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ABSTRACT: Since many real-world problems can be designed as optimization problems, heuristic 

algorithms are increasingly preferred by researchers. The Arithmetic Optimization Algorithm (AOA) is a 

newly developed heuristic algorithm. It uses four arithmetic operations in its structure. The addition and 

subtraction operators enhanced the AOA's local search capability, while the multiplication and division 

operators enhanced the AOA's global search capability.  It has been hybridized with the Tree Seed 

Algorithm (TSA) to increase the success of AOA. Thus, hybrid AOA-TSA (HAOA) has been proposed. 

The seed production mechanism of TSA is placed in the random walking stage of AOA. New candidate 

solutions (seeds) have been produced with the arithmetic operators involved in AOA and the candidate 

solutions have been compared with the existing solutions. Thus, the performance of AOA has increased. 

In this study, the success of AOA and HAOA was tested in thirteen constrained optimization problems. 

The success of AOA and HAOA has been tested for their performance in six different population sizes. 

The Wilcoxon Signed-Rank test was applied to the obtained results and its success has been proved 

statistically. The results proved the superiority of HAOA. HAOA has been compared with other 

heuristic methods in the literature and the success of HAOA has been shown. Additionally, AOA and 

HAOA have also been tested on three different engineering design problems. The results are discussed 

and evaluated. 
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Kısıtlı Optimizasyon Problemleri İçin Hibrit Aritmetik Optimizasyon Algoritması 

 

ÖZ: Pek çok gerçek dünya problemi optimizasyon problemleri olarak tasarlanabildiğinden, sezgisel 

algoritmalar araştırmacılar tarafından giderek daha fazla tercih edilmeye başlanmıştır. Aritmetik 

Optimizasyon Algoritması (AOA), yeni geliştirilmiş bir sezgisel algoritmadır. Yapısında dört aritmetik 

işlem kullanır. Toplama ve çıkarma operatörleri, AOA'nın yerel arama kabiliyetini geliştirirken, çarpma 

ve bölme operatörleri AOA'nın küresel arama kabiliyetini geliştirmiştir. AOA'nın başarısını artırmak 

için Ağaç Tohum Algoritması (TSA) ile hibritlenmiştir. Bu çalışmada, Hibrit AOA-TSA (HAOA) 

önerilmiştir. TSA'nın tohum üretim mekanizması, AOA'nın rastgele yürüme aşamasına yerleştirilmiştir. 

AOA'da yer alan aritmetik operatörler ile yeni aday çözümler (tohumlar) üretilmiş ve aday çözümler 

mevcut çözümlerle karşılaştırılmıştır. Böylece, AOA'nın performansı artmıştır. Bu çalışmada, AOA ve 

HAOA'nın başarısı on üç kısıtlı optimizasyon probleminde test edilmiştir. AOA ve HAOA'nın başarısı 

altı farklı popülasyon büyüklüğünde test edilmiştir. Elde edilen sonuçlara Wilcoxon Signed-Rank testi 

uygulanmış ve başarısı istatistiksel olarak kanıtlanmıştır. Sonuçlar HAOA'nın üstünlüğünü 

kanıtlamıştır. HAOA, literatürdeki diğer sezgisel yöntemlerle karşılaştırılmış ve HAOA'nın başarısı 

gösterilmiştir. Ek olarak, AOA ve HAOA, üç farklı mühendislik tasarım probleminde de test edilmiştir. 

 

Anahtar Kelimeler: Kısıtlı optimizasyon, Aritmetik optimizasyon algoritması, Ağaç tohum algoritması 
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1. INTRODUCTION 

The use of optimization in real-world problems is increasing in the literature. There are different 

types of optimization. For example, continuous and discrete optimization,  constrained and 

unconstrained optimization, single and multi-objective optimization, etc (Kiran, 2015; Haklı, 2019). In 

recent years, many swarm intelligence-based algorithms have been improved to solve optimization 

problems in a short time. These algorithms can be applied directly to constrained optimization 

problems. While constrained optimization is being carried out, these algorithms need to check for 

violations. The various algorithms have been used to overcome constraints in the literature and a lot of 

algorithms based on swarm intelligence have been chosen to solve constrained optimization problems. 

Babalik et al. (2018) also solved the constrained optimization problem using the Tree Seed Algorithm 

(TSA) (Babalik et al., 2018). Aslan (2019) also proposed the new variant of the Elephant Herding 

Optimization (GL-EHO) algorithm and tested its performance on constrained optimization (Aslan, 

2019). Xu et al. (2018) proposed a new approach by combining the Differential Evolution (DE) algorithm 

with an adaptive trial vector and solved constrained optimization problems (Xu et al., 2018). Lin (2013) 

hybridized the genetic algorithm with the rough set theory to evaluate constraints well and solved the 

constrained optimization problem (Lin, 2013). Apart from these, many swarm-based algorithms have 

been applied in the literature for the constrained optimization problem (Bansal et al, 2018; Garg, 2016; 

Runarsson and Yao, 2000; Kohli and Arora, 2017). 

The Tree Seed Algorithm (TSA) is a population-based algorithm and was first proposed by Kiran 

(Kiran, 2015). There are two types (Tree and Seed) of solution sets in TSA. It was created by simulating 

the relationship between trees and their seeds. There are many studies on TSA in the literature. Babalik 

et al. (2018) tested the success of TSA on constrained optimization by using Deb's rules (Babalik et al., 

2018). El-Fergany and Hasanien (2018) used TSA to solve the problem of the optimum power flow in 

large-scale power systems involving validations and comparisons (Fergany and Hasanien, 2018). Jiang et 

al. (2020) developed the TSA through a feedback mechanism to optimize continuous problems (Jiang et 

al., 2020). Beşkirli et al. (2019) examined a comparison of the modified tree seed algorithm for high-

dimensional numerical functions (Beşkirli et al., 2019). Apart from these, there are many studies on TSA 

in the literature (Aslan et al., 2018; Cinar et al., 2020). 

The Arithmetic Optimization Algorithm (AOA) was newly proposed by Abualigah et al. (Abualigah 

et al., 2021). Four arithmetic operations (Multiplication (M), Division (D), Subtraction (S), and Addition 

(A)) are used to improve the local and global search capability of the algorithm. The multiplication and 

division operations have been used to discover new points in the search space, and it has improved the 

exploration ability of the algorithm. Subtraction and Addition operations have been used to find local 

points in the search space, and it has improved the exploitation capability of the algorithm. Abualigah et 

al. tested the success of AOA on unimodal, multimodal, and hybrid composition benchmark functions.  

Due to the new recommendation of AOA in the literature, AOA has not been studied yet. AOA's success 

on different problems has not yet been tested. In this study, its success was tested on constrained 

optimization problems. The success of AOA has been increased by hybridizing with TSA. Hybrid AOA 

(HAOA) has been developed by adapting the seed production mechanism implemented in TSA to AOA. 

The seed production mechanism of TSA is placed in the random walking stage of AOA. New candidate 

solutions (seeds) have been produced with the arithmetic operators involved in AOA and the candidate 

solutions have been compared with the existing solutions. Thus, the performance of AOA has increased. 

The success of the newly proposed HAOA on different problems has also been shown in the literature. 

HAOA has also been applied to various engineering design problems. There are various engineering 

design problems in the literature (Braik, 2021). The best known of these are the Welded Beam Design 

problem (WBD), the Pressure Vessel Design problem (PVD), and Compression Spring Design (CSD). 

AOA and HAOA have been tested in three different engineering design problems. The success of 

HAOA and AOA has been demonstrated. 

The organization of the paper: the AOA, TSA, HAOA, and constrained optimization problems have 

been examined in Section 2. HAOA and AOA are tested on thirteen constrained benchmark problems 
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for various population sizes in Section 3 and the results of HAOA were compared with AOA, ABC, DE, 

GA, PSO, EHO, EHO-NoB, HEHO, and GL-EHO on constrained optimization problems. In addition, 

AOA and HAOA have also been tested in three different engineering design problems. The results are 

discussed and evaluated. 

2. MATERIAL AND METHOD 

2.1. The Arithmetic Optimization Algorithm (AOA)  

Abualigah et al. (2021) suggested a new meta-heuristic method called the Arithmetic Optimization 

Algorithm (AOA)  for the first time (Abualigah et al., 2021). The basic structure of AOA consists of four 

main arithmetic operators used in mathematics (Multiplication (M), Division (D), Subtraction (S), and 

Addition (A)). These arithmetic operators formed the search mechanism of AOA in the search space. 

Addition and subtraction operators shaped the local search structure in AOA, while multiplication and 

division operators shaped the global search structure in AOA. Figure 1 shows a hierarchy of arithmetic 

operators. 

 
Figure 1. Hierarchy of arithmetic operators (Abualigah et al., 2021) 

 

AOA chooses the exploration or exploitation phase at first. For this selection, the Math Optimizer 

Accelerated (MOA) function is calculated. Equation 1 shows the MOA function.  

 

𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶_𝐼𝑡𝑒𝑟 × (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
)                                                                                  (1) 

 

where MOA(C_Iter) denotes the function value at the tth iteration, and C _Iter denotes the current 

iteration, and (Max_ Iter) denotes the maximum number of iterations.  Min and Max denote the 

minimum and maximum values of the accelerated function, respectively. 

2.1.1. Exploration phase 

The exploration operators of AOA explore the search area randomly on several regions with 

Division (D) search strategy and Multiplication (M) search strategy and find a better solution.  Equation 

2 shows the exploration phase. This phase of searching (exploration search by executing D or M) is 

conditioned by the Math Optimizer accelerated (MOA) function for the condition of r1 > MOA (r1 is a 

random number). Which of Division (D) search strategy or the Multiplication (M) search strategy to be 

used is determined by the value of r2. 

 

𝑥𝑖,𝑗(𝐶_𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (2) 
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where r2 is a random number. best(x j ) is the jth position in the best-obtained solution so far. 𝜖 is a small 

integer number, UBj denotes the upper bound value of the jth position and LBj denotes the lower bound 

value of the jth position 𝜇 is a control parameter to adjust the search process. Math Optimizer 

Probability (MOP) is shown by Equation 3. 

𝑀𝑂𝑃(𝐶_𝐼𝑡𝑒𝑟) = 1 − (
𝐶_𝐼𝑡𝑒𝑟1/𝛼

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟1/𝛼)                                                                                                   (3) 

where MOP(C_Iter) denotes the function value at the tth iteration, and C _Iter denotes the current 

iteration, and (Max_ Iter) denotes the maximum number of iterations. α is a sensitive parameter and 

defines the exploitation accuracy over the iterations (Abualigah et al., 2021). 

2.1.2. Exploitation phase 

The exploitation operators of AOA are carried out with the Addition (A) search strategy and 

Subtraction (S) search strategy. In AOA, AOA's exploitation operators search the search area in detail in 

several local regions. Equation 4 shows the exploitation phase. Which of the Subtraction (S) search 

strategy or the Addition (A)  search strategy to be used is determined by the value of r3. 

𝑥𝑖,𝑗(𝐶_𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (4) 

where r3 is a random number. best(x j ) is the jth position in the best-obtained solution so far. 𝜖 is a small 

integer number, UBj denotes the upper bound value of the jth position and LBj denotes to lower bound 

value of the jth position 𝜇 is a control parameter to adjust the search process.  

The Pseudo-code of the AOA has been explained in Algorithm 1. Figure 2 shows the flowchart of AOA. 
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Figure 2. The flowchart of AOA 

 

2.2. The Tree Seed Algorithm (TSA) 

The Tree Seed Algorithm (TSA) is a population-based algorithm and was first proposed by Kiran 

(Kiran, 2015). There are two types (Tree and Seed) of solution sets in TSA. It was created by simulating 

the relationship between trees and their seeds. In nature, trees spread their seeds and these seeds grow 

over time, eventually forming new trees. Considering the surface with these trees as the search space, 

the positions of the trees and seeds represent solutions for the optimization problem. Initial tree 

population formation in TSA is shown by Equation 5 (Babalık et al., 2018). 

 

𝑇𝑟𝑒𝑒𝑖,𝑗 = 𝐿𝐵𝑗 + 𝑟𝑖,𝑗(𝑈𝐵𝑗 − 𝐿𝐵𝑗)  𝑖 = 1, 2, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1, 2, … , 𝑛                                                 (5) 

 

where 𝑇𝑟𝑒𝑒𝑖,𝑗 shows jth dimension of ith tree,  𝑈𝐵𝑗  𝑎𝑛𝑑 𝐿𝐵𝑗  are the upper and lower bound for the search 

space, N is the number of tree in the stand, n is the dimensionality of the optimization problem, and 𝑟𝑖,𝑗 

is a random number produced in a range of [0,1]. 

There are two different solution update equations in seed production. One of them uses the best 

seed location to improve the algorithm's exploitation capability, and the other uses a solution randomly 

selected from the population to explore different regions in the solution space. The equation to be used 

for seed production is decided by a control parameter called search tendency-ST (Babalık et al., 2018). 

Equation 6 shows the seed production mechanism. 

 

𝑆𝑒𝑒𝑑𝑘,𝑗 = {
𝑇𝑟𝑒𝑒𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑏𝑒𝑠𝑡𝑗 − 𝑇𝑟𝑒𝑒𝑟,𝑗),   𝑟 < 𝑆𝑇

𝑇𝑟𝑒𝑒𝑖,𝑗 + 𝛼𝑖,𝑗 × (𝑇𝑟𝑒𝑒𝑖,𝑗 − 𝑇𝑟𝑒𝑒𝑟,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                         (6) 
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where ST is a pre-defined value in a range of [0,1], r is randomly produced in a range of [0,1], Treei,j is a 

neighbor tree location randomly selected from the population.  αi,j is a scaling factor randomly produced 

in the range of [−1,1]. bestj is the jth position in the best-obtained solution so far. Seedk,j  is the jth 

dimension of kth seed produced from ith tree. 

The number of seeds for each tree is important for TSA's local exploration capability. Kiran (2015) 

analyzed the number of seeds for each tree in his study and suggested a number in a range of 10% and 

25% of the number of trees in the stand.  

The Pseudo-code of the TSA has been explained in Algorithm 2.  

 

 

2.3.  Hybrid The Arithmetic Optimization Algorithm (HAOA) 

Abualigah et al. (2021) suggested the Arithmetic Optimization Algorithm (AOA)  for the first time 

(Abualigah et al., 2021). It performs local and global searches in the AOA search space by using four 

main arithmetic operators. These arithmetic operators are addition, subtraction, multiplication, and 

division. AOA prefers addition and subtraction strategies over exploring local points, whereas AOA 

prefers multiplication and division strategies over exploring global points. Kiran (2015) suggested the 

Tree Seed Algorithm (TSA) for the first time (Kiran, 2015). There are two types (Tree and Seed) of 

solution sets in TSA. It was created by simulating the relationship between trees and their seeds. In this 

study, TSA and AOA algorithms are hybridized. The seed production mechanism of TSA is placed in 

the random walking stage of AOA. New candidate solutions (seeds) have been produced with the 

arithmetic operators involved in AOA and the candidate solutions have been compared with the 

existing solutions. Thus, the performance of AOA has increased. Thus, the hybrid AOA-TSA (HAOA) 

has been proposed. In HAOA, the number of new candidate solutions (seeds) to be produced for each 

solution was found by Equations 7-9. 

 

𝑙𝑜𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑁 ∗ 0.1)                                                                                                                     (7) 

 

ℎ𝑖𝑔ℎ = 𝑟𝑜𝑢𝑛𝑑(𝑁 ∗ 0.25)                                                                                                                 (8)   

                                                                 

𝑛𝑠𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑙𝑜𝑤 + (ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤) ∗ 𝑟) + 1     𝑖 = 1, 2, 3, … , 𝑁                                                      (9) 

 

where r is randomly produced in the range of [0,1], ns is the number of the candidate solutions (seeds) 

for each solution, and i is population size.  

The Pseudo-code of the HAOA has been explained in Algorithm 3.  
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2.4. Constrained Optimization 

Optimization problems search for the search space according to some constraints (Haklı, 2019). 

These constraints are shown in Equation 10. 

 
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥) 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔𝑖(𝑥) ≤ 0 𝑖 = 1, 2, 3, … , 𝑞                                                                                                               (10) 
ℎ𝑖(𝑥) = 0 𝑗 = 1, 2, 3, … , 𝑝 

 

where f(x) is the fitness function of the problem, g(x) represents inequality constraint and h(x) is an 

equality constraint. q and p are respectively numbers of inequality constraints and equality constraints 

(Haklı, 2019). Equality constraints narrow the available search space. Therefore, it becomes difficult to 

find the most suitable solutions for optimization techniques (Haklı, 2019). In order to overcome this 

problem, equality constraints can be converted into inequality constraints (Strumberger et al., 2018): 

 

|ℎ𝑗(𝑥)| ≤ 𝜀  𝑗 = 1, 2, 3, … , 𝑝                                                                                                            (11) 

 

where ε represents small violation tolerance. In constrained optimization, since the verification of the 

solution found depends on the violation of the constraints, the violation of the constraints is as 

important as the fitness value obtained from the objective function (Babalik et al., 2018).  



 E. BAŞ 720 

3. EXPERIMENTAL ANALYSIS 

The performances of AOA and Hybrid AOA (HAOA) have been tested on thirteen constrained 

problems (Haklı, 2019; Babalik et al., 2018; Runarsson and Yao, 2000). Descriptions of these problems are 

given in the appendix section of Babalik et al.’s study (Babalik et al., 2018). There are four maximization 

and nine minimization problems. G02, G03, G08, and G12 are maximization, and the G01, G04, G05, 

G06, G07, G09, G10, G11, and G13 are minimization problems. The dimension of each function is 13, 20, 

10, 5, 4, 2, 10, 2, 7, 8, 2, 3, and 5, respectively. In this study, six different values were chosen for the size of 

the population {10, 20, 40, 60, 80, and 100} and the maximum number of function evaluations was 

determined as 2.4E+5 as in other studies (Babalik et al., 2018; Haklı, 2019; Ivana Strumberger et al., 2018). 

30 independent runs were carried out for each function. The experiments are executed with a 2.3 GHz 

CPU and 4 GB RAM. The parameters setup of AOA and HAOA are shown in Table 1.  

 

Table 1. Parameters setup for AOA and HAOA 

Methods Population size (N) Maximum evaluation  µ α Min Max r1, r2, and r3 

AOA 10, 20, 40, 60, 80, 100 2.4E+5 0.5 5 0.2 1 [0,1] 

HAOA 10, 20, 40, 60, 80, 100 2.4E+5 0.5 5 0.2 1 [0,1] 

 

3.1. Comparing AOA and HAOA algorithms for population size=10, 20, 40, 60, 80, and 100 

In this subsection, the performance of AOA and HAOA in various population values has been 

evaluated for thirteen benchmark problems. The best, worst, mean, and standard deviation (SD) values 

were found for the obtained results. Table 2 shows AOA and HAOA comparison results for population 

size=10, 20, and 40. Table 3 shows AOA and HAOA comparison results for population size=60, 80, and 

100. Table 4 shows HAOA comparison results for all the population sizes. Better results are marked in 

bold font. According to the results, the HAOA results exceeded the AOA results in all benchmark 

problems and achieved 100% success. According to Table 4, HAOA showed its best mean performance 

when the population size was selected as 60, 80, and 100 and HAOA showed its best SD performance 

when the population size was selected as 60 and 100. 

A statistical test was performed on the results to show if there was a significant difference between 

AOA and HAOA results. Statistical test results are shown in Table 5. According to the results, if the h 

value is 1, there is a semantic difference in the results, and 0 indicates that there is no semantic difference 

in the results. The confidence interval of the Wilcoxon Signed-Rank test results of the AOA and HAOA 

algorithms is 0.05 in Table 5. The results showed that HAOA significantly improved the performance of 

AOA. 

Figure 3 shows the convergence charts of AOA and HAOA for thirteen benchmark problems for 

population size=40. HAOA gave results that were more stable than AOA and did not show abrupt 

changes. HAOA converged to optimal results more quickly than AOA. 
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Table 2. Comparing AOA and HAOA algorithms for population size=10, 20, and 40 
Problem Optimal Min./Max. AOA HAOA 

G1 -15.000  Min. N=10 N=20 N=40 N=10 N=20 N=40 

  Best -8.9949 -10.2458 -11.7438 -15.0000 -15.0000 -15.0000 

  Worst -6.0000 -6.0000 -6.0000 -15.0000 -15.0000 -15.0000 

  Mean -7.5180 -8.2023807 -8.2022 -15.0000 -15.0000 -15.0000 

  SD 1.1966 1.2291 1.4980 4.25E-13 1.04E-11 2.95E-11 

G2 0.803619  Max.       

  Best 0.391954 0.409160 0.389537 0.803777 0.803774 0.803774 

  Worst 0.238129 0.245952 0.255891 0.751332 0.786154 0.803765 

  Mean 0.316291 0.314459 0.305839 0.787934 0.799721 0.803771 

  SD 0.036056 0.041938 0.032353 0.015251 0.005497 2.14E-06 

G3 1.000  Max.       

  Best 0.7487 0.5397 0.7807 1.0000 1.0000 1.0000 

  Worst 0.2157 0.2821 0.3424 1.0000 1.0000 1.0000 

  Mean 0.4277 0.4191 0.4464 1.0000 1.0000 1.0000 

  SD 0.1107 0.0751 0.0920 0.0000 0.0000 0.0000 

G4 -30665.539  Min.       

  Best -30655.859 -30628.401 -30569.897 -30665.539 -30665.539 -30665.539 

  Worst -29353.432 -29413.147 -29440.351 -30665. 539 -30665.539 -30665.539 

  Mean -29702.704 -29864.681 -29769.803 -30665.539 -30665.539 -30665.539 

  SD 295.935 376.664 304.024 3.50E-10 5.34E-11 1.92E-11 

G5 5126.498  Min.       

  Best 5285.8941 5309.2067 5274.1580 5126.6811 5126.6071 5126.6281 

  Worst 197072.6800 189380.3300 105649.540 5882.3934 5645.3743 5702.9671 

  Mean 21161.6440 19757.8150 13678.9120 5230.8464 5210.8120 5186.9092 

  SD 41158.5850 33847.7050 20748.0590 171.9845 126.0258 114.3980 

G6 -6961.814  Min.       

  Best -6811.4451 -6820.1903 -6717.4193 -6961.8155 -6961.8155 -6961.8155 

  Worst -5408.1825 -5371.1019 -4957.7713 -6961.8155 -6961.8155 -6961.8155 

  Mean -6034.3193 -6179.9272 -6153.6696 -6961.8155 -6961.8155 -6961.8155 

  SD 382.1495 465.3159 448.1510 0.0000 0.0000 0.0000 

G7 24.306  Min.       

  Best 100.7648 76.5262 233.0540 24.3470 24.3346 24.3392 

  Worst 1969.0024 2455.7213 2898.0409 24.8349 24.5090 24.4809 

  Mean 730.4350 837.0931 869.8616 24.5157 24.4131 24.4034 

  SD 452.1383 585.5025 492.0641 0.1217 0.0497 0.0346 

G8 0.095825  Max.       

  Best 0.095491 0.095685 0.095803 0.095825 0.095825 0.095825 

  Worst 0.025357 0.025643 0.025797 0.029144 0.095825 0.095825 

  Mean 0.085591 0.081791 0.085653 0.093602 0.095825 0.095825 

  SD 0.019851 0.024683 0.020099 0.011970 2.78E-17 2.78E-17 

G9 680.63  Min.       

  Best 722.7471 711.1926 692.4062 680.6309 680.6313 680.6309 

  Worst 822.9434 823.2670 819.1971 680.6368 680.6348 680.6337 

  Mean 783.3395 766.2433 742.4198 680.6334 680.6329 680.6321 

  SD 29.70371 29.6735 32.2719 0.0016 0.0009 0.0007 

G10 7049.25  Min.       

  Best 15121.503 15872.75 16315.177 7063.1916 7061.0968 7059.6901 

  Worst 30000.342 30000.055 30000.181 7586.410 7367.1494 7192.8125 

  Mean 28958.647 28878.606 28163.504 7208.5445 7129.5320 7104.7907 

  SD 2991.3356 3303.9387 3769.9498 139.8415 62.2624 36.7048 

G11 0.75  Min       

  Best 0.9997 0.9997 0.7627 0.7501 0.7499 0.7499 

  Worst 0.9998 1.0002 1.0002 0.8950 0.9184 0.8778 

  Mean 0.9997 0.9998 0.9842 0.7886 0.7777 0.7727 

  SD 4.504E-05 9.604E-05 0.0505 0.0369 0.0389 0.0320 

G12 1.000  Max.       

  Best 0.999998 0.999961 0.999992 1.000 1.000 1.000 

  Worst 0.999735 0.999788 0.999713 1.000 1.000 1.000 

  Mean 0.999916 0.999883 0.999907 1.000 1.000 1.000 

  SD 6.505E-05 5.550E-05 6.796E-05 0.000 0.000 0.000 

G13 0.05395  Min.       

  Best 0.65464 0.68307 0.06604 0.44009 0.46701 0.67033 

  Worst 1.99980 7.12876 10.2887 3.48280 0.99999 1.15430 

  Mean 1.22174 1.38483 1.34903 0.98898 0.94725 0.98781 

  SD 0.40862 1.16457 1.77770 0.48450 0.12943 0.06650 
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Table 3. Comparing AOA and HAOA algorithms for population size=60, 80, and 100 
Problem Optimal Min./Max. AOA HAOA 

G1 -15.000  Min. N=60 N=80 N=100 N=60 N=80 N=100 

  Best -11.8171 -10.030321 -9.6961 -15.0000 -15.0000 -15.0000 

  Worst -6.0000 -6.0000 -6.0000 -15.0000 -15.0000 -15.0000 

  Mean -8.6623 -8.047555 -8.2317 -15.0000 -15.0000 -15.0000 

  SD 1.1636 1.3695 1.2285 2.02E-11 7.55E-12 8.28E-12 

G2 0.803619  Max.       

  Best 0.374180 0.460022 0.396971 0.803773 0.803774 0.803774 

  Worst 0.246054 0.271129 0.263217 0.803768 0.803768 0.803768 

  Mean 0.298437 0.323082 0.321634 0.803771 0.803772 0.803771 

  SD 0.033894 0.048367 0.033699 1.27E-06 1.38E-06 1.48E-06 

G3 1.000  Max.       

  Best 0.7746 0.6718 0.8850 1.0000 1.0000 1.0000 

  Worst 0.2511 0.2083 0.2984 1.0000 1.0000 1.0000 

  Mean 0.4373 0.4142 0.4310 1.0000 1.0000 1.0000 

  SD 0.1134 0.0941 0.1125 0.0000 0.0000 0.0000 

G4 -30665.539  Min.       

  Best -30568.967 -30574.709 -30576.023 -30665.540 -30665.540 -30665.540 

  Worst -29415.253 -29466.224 -29440.550 -30665.540 -30665.540 -30665.540 

  Mean -29846.710 -29835.787 -29832.960 -30665.540 -30665.540 -30665.540 

  SD 367.986 309.725 296.731 2.58E-11 1.92E-11 7.28E-12 

G5 5126.498  Min.       

  Best 5271.0473 5376.0605 5300.0793 5126.5932 5126.5955 5126.5322 

  Worst 53831.806 41811.412 131241.64 5415.7013 5549.4217 6050.0505 

  Mean 10208.656 8932.1443 10948.742 5166.3762 5185.0307 5245.1527 

  SD 10055.296 8325.3616 22446.066 57.6578 92.9843 185.3663 

G6 -6961.814  Min.       

  Best -6784.7484 -6933.5702 -6115.7646 -6961.8155 -6961.8155 -6961.8155 

  Worst -5113.3448 -4821.1231 -2353.9016 -6961.8155 -6961.8155 -6961.8155 

  Mean -6200.1311 -6143.5361 -5711.0374 -6961.8155 -6961.8155 -6961.8155 

  SD 344.3004 440.9267 628.6112 0.0000 0.0000 0.0000 

G7 24.306  Min.       

  Best 425.6965 436.5212 483.2933 24.3426 24.3395 24.3401 

  Worst 1323.9415 2478.5446 2300.7003 24.4497 24.4470 24.4460 

  Mean 904.5381 1003.9447 1015.6819 24.3963 24.3868 24.3953 

  SD 286.0819 393.7003 408.9039 0.02607 0.02818 0.02716 

G8 0.095825  Max.       

  Best 0.095701 0.095315 0.095768 0.095825 0.095825 0.095825 

  Worst 0.025969 0.025748 0.025662 0.095825 0.095825 0.095825 

  Mean 0.090408 0.085514 0.087666 0.095825 0.095825 0.095825 

  SD 0.012172 0.019443 0.016457 2.78E-17 2.78E-17 2.78E-17 

G9 680.63  Min.       

  Best 699.8415 686.9464 689.1064 680.6306 680.6306 680.6309 

  Worst 813.3713 793.0415 832.6263 680.6330 680.6329 680.6329 

  Mean 732.7981 730.0166 738.3557 680.6318 680.6319 680.6317 

  SD 26.7901 24.1272 33.7390 0.0006 0.0005 0.0005 

G10 7049.25  Min.       

  Best 11602.2480 17915.4610 23531.7840 7060.0143 7053.7270 7049.8481 

  Worst 30000.0770 30000.0580 30000.1500 7187.5255 7156.2179 7179.2562 

  Mean 28149.1710 28759.9030 29232.6030 7099.2976 7100.7723 7093.6483 

  SD 4484.2020 3021.6864 1637.2815 27.3408 28.0190 27.5670 

G11 0.75  Min       

  Best 0.9997 0.7553 0.8603 0.7499 0.7499 0.7499 

  Worst 1.0002 1.0002 1.0002 0.7922 0.7938 0.7755 

  Mean 0.9998 0.9891 0.9826 0.7554 0.7552 0.7528 

  SD 0.0002 0.0457 0.0442 0.0084 0.0095 0.0054 

G12 1.000  Max.       

  Best 0.999992 0.999995 0.999996 1.000 1.000 1.000 

  Worst 0.999785 0.99971 0.999817 1.000 1.000 1.000 

  Mean 0.999899 0.99990 0.999916 1.000 1.000 1.000 

  SD 5.48E-05 7.67E-05 4.98E-05 0.000 0.000 0.000 

G13 0.05395  Min.       

  Best 0.478609 0.146282 0.169063 0.865197 0.481268 0.935540 

  Worst 7.884131 7.214411 9.650241 1.391072 1.495773 0.999997 

  Mean 1.365598 1.463003 1.471600 1.003210 0.982606 0.995394 

  SD 1.288158 1.500493 1.642668 0.076274 0.150232 0.012438 
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Table 4. Comparing the variations of HAOA algorithm for population size=10, 20, 40, 60, 80, and 100 

ID 
N=10 N=20 N=40 N=60 N=80 N=100 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

G1 -15.0000 4.25E-

13 

-15.0000 1.04E-

11 

-15.0000 2.95E-

11 

-15.0000 2.02E-

11 

-15.0000 7.55E-

12 

-15.0000 8.28E-

12 

G2 0.787934 0.01525

1 

0.799721 0.00549

7 

0.803771 2.14E-

06 

0.803771 1.27E-

06 

0.803772 1.38E-

06 

0.803771 1.48E-

06 

G3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

G4 -

30665.53

9 

3.50E-

10 

-

30665.53

9 

5.34E-

11 

-

30665.53

9 

1.92E-

11 

-

30665.53

9 

2.58E-

11 

-

30665.53

9 

1.92E-

11 

-

30665.53

9 

7.28E-

12 

G5 5230.846

4 

171.984

5 

5210.812

0 

126.025

8 

5186.909

2 

114.398

0 

5166.376

2 

57.657

8 

5185.030

7 

92.984

3 

5245.152

7 

185.366

3 

G6 -

6961.815

5 

0.0000 -

6961.815

5 

0.0000 -

6961.815

5 

0.0000 -

6961.815

5 

0.0000 -

6961.815

5 

0.0000 -

6961.815

5 

0.0000 

G7 24.5157 0.1217 24.4131 0.0497 24.4034 0.0346 24.3963 0.0260

7 

24.3868 0.0281

8 

24.3953 0.02716 

G8 0.093602 0.01197

0 

0.095825 2.78E-

17 

0.095825 2.78E-

17 

0.095825 2.78E-

17 

0.095825 2.78E-

17 

0.095825 2.78E-

17 

G9 680.6334 0.0016 680.6329 0.0009 680.6321 0.0007 680.6318 0.0006 680.6319 0.0005 680.6317 0.0005 

G1

0 

7208.544

5 

139.841

5 

7129.532

0 

62.2624 7104.790

7 

36.7048 7099.297

6 

27.340

8 

7100.772

3 

28.019

0 

7093.648

3 

27.5670 

G1

1 

0.7886 0.0369 0.7777 0.0389 0.7727 0.0320 0.7554 0.0084 0.7552 0.0095 0.7528 0.0054 

G1

2 

1.000 0.0000 1.000 0.0000 1.000 0.0000 1.000 0.0000 1.000 0.0000 1.000 0.0000 

G1

3 

0.98898 0.48450 0.94725 0.12943 0.98781 0.06650 1.00321 0.0762

7 

0.98261 0.1502

3 

0.99539 0.01244 

 

Table 5. The results of Wilcoxon Signed-Rank Test on the results of HAOA and AOA algorithms for 

population size=10, 20, 40, 60, 80, and 100 

ID 

HAOA-AOA 

N=10 N=20 N=40 N=60 N=80 N=100 

P-Value h P-Value h P-Value h P-Value h P-Value h P-Value h 

G1 1.61e-06 1 1.73E-06 1 1.67E-06 1 1.73E-06 1 1.64E-06 1 1.71E-06 1 

G2 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G3 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G4 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G5 2.88E-06 1 1.92E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G6 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G7 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G8 2.37E-05 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G9 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G10 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G11 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.92E-06 1 1.73E-06 1 

G12 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G13 0.0003589 1 9.71E-05 1 0.3285711 0 0.0027653 1 0.0544625 0 0.0024147 1 
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Figure 3. The convergence charts of AOA and HAOA for thirteen benchmark problems 
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3.2.  A comparison of HAOA with other algorithms 

In the experiments, it has been proven that the success of HAOA exceeds the success of AOA. In this 

subsection, the success of HAOA has been compared with different methods in the literature. The 

HAOA is compared with Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), Differential Evolution (DE), Elephant Herding Optimization (EHO), Elephant Herding 

Optimization with Global and Local search (GL-EHO), Hybridized EHO (HEHO), EHO-NoB, and Tree 

Seed Algorithm (CTSA). The experimental results are shown in Tables 7 - 9 (Babalik et al., 2018; Haklı, 

2019). 30 independent runs were carried out for each function for all the algorithms except GA. The 

selected parameters for the comparison algorithms are shown in Table 6. 

 

Table 6. Parameters setup for HAOA and other algorithms 
Methods Population size 

(N) 

Maximum 

evaluation  

Other parameters 

HAOA 40 2.4E+5 µ =0.5; α=5; Min=0.2; Max=1; r1, r2, and r3=[0,1] 

EHO 50 2.4E+5 the number of elephant in each clan is set 10; α = 0.5; β= 0.1; c1 and c2 = 

1.5   

GL-EHO 50 2.4E+5 the number of elephant in each clan is set 10; α = 0.5; β= 0.1; c1 and c2 = 

1.5   

HEHO 50 2.4E+5 the number of elephant in each clan is set 10; α = 0.5; β= 0.1; c1 and c2 = 

1.5   

EHO-NoB 50 2.4E+5 the number of elephant in each clan is set 10; α = 0.5; β= 0.1; c1 and c2 = 

1.5   

ABC 40 2.4E+5 - 

PSO 40 2.4E+5 - 

GA 40 2.4E+5 - 

DE 40 2.4E+5 - 

CTSA 40 2.4E+5 ST=0.1 

 

According to Table 7, HAOA performed better than other algorithms (ABC, DE, GA, and PSO) in 8 

out of 13 benchmark problems (G1, G2, G3, G4, G6, G8, G10, and G12). According to Table 8, HAOA 

performed better than other algorithms (GL-EHO, EHO, HEHO, and EHO-NoB) in 8 out of 13 

benchmark problems (G1, G2, G3, G4, G8, G9, G10, and G12). After HAOA, HEHO has been the most 

successful algorithm (in 7 out of 13 benchmark problems). According to Table 9, HAOA performed 

better than other algorithms (AOA and CTSA) in 12 out of 13 benchmark problems (G1, G2, G3, G4, G5, 

G6, G7, G8, G9, G10, G11, and G12). CTSA performed well in 7 out of 13 benchmark problems (G1, G3, 

G4, G6, G8, G12, and G13). 

A statistical test was performed on the results to show if there was a significant difference between 

HAOA, ABC, PSO, GA, DE, EHO, GL-EHO, HEHO, EHO-NoB, and CTSA results. Statistical test results 

are shown in Table 10 and Table 11. According to the results, if the h value is 1, there is a semantic 

difference in the results, and 0 indicates that there is no semantic difference in the results. The 

confidence interval of the Wilcoxon Signed-Rank test results of the HAOA and other algorithms is 0.05 

in Table 10 and Table 11. The results showed that there is a significant difference between HAOA and 

the results of other comparison algorithms. 

Figure 4 shows the convergence charts of AOA, HAOA, EHO, GL-EHO, HEHO, and EHO-NoB  for 

five benchmark problems. Figure 5 shows the convergence charts of AOA, HAOA, ABC, PSO, DE, and 

CTSA  for five benchmark problems. The convergence results have proven the success of HAOA. 
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Table 7. Comparing HAOA and other algorithms (ABC, PSO, GA, and DE) 
Problem Optimal  ABC PSO GA DE HAOA 

G1 -15.000 
Mean -15.000  -10.5551  -14.236 -14.2406  -15.0000 

Difference 0.0205  4.4449  0.7640  0.7594  0.0000 

G2 0.803619 
Mean 0.4795  0.4043  0.7886  0.6660  0.803771 

Difference 0.3241  0.3993  0.0150  0.1376  0.00015 

G3 1.000 
Mean 3.0191 1.1675  0.9760  1.1694  1.0000 

Difference 2.0191  0.1675  -0.0240  0.1694  0.0000 

G4 -30665.539 
Mean -30610.974  -30661.740  -30590.455  -30665.540  -30665.539 

Difference 54.565  3.799 75.084  0.001  0.0000 

G5 5126.498 
Mean 5115.056  5298.284 N/A  5329.197  5186.9092 

Difference 11.441  171.787  N/A 202.700  60.4112 

G6 -6961.814 
Mean -7579.630  -6961.819  -6872.204  -6765.482  -6961.8155 

Difference 617.816  0.005  89.610  196.332  0.0015 

G7 24.306 
Mean 29.0956  28.7418  34.9800  24.3160 24.4034 

Difference 4.7896  4.4358  10.6740  0.0100  0.0974 

G8 0.095825 
Mean 6.5347  0.0847  0.0958  0.0958  0.095825 

Difference 6.4389  0.0111 0.0000  0.0000  0.0000 

G9 680.63 
Mean 683.8941  680.7815  692.0640  680.6308  680.6321 

Difference 3.2641  0.1515  11.4340  0.0008  0.0021 

G10 7049.25 
Mean 7259.028  8128.793  10003.225  7162.592  7104.7907 

Difference 209.778  1079.543  2953.975  113.342  55.5407 

G11 0.75 
Mean 0.7171  0.7626  0.7500  0.9545  0.7727 

Difference 0.0329  0.0126  0.0000  0.2045  0.0227 

G12 1.000 
Mean 1.0001  1.0000  1.0000  1.0000  1.0000  

Difference 0.0001  0.0000  0.0000  0.0000  0.0000  

G13 0.05395 
Mean 0.0955  1.4228  N/A  0.9492  0.98781 

Difference 0.04155  1.3273  N/A 0.8537  0.93386 
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Table 8. Comparing HAOA and other algorithms (EHO, EHO-NoB, HEHO, and GL-EHO) 
Problem Optimal  EHO EHO-NoB  HEHO GL-EHO HAOA 

G1 -15.000 
Mean -1.088  -14.500  -14.958  -15.0000  -15.0000 

Difference -  - -14.958  0.0000  0.0000 

G2 0.803619 
Mean 0.2522  0.4490  0.799125  0.6405  0.803771 

Difference -  - 0.026  0.1631  0.00015 

G3 1.000 
Mean 0.6560  0.4864  1.000  0.9026  1.0000 

Difference -  - 0.000 -0.0974  0.0000 

G4 -30665.539 
Mean 30333.809  -30304.074  -30499.033  -30665.540  -30665.539 

Difference -  - 16.302  0.001  0.0000 

G5 5126.498 
Mean 5373.189  5182.527  5126.505  5502.522  5186.9092 

Difference -  - 0.041  376.025  60.4112 

G6 -6961.814 
Mean -6943.713  -6227.937  -6957.361  -6961.814  -6961.8155 

Difference -  - 1.005  0.002  0.0015 

G7 24.306 
Mean 446.6258  83.0228  24.309  36.9279 24.4034 

Difference -  - 0.003  12.6219 0.0974 

G8 0.095825 
Mean 0.095376  0.095825  0.095825  0.0958 0.095825 

Difference -  - 0.000  0.0000 0.0000 

G9 680.63 
Mean 927.874  709.6519  680.653  681.7680 680.6321 

Difference -  - 0.011  1.1380 0.0021 

G10 7049.25 
Mean 10236.025  8162.372  7152.895  8374.642 7104.7907 

Difference -  - 95.239  1325.392 55.5407 

G11 0.75 
Mean 0.7400  0.7399  0.751  0.7399 0.7727 

Difference - - 0.001  0.0101 0.0227 

G12 1.000 
Mean 1.000  1.000  1.000  1.0000 1.0000  

Difference - - 0.000 0.0000 0.0000  

G13 0.05395 
Mean 1.3335  1.0946  0.246  0.4043 0.98781 

Difference - - 0.106  0.3088 0.93386 
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Table 9. Comparing HAOA and other algorithms (AOA and CTSA) 

Problem Optimal  CTSA AOA HAOA 

G1 -15.000 
Mean -15.0000 -8.2022 -15.0000 

SD 0.0000 1.4980 2.95E-11 

G2 0.803619 
Mean 0.801098 0.305839 0.803771 

SD 0.003500 0.032353 2.14E-06 

G3 1.000 
Mean 1.0000 0.4464 1.0000 

SD 0.0000 0.0920 0.0000 

G4 -30665.539 
Mean -30665.539 -29769.803 -30665.539 

SD 0.0000 304.024 1.92E-11 

G5 5126.498 
Mean 5195.827 13678.9120 5186.9092 

SD 121.868 20748.0590 114.3980 

G6 -6961.814 
Mean −6961.816 -6153.6696 -6961.816 

SD 0.0000 448.1510 0.0000 

G7 24.306 
Mean 24.488 869.8616 24.4034 

SD 0.083 492.0641 0.0346 

G8 0.095825 
Mean 0.095825 0.085653 0.095825 

SD 0.0000 0.020099 2.78E-17 

G9 680.63 
Mean 680.642 742.4198 680.6321 

SD 0.004 32.2719 0.0007 

G10 7049.25 
Mean 7131.794 28163.504 7104.7907 

SD 71.905 3769.9498 36.7048 

G11 0.75 
Mean 0.806 0.9842 0.7727 

SD 0.055 0.0505 0.0320 

G12 1.000 
Mean 1.0000  0.999907 1.0000  

SD 0.0000  6.796E-05 0.0000  

G13 0.05395 
Mean 0.9876 1.34903 0.98781 

SD 0.2816 1.77770 0.06650 
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Table 10. The results of the Wilcoxon Signed-Rank Test on the results of HAOA, ABC, PSO, GA, DE, and 

CTSA algorithms 

ID 

HAOA 

ABC PSO GA DE CTSA 

P-Value h P-Value h P-Value h P-Value h P-Value h 

G1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G2 1.73E-06 1 1.73E-06 1 1.92E-06 1 1.73E-06 1 3.82E-01 0 

G3 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G4 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G5 1.73E-06 1 1.73E-06 1 N/A - 1.73E-06 1 1.73E-06 1 

G6 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G7 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G8 6.80E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G9 1.72E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G10 1.72E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G11 1.73E-06 1 0.24519 0 1.92E-06 1 1.73E-06 1 1.20E-03 1 

G12 4.32E-08 1 1 0 1 0 1 0 1 0 

G13 1.73E-06 1 1.73E-06 1 N/A - 1.57E-02 1 3.39E-01 0 

 

Table 11. The results of the Wilcoxon Signed-Rank Test on the results of HAOA, EHO, GL-EHO, HEHO, 

and EHO-NoB algorithms 

ID 

HAOA 

EHO GL-EHO HEHO EHO-NoB 

P-Value h P-Value h P-Value h P-Value h 

G1 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G2 1.73E-06 1 1.73E-06 1 4.66E-01 0 1.73E-06 1 

G3 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G4 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G5 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G6 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G7 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G8 4.32E-08 1 4.32E-08 1 4.32E-08 1 4.32E-08 1 

G9 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G10 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

G11 1.73E-06 1 1.73E-06 1 9.32E-06 1 1.73E-06 1 

G12 1 0 1 0 1 0 1 0 

G13 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 
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Figure 4. The convergence charts of HAOA, AOA, EHO, EHO-NoB, and GL-EHO for five benchmark 

problems 
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Figure 5. The convergence charts of HAOA, AOA, CTSA, ABC, DE, and PSO for five benchmark 

problems 

 

3.3.  A comparison of HAOA on the engineering design problems 

In this subsection, HAOA has been applied to various engineering design problems. There are 

various engineering design problems in the literature (Braik, 2021). The best known of these are the 

Welded Beam Design problem (WBD), the Pressure Vessel Design problem (PVD), and Compression 

Spring Design (CSD). The mathematical models of these problems are taking directly from Babalik et al., 

(2018). Descriptions of these problems are given in the appendix section of Babalik et al.’s study (Babalik 

et al., 2018). In this study, 3E + 04 as the maximum evaluation and 20 and 40 as the population sizes were 

selected, and we tested the success of AOA and HAOA in three different engineering design problems. 

30 independent runs were carried out for each function for all the algorithms. The results of CTSA on 

engineering design problems have been obtained from Babalik et al. (2018). Population size and 

maximum evaluation parameters were chosen equally to make a fair comparison. In CTSA, the ST value 

was chosen as 0.2 and 0.5 in the population size of 20 and 40, respectively (Babalik et al., 2018). 
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Table 12 shows a comparing AOA, HAOA, and CTSA algorithms for population size=20 and 40 on 

various engineering design problems. Table 13 shows the results of the Wilcoxon Signed-Rank Test on 

the results of HAOA, AOA, and CTSA algorithms on various engineering design problems. Table 14 

shows a comparing HAOA and other algorithms on various engineering design problems. Successful 

results are marked with bold font in Table 12 and Table 14. According to Table 12, HAOA is more 

successful than AOA and CTSA. 

 

Table 12. Comparing AOA, HAOA, and CTSA algorithms for population size=20 and 40 on various 

engineering design problems 

Problem AOA HAOA CTSA 

PVD N=20 N=40 N=20 N=40 N=20 N=40 

Best 6719.607 6963.081 5901.344 5907.115 5930.4781 6053.1729 

Worst 22315.94 15660.85 6077.501 5995.747 6459.0682 6398.9258 

Mean 10593.84 9742.615 5977.512 5944.55 6104.2594 6194.5821 

SD 3189.202 2200.163 48.08271 23.04729 - - 

WBD       

Best 2.630093 2.61196 2.380959 2.380958 2.382411 2.3901825 

Worst 4.542383 3.806217 2.381671 2.381091 2.4807722 2.5505803 

Mean 3.166143 3.158344 2.381056 2.380987 2.3891574 2.4290572 

SD 0.403487 0.259825 0.000154 3.11E-05 - - 

CSD       

Best 0.012998 0.013167 0.012674 0.012671 - - 

Worst 0.032921 0.022827 0.012997 0.012763 - - 

Mean 0.014821 0.013552 0.012753 0.012704 - - 

SD 0.004934 0.001723 6.75E-05 2.82E-05 - - 

 

Table 13. The results of the Wilcoxon Signed-Rank Test on the results of HAOA, AOA, and CTSA 

algorithms on various engineering design problems 

HAOA 

AOA CTSA 

N=20 N=40 N=20 N=40 

P-Value h P-Value h P-Value h P-Value h 

PVD 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

WBD 1.73E-06 1 1.73E-06 1 1.73E-06 1 1.73E-06 1 

CSD 1.73E-06 1 1.73E-06 1 - - - - 
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Table 14. Comparing HAOA and other algorithms on various engineering design problems 

PVD f(x) Fes Reference 

HAOA 5907.115 30000 - 

AOA 6963.081 30000 - 

CTSA 6053.1729 30000 Babalik et al., 2018 

GWO 6051.56390000 N/A Mirjalili et al., 2014 

MFO 6059.71430000 N/A Mirjalili, 2015 

WOA 6059.74100000 6300 Mirjalili and Lewis, 

2016 

WBD    

HAOA 2.380958 30000 - 

AOA 2.61196 30000 - 

CTSA 2.3901825 30000 Babalik et al., 2018 

HS 2.38070000 110000 Lee and Geem, 2005 

Deb 2.43311600 5000 Deb, 1991 

 

4. CONCLUSION 

The use of heuristic algorithms in solving real-world problems has increased in recent years. This is 

due to their success in problem-solving. AOA is a newly developed heuristic algorithm. It uses four 

arithmetic operations in its structure. The addition and subtraction operators enhanced the AOA's local 

search capability, while the multiplication and division operators enhanced the AOA's global search 

capability.  It has been hybridized with the TSA algorithm to increase the success of AOA. Thus, hybrid 

AOA (HAOA) has been proposed. The seed production mechanism of TSA is placed in the random 

walking stage of AOA. New candidate solutions (seeds) have been produced with the arithmetic 

operators involved in AOA and the candidate solutions have been compared with the existing solutions. 

Thus, the performance of AOA has increased. In this study, the success of AOA and HAOA was tested 

in thirteen constrained optimization problems. There are four maximization and nine minimization 

problems. The success of AOA and HAOA has been tested for their performance in six different 

population sizes. Statistical test was applied to the obtained results. The results proved the superiority of 

HAOA. HAOA has been compared with other heuristic methods (ABC, DE, GA, PSO, EHO, EHO-NoB, 

HEHO, and GL-EHO) in the literature and the success of HAOA has been shown. In addition, the 

success of AOA and HAOA has also been tested in three different engineering design problems. The 

results obtained were evaluated and compared. HAOA's success has been proven. 

Since the AOA algorithm is a new algorithm, its performance has not been tested on different 

problems. In future studies, the performance of AOA on discrete and binary optimization problems is 

considered. 
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