Let N ≤ M . Since M is a cogenerator of σ[M ] there exists a monomor-
phism M/N → MX for some index set X. Then by Proposition 4.18 N = rM (lS(N)).

(b)⇒(c) This follows from Corollary 4.21 and Proposition 4.18.
(c)⇒(a) Let X ≤ N ≤ M with X maximal in N . We have that

lS(X) = {f : M → M |f(X) = 0} ⊆ lNM (X) = {f : N → M |f(X) = 0}.

Therefore,
X ⊆ rM (lNM (X)) ⊆ rM (lS(X)) = X.

Then M is Kasch by Proposition 4.13. �

Corollary 4.25. Let M be a Kasch module. Then M̂ is an annular module.

Corollary 4.26. The following conditions are equivalent for a left self-injective ring R:
(a) R is left Kasch.
(b) RR is an annular module.
(c) I = rR(lR(I)) for every left ideal I of R.

Example 4.27. (1) In Z-Mod, given a prime number p ∈ Z, the modules Zpn and
Zp∞ are self-injective Kasch modules. Hence they are annular modules.

(2) Let R be a left local ring with S the unique simple R-module, up to isomorphism.
Then E(S), the injective hull of S in R-Mod, is an annular module.

If R is not left local and S is a simple module, then E(S) might not be an annular
module, as the following example shows.

Example 4.28. Let K be a field and let R be the 2 × 2 lower triangular matrix ring with
coefficients in K. Then, R has the following decomposition

R =
(

K 0
K K

)
=

(
K 0
K 0

)
⊕

( 0 0
0 K

)
.

Let S be the minimal ideal
( 0 0

K 0
)

and let M = E(S) =
(

K 0
K 0

)
. Then, M/S is a simple

R-module which cannot be embedded in M . Therefore, M is neither Kasch nor annular.
However, the module E(S) ⊕ M/S is an injective Kasch module and hence an annular
module by Proposition 4.24. The module E(S) ⊕ M/S also shows that a direct summand
of a annular module might not inherit the property.

To finish this section we will present some results on M -annihilators which will be
applied in the next section.

Proposition 4.29. Let N = rM (X) be an M -annihilator. Then, N is fully invariant if
and only if N = rM (I) for some ideal I of S = EndR(M).

Proof. Suppose that N = rM (X) is fully invariant. Let I denote the ideal generated
by X in S. It is clear that rM (I) ⊆ rM (X). Let g ∈ I and n ∈ rM (X). There exist
h, h′ ∈ S such that g = h′fh. Since N is fully invariant, h(n) ∈ N = rM (X). Hence,
g(n) = h′fh(n) = 0. Thus, rM (I) = rM (X). �

Corollary 4.30. Let M be a finitely generated quasi-projective module. Then N is a fully
invariant M -annihilator if and only if N = AnnM (K) for some K ≤ M .
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Proof. Suppose N is a fully invariant M -annihilator. Then, N = rM (I) for some ideal
I of EndR(M) by Proposition 4.29. Since M is finitely generated and quasi-projective,
I = HomR(M, IM) by [19, 18.4]. Thus, N = rM (HomR(M, IM)) = AnnM (IM). The
converse is clear. �
Lemma 4.31. Let Γ = {lS(Y ) | Y ⊆ M}. If lS(Y ) is a minimal element of Γ then
rM lS(Y ) is a maximal M -annihilator. Conversely, if rM (X) is a maximal M -annihilator
then lS(rM (X)) is a minimal element in Γ.

Proof. Suppose that lS(Y ) is a minimal element in Γ. Let rM (X) ̸= M be an M -
annihilator such that rM lS(Y ) ≤ rM (X). So lS(rM (X)) ≤ lS(rM lS(Y )) = lS(Y ).
Since lS(Y ) is minimal then lS(rM (X)) = 0 or lS(rM (X)) = lS(Y ). We have that
X ⊆ lS(rM (X)) and rM (X) ̸= M hence lS(rM (X)) ̸= 0. Therefore lS(Y ) = lS(rM (X)).
Thus rM lS(Y ) = rM (X).

Reciprocally, let rM (X) be a maximal M -annihilator. Let 0 ̸= lS(Y ) ⊆ lS(rM (X)).
Hence,

rM (X) = rM (lS(rM (X))) ⊆ rM (lS(Y )).
Since rM (X) is a maximal M -annihilator and 0 ̸= lS(Y ), rM (X) = rM (lS(Y )). This
implies lS(Y ) = lS(rM (X)). �
Lemma 4.32. Let Γ = {lS(Y )|Y ⊆ M}. Let

⊕n
i=1 lS(Yi) be a maximal direct sum of

minimal elements in Γ. Then, there exist fi ∈ lS(Yi) 1 ≤ i ≤ n such that rM ({f1, . . . , fn})
is the intersection of all maximal M -annihilators.

Proof. By Lemma 4.31, rM lS(Yi) is a maximal M -annihilator for all 1 ≤ i ≤ n. Hence
Ker(f) = rM lS(Yi) for all f ∈ lS(Yi) and for all 1 ≤ i ≤ n. Let rM (X) be a maximal
M -annihilator. By hypothesis

n⊕
i=1

lS(Yi) ∩ lS(rM (X)) ̸= 0,

so there exists f ∈ lS(rM (X)) such that f = f1 + · · · + fn with fi ∈ lS(Yi). We have that
rM (X) ≤ Ker(f). Since rM (X) is a maximal M -annihilator, rM (X) = Ker(f). Thus

Ker(f1) ∩ · · · ∩ Ker(fn) ≤ Ker(f1 + · · · + fn) = Ker(f) = rM (X).
This implies that

∩n
i=1 rM (lS(Yi)) = Ker(f1) ∩ · · · ∩ Ker(fn) ⊆ rM (X) for any maximal

M -annihilator. �

5. Johns and quasi-Johns modules
Definition 5.1. A module M is called quasi-Johns if any essential submodule of M is
an M -annihilator and the set of essential submodules of M satisfies the ascending chain
condition (acc).

It follows that the ring R is right quasi-Johns if and only if RR is a quasi-Johns module
[18]. It is clear that any semisimple module is quasi-Johns. Next proposition provides
more examples.

Proposition 5.2. If M is a quasi-Johns module and
⊕

i∈I Si is any semisimple module,
then M ⊕

⊕
i∈I Si is quasi-Johns.

Proof. Let N be an essential submodule of L = M ⊕
⊕

i∈I Si. Since N is essential,
Si ≤ N for all i ∈ I. Therefore

⊕
i∈I Si ≤ N . This implies that N = K ⊕

⊕
i∈I Si for some

K ≤ M . It follows that K must be essential in M because N is essential in L. Now, it is
clear that, if M satisfies acc on essential submodules, so does L. Since M is quasi-Johns,
M/K is M -torsionless. Therefore, L/N ∼= M/K is L-torsionless. By Proposition 4.18, N
is an L-annihilator. �
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Proposition 5.3. Let N be an essential fully invariant submodule of a module M . If M
is a quasi-Johns module, then so is N .
Proof. Since N is essential in M , any essential submodule of N is essential in M . This
implies that the essential submodules of N satisfies acc. Now the proof follows from
Proposition 4.6. �
Proposition 5.4. Let M be projective in σ[M ]. If M is a quasi-Johns module such that
Soc(M) ≤ess M , then Z(M) is nilpotent.
Proof. Note that if HomR(M,Z(M)) = 0, then Z(M)MZ(M) = 0. Suppose that
HomR(M,Z(M)) ̸= 0. Consider the descending chain Z(M) ⊇ Z(M)2 ⊇ · · · . Sup-
pose that Z(M)n ̸= 0 for all n > 0. Then, there is an ascending chain AnnM (Z(M)) ⊆
AnnM (Z(M)2) ⊆ · · · . By Proposition 4.10 and the hypothesis, AnnM (Z(M)n) ≤ess M
for all n > 0. Hence there exists n such that AnnM (Z(M)n) = AnnM (Z(M)n+i) for
all i > 0. Since (Z(M)MZ(M))M Z(M)n = Z(M)n+2 ̸= 0, it follows that there ex-
ists 0 ̸= f ∈ HomR(M,Z(M)) such that f(Z(M))MZ(M)n ̸= 0. This implies that
f(M)MZ(M)n ̸= 0. Consider the set

Γ = {Ker f | f ∈ HomR(M,Z(M)) and f(M)MZ(M)n ̸= 0}.

It follows from [7, Proposition 1.2] that Ker f ≤ess M for every f ∈ HomR(M,Z(M)).
Hence, Γ has maximal elements because M is quasi-Johns. Now the proof follows as in
[4, Proposition 2.29]. �
Corollary 5.5. If R is a left quasi-Johns ring such that Soc(RR) ≤ess R, then the left
singular ideal of R is nilpotent.
Definition 5.6. An R-module M is called Johns if M is a Noetherian annular module.
Example 5.7. (1) A ring R is left Johns if and only if RR is a Johns module.

(2) Every finitely generated semisimple module is Johns.
(3) The Z-module Zpn is self-injective and Kasch for every prime p and all n > 0, then

Zpn is a Johns module (Proposition 4.24).
(4) Let R = KQ be the path algebra of the finite quiver Q [2]. Let E =

⊕n
i=1 Ei be

the direct sum of indecomposable injective R-modules up to isomorphism. Then
E is a Noetherian Kasch module. By Proposition 4.24, E is Johns.

(5) Every uniform quasi-Johns module is Johns.
(6) Let p, q, n ∈ Z with p ̸= q prime numbers and let X be any infinite set. It follows

from Proposition 5.2 that the Z-module M = Zpn ⊕Z(X)
q is a quasi-Johns module.

Since X is an infinite set, M is not a Johns module.
Remark 5.8. Notice that by Corollary 4.22 every Johns module is a Kasch module.
Proposition 5.9. Let M be a Johns module and N a fully invariant submodule of M .
Then N is a Johns module.
Proof. It follows from Proposition 4.23. �

The following lemma is an exercise given in [19], we prove it here for the reader’s
convenience.
Lemma 5.10 ([19, 27.7(1)]). Let M be a finitely generated, quasi-projective module. Then,
EndR(M) is right Noetherian if and only if M satisfies acc on M -generated submodules.
Proof. Let IS be a right ideal of S = EndR(M). Then IM is an M -generated submodule
of M and I = HomR(M, IM) by [19, 18.4]. On the other hand, let N be an M -generated
submodule of M . Hence, HomR(M, N) is right ideal of S. Since N is M -generated,
HomR(M, N)N = trM (N) = N where trM (N) is the trace of M in N . Now, the lemma’s
proof is straightforward. �
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Corollary 5.11. Let M be a quasi-projective module with S = EndR(M). If M is Johns,
then S is right Noetherian.

Lemma 5.12. Let M be an annular module. Then rM (lS(N) ∩ lS(L)) = rM (lS(N)) +
rM (lS(L)) for all N, L ≤ M .

Proof. Let N, L ≤ M . Then,
N + L = rM (lS(N)) + rM (lS(L)) ⊆ rM (lS(N) ∩ lS(L)) = rM (lS(N + L)) = N + L.

�
Proposition 5.13. The following conditions are equivalent for a Noetherian module M
with S = EndR(M):

(a) M is an annular module;
(b) Every cyclic submodule of M is an M -annihilator, and

rM (lS(N) ∩ lS(L)) = rM (lS(N)) + rM (lS(L))
for all submodules N, L ≤ M .

Proof. (a)⇒(b) follows from Lemma 5.12.
(b)⇒(a) Let K ≤ M . Since M is Noetherian, K = Rx1 + Rx2 + · · · + Rxn. We proceed

by induction on n. By hypothesis, K = Rx1 is an M -annihilator. Now, suppose the result
is true for submodules with less than n generators and K = Rx1 +Rx2 + · · ·+Rxn. Write
N = Rx1 + · · · + Rxn−1 and L = Rxn, so K = N + L. It follows that

rM (lS(K)) = rM (lS(N + L)) = rM (lS(N) ∩ lS(L))
= rM (lS(N)) + rM (lS(L)) = N + L = K.

Thus, K is an M -annihilator. �
Definition 5.14. Let M be a module and let N ≤ M . The right annihilator of N in M
is given by the submodule

Annr
M (N) =

∑
{K ≤ M | NM K = 0}.

Remark 5.15. The right annihilator Annr
M (N), was defined in [4]. If M is projec-

tive in σ[M ], it is not difficult to see that Annr
M (N) is fully invariant and is the

largest submodule of M such that NM Annr
M (N) = 0. Also, it can be proved that

AnnM (Annr
M (AnnM (N))) = AnnM (N) for all N ≤ M .

Proposition 5.16. Let M be a quasi-projective module. If M is Johns, then the lattice of
fully invariant submodules of M satisfies acc and dcc, that is, the lattice has finite length.

Proof. Let N1 ≥ N2 ≥ · · · be a descending chain of fully invariant submodules of M .
Hence, there is an ascending chain Annr

M (N1) ≤ Annr
M (N2) ≤ · · · . Since M is Noe-

therian, there exists ℓ > 0 such that Annr
M (Nℓ) = Annr

M (Nℓ+i) for all i > 0. Hence
AnnM (Annr

M (Nℓ)) = AnnM (Annr
M (Nℓ+i)). It follows from Corollary 4.30 that Nℓ = Nℓ+i

for all i > 0. The other chain condition holds because M is Noetherian. �
Corollary 5.17. Let M be a quasi-projective module. If M is Johns, then Rad(M) is
nilpotent.

Proof. Let J := Rad(M). We have a descending chain J ≥ J2 ≥ J3 ≥ .... By Proposition
5.16 Jn = Jn+1, thus by Lemma 3.12 J = 0. �

Recall that a module M is duo if every submodule is fully invariant in M [15].

Corollary 5.18. Let M be a quasi-projective duo module. If M is a Johns module, then
M is Artinian.

Corollary 5.19. Let R be a commutative ring. If R is Johns, then R is Artinian.
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The ring R given in [12, Example 6.2] is a commutative annular ring which is not
Artinian. In fact, J2 = J where J is the Jacobson radical of R.

Lemma 5.20. If M is a quasi-projective Johns module then Annr
M (Rad(M)) is essential

in M .

Proof. Let 0 ̸= K ≤ RM . By Corollary 5.17, Rad(M)M K = 0 or there exists n > 0 such
that Rad(M)n

M K = 0 but Rad(M)n−1
M K ̸= 0. Any of those two conditions implies

K ∩ Annr
M (Rad(M)) ̸= 0. �

Remark 5.21. Suppose that RM is quasi-projective and generates all its submodules. If
AM B = 0 with A ≤ess M , then B ≤ Z(M). In fact, since AM B = 0, A ≤ Ker f for all
f ∈ HomR(M, B), so Ker f ≤ess M and f(B) is M -singular. Thus B is M -singular.

Lemma 5.22. Suppose M is quasi-projective and generates all its submodules. If M is a
Johns module, then Annr

M (Rad(M)) = AnnM (Rad(M)).

Proof. Since Annr
M (Rad(M)) ≤ess M then Annr

M (Annr
M (Rad(M))) ≤ Z(M). We have

that Z(M) is nilpotent by [4, Proposition 2.29]. Since Rad(M) is a semiprime submod-
ule, Annr

M (Annr
M (Rad(M))) ≤ Z(M) ≤ Rad(M). Hence, applying Annr

M , we get an
ascending chain

(Annr
M )3 (Rad(M)) ⊆ (Annr

M )5 (Rad(M)) ⊆ · · ·
Since M is Noetherian, there exists ℓ > 0 such that

(Annr
M )ℓ (Rad(M)) = (Annr

M )ℓ+2 (Rad(M)).
Applying AnnM , and using Corollary 4.30, we have that

(Annr
M )ℓ−1 (Rad(M)) = AnnM (Annr

M )ℓ (Rad(M))

= AnnM (Annr
M )ℓ+2 (Rad(M))

= (Annr
M )ℓ+1 (Rad(M))

Continuing in this way, Annr
M (Annr

M (Rad(M))) = Rad(M) which implies that
Annr

M (Rad(M)) = AnnM (Rad(M)). �
Proposition 5.23. Suppose M is quasi-projective and generates all its submodules. If M
is a Johns module, then

(1) AnnM (Z(M)) = AnnM (Rad(M)) = Soc(M).
(2) Soc(M) ≤ess M .

Proof. (1) We have that Z(M) ≤ Rad(M). Therefore,
Soc(M) ≤ Annr

M (Rad(M)) = AnnM (Rad(M)) ≤ AnnM (Z(M)) = Soc(M),
by Proposition 4.10 and Lemma 5.22.

(2) It follows from Lemma 5.20 and Lemma 5.22. �
Recall that a module M is said to be cosemisimple if every proper submodule of M is

an intersection of maximal submodules [19, Sec. 23]. This is equivalent to say that every
simple module in σ[M ] is M -injective. For the case of a ring R, the ring R is a left V-ring
if and only if RR is cosemisimple.

Proposition 5.24. Suppose M is quasi-projective and generates all its submodules. If M
is a Johns module, then M/Rad(M) is a cosemisimple module.

Proof. Let M denote the factor module M/ Rad(M). Let S ∈ σ[M ] be a simple module
and consider E[M ](S) the M -injective hull of S. Suppose E[M ](S) ̸= S. Since E[M ](S) is
M -generated, there exists h : M → E[M ](S) such that h(M) contains properly S. Let A
denote Ker hπ where π : M → M is the canonical projection. Hence Rad(M) ≤ A. We
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claim that lS(A) = {f : M → Soc(M) | f(A) = 0}. Let f ∈ lS(A). Then f(Rad(M)) = 0.
Since M is quasi-projective, Rad(M)M f(M) = 0. This implies that f(M) ⊆ Soc(M)
by Lemma 5.22 and Proposition 5.23. Thus, lS(A) ⊆ {f : M → Soc(M) | f(A) = 0}.
The other inclusion is clear. Now, since M is Johns, A = rM (lS(A)) = rM ({f : M →
Soc(M) | f(A) = 0}). This implies that h(M) ∼= M/A embeds in a direct product of
simple modules. Since Soc(h(M)) ≤ess h(M) and Soc(h(M)) = S, h(M) embeds in a
finite product of simple modules, and therefore h(M) is semisimple. Hence h(M) = S

which is a contradiction. Thus, S = E[M ](S) and so, S is M -injective. �

Corollary 5.25. Suppose M is quasi-projective and generates all its submodules, and let
S = EndR(M). If M is a Johns module, then S/J(S) is a right Noetherian right V -ring
where J(S) is the Jacobson radical of S.

Proof. Denote by M the factor module M/ Rad(M). By Proposition 5.24, M is
cosemisimple. Hence M is a finitely generated progenerator of σ[M ]. Therefore σ[M ] ∼=
EndR(M)op-Mod. It follows from [19, 22.2] that EndR(M) ∼= S/J(S). Thus, S/J(S) is a
right Noetherian right V-ring. �

Remark 5.26. Let M be a quasi-projective Johns module. Let N denote the intersection
of all prime submodules of M . By Corollary 5.17, Rad(M) ⊆ N . On the other hand,
since Rad(M) is a semiprime submodule, it is an intersection of prime submodules. Hence
N ⊆ Rad(M). Thus, Rad(M) = N . Therefore, Rad(M) is contained in each prime
submodule of M .

Corollary 5.27. Suppose M is quasi-projective and generates all its submodules. If M is
Johns, then

(1) there are finitely many simple modules in σ[M ], S1, . . . , Sk up to isomorphism.
(2) Spec(M) = {P1, ..., Pℓ} with ℓ ≤ k.
(3) Pi = AnnM (Sj) for some 1 ≤ j ≤ k.
(4) Pi * Pj for 1 ≤ i ̸= j ≤ ℓ.

Proof. Since M is Johns, M is a Kasch module. Therefore, there is an embedding
S ↪→ M for every simple module S in σ[M ]. On the other hand, Soc(M) is finitely
generated because M is Noetherian. This implies that there are only finitely many simple
modules, up to isomorphism in σ[M ]. By Proposition 5.24, M/ Rad(M) is a cosemisim-
ple Noetherian module, it follows from [6, Corollary 5.9] that Spec(M/ Rad(M)) =
{P1/ Rad(M), ..., Pℓ/ Rad(M)} and each Pi/ Rad(M) is a maximal fully invariant sub-
module of M/ Rad(M). This implies, by [16, Proposition 18] and Remark 5.26, that
Spec(M) = {P1, ..., Pℓ}. Let Pi be a prime submodule of M . There exists a maximal sub-
module L of M such that Pi ≤ L. Since M is Johns, there is an endomorphism f : M → M
such that L = Ker f . It follows that PiM (M/L) = 0 because M is quasi-projective. There-
fore, Pi ⊆ AnnM (M/L). But AnnM (M/L) is a prime submodule beacause M/L is simple
(see [14, Proposition 3.4]). Hence Pi = AnnM (M/L). �

Corollary 5.28. Suppose M is quasi-projective and generates all its submodules. If M is
a Johns module, then the following conditions are equivalent:

(a) Soc(M/P ) ̸= 0 for all P ∈ Spec(M);
(b) M/P is Artinian for all P ∈ Spec(M);
(c) M is semiprimary

Proof. Note that M/ Rad(M) ∼= M/P1 ⊕ · · · ⊕ M/Pℓ where Spec(M) = {P1, ..., Pℓ} by
Proposition 5.24 and [6, Corollary 5.11].

(a)⇒(b) We have that M/P is a prime Noetherian module. Since Soc(M/P ) ̸= 0, M/P
is semisimple Artinian by [6, Proposition 2.8].
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(b)⇒(c) Since M/ Rad(M) ∼= M/P1 ⊕ · · · ⊕ M/Pℓ. By hypothesis, M/ Rad(M) must
be Artinian and hence semisimple by [5, Theorem 1.17]. Since M is Johns, Rad(M) is
nilpotent (Corollary 5.17).

(c)⇒(a) is clear. �

Theorem 5.29. Suppose M is quasi-projective and generates all its submodules, and let
S = EndR(M). If M is Johns, then the following conditions are equivalent:

(a) Rad(M) = Ker f1 ∩ · · · ∩ Ker fℓ for some f1, ..., fℓ ∈ S.
(b) M/ Rad(M) is semisimple Artinian.
(c) M is semiprimary.

In addition, if M is a generator of σ[M ], the three conditions are equivalent to
(d) M is Artinian.

Proof. (a)⇒(b). By hypothesis, there is a monomorphism M/ Rad(M) → M ℓ. It follows
from Proposition 5.23 that Soc(M ℓ) ≤ess M ℓ. Hence Soc(M/ Rad(M)) ≤ess M/ Rad(M).
Since M/ Rad(M) is Noetherian and semiprime with essential socle then it is semisimple
Artinian by [6, Corollary 2.9].

(b)⇒(a). If M/ Rad(M) is Artinian, there are N1, ..., Nℓ maximal submodules of M
such that Rad(M) = N1 ∩ · · · ∩ Nℓ. Since M is Johns, there exist f1, ..., fℓ ∈ S such that
Ni = Ker fi.

(c)⇔(b). One implication is by definition and the converse follows from Corollary 5.17.
(c)⇔(d) follows from Proposition 3.13 and Proposition 3.15. �

Corollary 5.30. Suppose M is quasi-projective and generates all its submodules. If M
is Johns and every maximal submodule is fully invariant then M is semiprimary. In
addition, if M is a generator of σ[M ] then M is Artinian.

Proof. By Corollary 5.27, Spec(M) = {P1, ..., Pℓ} with each Pi a maximal fully invariant
submodule of M . By the hypothesis, P1, ..., Pℓ must be the maximal submodules of M .
Hence M/Pi is simple. It follows from Corollary 5.28 that M is semiprimary. Now, if M
is a generator of σ[M ], then M is Artinian by Theorem 5.29. �

It was proved in Corollary 5.19 that every commutative Johns ring is Artinian. The
next corollary generalizes this fact.

Corollary 5.31. Let R be a ring such that every maximal left ideal is a two-sided ideal.
If R is left Johns, then R is left Artinian.

In [10] is given an example of a Johns ring which is not Artinian. The next corollary
shows that every fully bounded Johns ring is Artinian. Recall that a module M is said
to be bounded if every essential submodule contains a fully invariant submodule which is
essential. The module M is fully bounded if for every prime submodule P of M , the factor
module M/P is bounded [14]. Hence, a ring R is left fully bounded if and only if RR is a
fully bounded module

Corollary 5.32. Suppose M is quasi-projective and generates all its submodules. If M is
a fully bounded Johns module, then M is semiprimary.

Proof. Since M is Johns, M is a Kasch module. It follows from [14, Proposition 4.14]
that M/ Rad(M) is semisimple Artinian. �

Corollary 5.33. If R is a left fully bounded left Johns ring, then R is Artinian.

Proposition 5.34. Suppose M is quasi-projective and generates all its submodules, and
let S = EndR(M). Suppose that M is Johns and SS has finite uniform dimension. Then
M is semiprimary. In addition, if M is a generator of σ[M ], M is Artinian.
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Proof. Since M is Johns then it is Kasch, so the maximal submodules of M are max-
imal M -annihilators. This implies that the M -annihilators are the maximal submod-
ules. Note that, if M is a maximal submodule of M then lS(M) is a minimal element in
Γ = {lS(X)|X ⊆ M}. Thus since SS has finite uniform dimension and by Lemma 4.32
we have that Rad(M) = Ker(f1) ∩ · · · ∩ Ker(fn) for some f1, ..., fn ∈ S. By Theorem 5.29
M/ Rad(M) is semisimple Artinian. Now, suppose M is a generator of σ[M ]. By Theorem
5.29, M is Artinian. �

As the last results show, there are many conditions on a module which makes a Johns
module to be Artinian. Here there is not assumption on the ring base but it would be
nice to know for which rings R the Johns R-modules are Artinian. Also, as Proposition
4.12 shows, for a Noetherian M -injective module M , M is Kasch if and only if M is Johns
without any projectivity condition on M . This raises the question that for which other
modules, with no projectivity conditions, these two concepts coincide.

Acknowledgment. We want to thank the referee for her/his prompt report and sug-
gestions which improved this manuscript.
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