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PARAMETER ESTIMATION FOR A 𝑲-UNIT SERIES SYSTEM BASED 
ON THE PROGRESSIVELY CENSORED ERLANG-TRUNCATED 

EXPONENTIAL DATA WITH BINOMIAL REMOVALS 
Çağatay Çetinkaya1 

 

ABSTRACT 

This study deals with point and interval estimations for the scale and shape parameters of the 

component lifetime distribution of a k-component series system when the component lifetimes 

are assumed to be independently and identically Erlang-truncated exponential distributions. It 

is assumed that the components are exposed to progressive Type-II censoring scheme. Each 

failure in this censoring plan is assumed to be random and subject to the binomial distribution. 

Parameter estimations are obtained by using the maximum likelihood method and their 

approximate confidence intervals are obtained by using the bootstrap method. The simulations 

are performed to evaluate the performances of the theoretical outcomes.  

Keywords: Bootstrap, Erlang-Truncated Exponential Distribution, Maximum Likelihood, 

Progressive Censoring, Series system 
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BİNOM KALDIRMALAR İLE AŞAMALI SANSÜRLENMİŞ ERLANG-KESİLMİŞ 

ÜSTEL VERİLERE DAYALI BİR K-BİRİMLİ SERİ SİSTEM İÇİN PARAMETRE 

TAHMİNİ 

 

ÖZET 

Bu çalışma, bileşen ömürlerinin bağımsız ve özdeş Erlang kesilmiş üstel dağılımına sahip 

olduğu varsayıldığında, bir k-bileşenli seri sistemin bileşen ömrü dağılımının ölçek ve şekil 

parametrelerinin parametre tahminlerini ele almaktadır. Bileşenlerin aşamalı Tip-II sansürleme 

şemasına maruz kaldığı varsayılmaktadır. Bu sansürleme planındaki her bir başarısızlığın 

rastgele olduğu ve binom dağılımına sahip olduğu varsayılır. Parametre tahminleri, maksimum 

olabilirlik yöntemi kullanılarak, yaklaşık güven aralıkları ise bootstrap yöntemi kullanılarak 

elde edilmiştir. Teorik sonuçların performanslarını değerlendirmek için simülasyon çalışmaları 

uygulanmıştır. 

 

Anahtar Kelimeler: Bootstrap, Erlang Kesilmiş Üstel Dağılım, En Çok Olabilirlik, Aşamalı 

Sansürleme, Seri Sistem  

 
 
 
1. INTRODUCTION 

The Erlang-truncated exponential (ETE) distribution was introduced by El-Alosey (2007) 

as an extension of the classical exponential distribution. It is a mixture of the Erlang and the 

left truncated exponential distributions. Its probability density (pdf) and cumulative distribution 

function (cdf) are given by  

 𝑓(𝑥|𝜆, 𝛽) = 𝛽*1 − 𝑒!".𝑒!#$%!&!"'(,      𝑥 > 0, 𝜆, 𝛽 > 0 (1) 

 𝐹(𝑥|𝜆, 𝛽) = 1 − 𝑒!#$%!&!"'(  (2) 

where 𝜆 and 𝛽 are the scale and shape parameters, respectively. The ETE distribution reduces 

to the one-parameter exponential distribution in the case of 𝜆 → ∞. Recently, the ETE 

distribution was studied by various authors. Mohsin (2009) handled recurrence relations for 

single and product moments of record values. Khan et al. (2010) considered its moments of 

generalized order statistics and characterization.  Rao (2013) handled one-sided cumulative sum 



 

 61 

control charts. Kulshrestha et al. (2013) studied the moment generating functions of generalized 

order statistics from ETE distribution. Kumar (2014a, 2014b) studied quotient moments based 

on records and relations of generalized order statistics. Gadde (2017) obtained reliability 

estimation in a multicomponent stress-strength model. Malik and Kumar (2017) considered 

relations for moments of progressively type-II right censored order statistics. Sarana et al. 

(2018) studied relationships for moments of generalized order statistics and related inference. 

Further, some generalizations and modifications of the ETE distribution was studied by various 

authors such as Nasiru et al. (2016), Okorie et al (2016, 2017a, 2017b), Jimoh et al. (2019) and 

Elbatal and Elgarhy (2020).  

In reliability theory, many researchers are focused on the systems. Since the ETE 

distribution proposed a lifetime distribution, we focus on the lifetime distribution of a k-unit 

series system with ETE distributed lifetimes of the components.   

 

 

Figure 1. A configuration of the components 𝐶%, 𝐶), ⋯ , 𝐶* linked in series. 

A series system functions when all the components are functioning. Thus, the structure 

function of a series system is given as (Smith, 2017)  

∅(𝑋%, 𝑋), ⋯ , 𝑋*) =8𝑋+

*

+,%

= 𝑚𝑖𝑛(𝑋%, 𝑋), ⋯ , 𝑋*) 

In this study, we consider a k-unit series system with independent and identically 

distributed components. Let 𝑋+ be the lifetime of the ith component with  𝑋+~𝐸𝑇𝐸(𝜆, 𝛽). Let 

assume 𝑋 denotes the lifetime of a k-unit series system. Then, the system lifetime is equal to 

𝑋 = min	(𝑋%, 𝑋), ⋯ , 𝑋*). The distribution and probability functions of the system lifetime can 

be obtained with the theory of the order statistics. That is, the lifetime of the system denotes the 

minimum order statistics of the components 𝑋%, 𝑋), ⋯ , 𝑋*. Thus, the distribution function of  𝑋 

is  

𝐺(𝑥|𝜆, 𝛽) = 1 − 𝑒!*#$%!&!"'(  (3) 

and its pdf is  
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𝑔(𝑥|𝜆, 𝛽) = 𝑘𝛽*1 − 𝑒!".𝑒!*#$%!&!"'(    (4) 

where 𝑘 = 1,2,⋯∞.  

On the other hand, it is known that lifetimes of the components cannot be observed 

exactly in many cases.  In the case of many reliability problem, system components can be lost 

or removed from the experiments before they failed and censored datasets are observed in these 

cases. Many different censoring schemes are defined in the literature such as Type-I censoring, 

Type-II censoring, hybrid censoring which is a mixture of Type-I and Type II and introduced 

by Epstein (1954), progressive censoring schemes which let the experimenters to remove live 

units on failure times. Among them, we considered the progressive Type-II censoring in this 

scheme. In such a censoring scheme, the experiment starts with 𝑛 independent and identical 

units which have 𝐸𝑇𝐸(𝜆, 𝛽). Then, the test is terminated with the prefixed 𝑚th failure. When 

the first failure occurs 𝑅% live units are randomly removed from the experiment. At the second 

failure, 𝑅) live units are randomly removed from the experiment. This test terminates with 𝑚th 

failure and the remaining surviving units 𝑅! = 𝑛 −𝑚 −∑ 𝑅"!#$
"%$  are all removed from the 

experiment (see Figure 2). Here 𝑅 = (𝑅$, 𝑅&, ⋯ , 𝑅!) and ∑ 𝑅"!
"%$ = 𝑛 −𝑚.  

 

 

Figure 2. Structure of a progressive type-II censoring scheme 

 

In progressive censoring schemes, the removals 𝑅%, 𝑅), ⋯ , 𝑅- are mostly pre-

determined before the experiment. However, in the reliability problems the amounts of units 

removed from the test may not always be determined exactly and these amounts can be observed 

as random variables. In this study, we consider the failures of the ETE components with 

binomial removals in a k-unit series system. For this purpose, it is assumed that the 𝑅+ quantities 

which are removed randomly from the test follow the binomial distributions with probability 
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𝑝+. That means each component has the same probability of being removed from the test as 𝑝. 

Then, the probability of units removed after the 𝑖th failure time can be obtained as 

𝑃(𝑅+ = 𝑟+) = K
𝑛 −𝑚
𝑟+

L 𝑝+
.#(1 − 𝑝+)/!-!.# 

and 

𝑃(𝑅+ = 𝑟+|𝑅+!% = 𝑟+!%, ⋯ , 𝑅% = 𝑟%) = M
𝑛 −𝑚 − ∑ 𝑟0+!%

0,%

𝑟+
O 𝑝+

.#(1 − 𝑝+)/!-!
∑ .$#!%
$&%  

where  0 ≤ 𝑟+ 	≤ 	𝑛 − 𝑚 − ∑ 𝑟0+!%
0,%  and 𝑖 = 1,2,3,⋯ ,𝑚 − 1.	 With considering                           

𝑅 = 𝑅%, 𝑅), ⋯ , 𝑅- and 𝑟 = 𝑟%, 𝑟), ⋯ , 𝑟- we obtain  

 

𝑃(𝑅 = 𝑟) = 𝑃(𝑅- = 𝑟-|𝑅-!% = 𝑟-!%, ⋯ , 𝑅% = 𝑟%)⋯𝑃(𝑅% = 𝑟%)	

=
(𝑛 − 𝑚)!

∏ *𝑛 −𝑚 − ∑ 𝑟0+!%
0,% .!-!%

+,%
𝑝∑ .#'!%

#&% (1 − 𝑝)(-!%)(/!-)!∑ (-!+).#'!%
#&%  

 

In literature, there are many different studies based on progressive censoring schemes 

with binomial removals. For example, Weibull distributed lifetimes are considered in this plan 

by Tse et al. (2000). Wu and Chang (2002) handled exponential, Yan et al. (2011) generalized 

exponential, Mubarak (2012) Frèchet distributions in the same context.   

In this study, we aimed to obtain the parameter estimations of a 𝑘-unit series system based 

on the ETE components under progressive type-II censoring scheme with binomial removals. 

In this purpose, we obtained the maximum likelihood estimations (MLE) of the shape and scale 

parameters in the Section 2. As an approximate confidence interval, we used bootstrap method 

in Section 3. Finally, the whole theoretical outcomes are illustrated with simulation schemes in 

Section 4. 

  

2. MAXIMUM LIKELIHOOD ESTIMATION 

We suppose that 𝑛 identical 𝑘-unit linked series units are put on life test. Let 𝑥(+) be the 

order-statistics from a progressively Type-II censored sample of size 𝑛 with removals 

𝑅%, 𝑅), ⋯ , 𝑅- being the progressive censoring scheme. Under the assumptions of binomial 

removals with probability 𝑝, the likelihood function of the observed sample can be obtained as  
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𝐿(𝜆, 𝛽) = 𝐿((𝜆, 𝛽)	𝑃(𝑅 = 𝑟)	

= 𝐶%𝐶)8𝑔*𝑥(+); 𝜆, 𝛽.W1 − 𝐺*𝑥(+); 𝜆, 𝛽.X
4#

-

+,%

𝑝∑ .#'!%
#&% (1 − 𝑝)(-!%)(/!-)!∑ (-!+).#'!%

#&%  

where 𝐶% = 𝑛(𝑛 − 1 − 𝑅1)(𝑛 − 1 − 𝑅1 − 𝑅2)⋯ (𝑛 − 𝑚 + 1 − ∑ 𝑅𝑖𝑚−1
𝑖=1 ) and  

𝐶) =	(𝑛 − 𝑚)! 8Y𝑛 −𝑚 −Z𝑟0

+!%

0,%

[ !
-!%

+,%

\  

 

Thus, the likelihood function for the 𝑘-unit linked series ETE data is obtained as  

 

𝐿(𝜆, 𝛽) ∝ 𝑘-𝛽-*1 − 𝑒!".-𝑒!*#$%!&!"'
'
∑ ((#)(%54#)
'
#&% 	

× 𝑝∑ .#'!%
#&% (1 − 𝑝)(-!%)(/!-)!∑ (-!+).#'!%

#&%  

and the log-likelihood function is obtained as  

𝑙(𝜆, 𝛽) ∝ 𝑚*log 𝑘 + log 𝛽 + log*1 − 𝑒!".. − 𝑘𝛽*1 − 𝑒!".Z𝑥(+)(1 + 𝑅+)
-

+,%

 

To obtain the MLEs of the parameters, denoted by  𝜆. and 𝛽. , we should equate the partial 

derivates of 𝑙(𝜆, 𝛽) to zero with respect to 𝜆 and 𝛽 respectively as given in the following 

 

𝜕𝑙
𝜕𝜆

=
𝑚

𝑒𝜆 − 1− 𝑘𝛽𝑒
−𝜆3𝑥(𝑖)(1 + 𝑅𝑖)

𝑚

𝑖=1
= 0 

𝜕𝑙
𝜕𝛽

=
𝑚
𝛽 − 𝑘41 − 𝑒

−𝜆53𝑥(𝑖)(1 + 𝑅𝑖)
𝑚

𝑖=1
= 0 

These non-linear equations cannot be solved analytically and iterative methods such as Newton-

Raphson method are needed. Thus, approximate solutions of the system of these non-linear equations 

be the MLEs of the parameters. 

 

3. APPROXIMATE CONFIDENCE INTERVALS 

In this section, we firstly handled the asymptotic normality property of the maximum 

likelihood estimators to obtain approximate confidence intervals for the parameters. However, 
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by performing the simulations we observed that regularity conditions for the maximum 

likelihood estimators cannot be satisfied in this problem. Particularly, the Fisher information 

matrix cannot be always obtained as a positive definite matrix in a neighborhood of the 

parameter space. Therefore, we considered bootstrap confidence intervals for approximate 

confidence intervals of 𝜆d and 𝛽d . The bootstrap percentile method (boot-p) is used for 

constructing bootstrap confidence intervals (see Efron (1994) for details).   

The following steps can be used to construct a 100(1 − 𝛾)%  parametric percentile 

bootstrap confidence interval for one replicate.  

 

Step 1: Draw a random sample (𝑥%, 𝑥), ⋯ , 𝑥-) from 𝐸𝑇𝐸(𝜆, 𝛽). 
Step 2: Compute the maximum likelihood estimates of all parameters and denote 

them as	𝜆d and 𝛽d .  
 

Step 3: Generate independent bootstrap sample (𝑥%∗, 𝑥)∗, ⋯ , 𝑥-∗ ) from 𝐸𝑇𝐸(𝜆d	, 𝛽d) by 
using the inverse transformation method. 
 

Step 4: Compute the MLEs of all parameters based on the bootstrap sample and 
denote them as 𝜆d∗ and 𝛽d∗. 

Step 5: Repeat step 3 𝐵 times to get other independent bootstrap samples from 
𝐸𝑇𝐸(𝜆d	, 𝛽d) and a set of bootstrap estimates of  𝜆 and 𝛽 and denote as 
h𝜆d+∗, 𝛽d+∗; 𝑖 = 1,2,⋯ , 𝐵i. 
 

Step 6: Compute *𝜆d∗(=/)), 𝜆d∗(%!=/)). and *𝛽d∗(=/)), 𝛽d∗(%!=/)). where 𝜆d∗(=) and 𝛽d∗(=) 
are the 𝛾 −percentile of h𝜆d+∗, 𝛽d+∗; 𝑖 = 1,2,⋯ , 𝐵i	 that is a number such that 
%
?
∑ 𝐼*𝜆d+∗ ≤ 𝜆d∗(=). = 𝛾?
+,%  and %

?
∑ 𝐼*𝛽d+∗ ≤ 𝛽d∗(=). = 𝛾?
+,%  for 0 < 𝛾 < 1. 

 

where 𝐼(∙) denotes the indicator function.  

 

4. SIMULATIONS 

In this section, we present some simulation studies to illustrate the theoretical findings. 

Firstly, the actual parameter values (𝜆, 𝛽) are randomly selected as (0.5, 1.5) and (1, 2). We 

considered sample sizes ana corresponding failure numbers (𝑛,𝑚) as (20,12), (20,16), 

(30,20), (30,25), (50,36) and (50,40). For removal probabilities we considered three values 

of the binomial parameter 𝑝 as 0.3, 0.5 and 0.7, respectively. We handled two different system 

type by taking 𝑘 = 3 and 𝑘 = 6 components.    
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In order to obtain progressive censored samples from ETE distribution, we used the 

algorithm proposed by Balakrishnan and Sandhu (1995) as given in the following  

Step 1: Generate m independent 𝑊%,𝑊), ⋯ ,𝑊-	observations from 𝑈(0,1). 
Step 2: Set 𝑉+ = 𝑊+

%/(%54'54'!%5⋯54'!#*%)  for 𝑖 = 1,2,⋯ ,𝑚  
Step 3: Set 𝑈+ = 1 − 𝑉-𝑉-!%⋯𝑉-!+5% for 𝑖 = 1,2,⋯ ,𝑚 as the required progressive 

Type-II censored sample from the 𝑈(0,1). 
Step 4: Set  𝑋+ = 𝐹!%(𝑈+) for 𝑖 = 1,2,⋯ ,𝑚  where 𝐹!%(𝑈+)  is the inverse cdf of the 

distribution which is given in equation (3) and obtained as 
 

𝐹!%(𝑈+) = −log	(1 − 𝑈+)/W𝑘𝛽*1 − 𝑒!".X. 

Then, 𝑋%, 𝑋), ⋯ , 𝑋- is the required progressive Type-II censored sample from the ETE 

distribution. 

Thus, we run the simulations for 1000 replication, and we used 500 bootstrap sample 

for each replicate. Then, we reported the biases, mean squared errors (MSE) and average 

lengths (AL) of the bootstrap confidence intervals of the MLEs of the parameters. We report 

the results for (𝜆 = 0.5, 𝛽 = 1.5) in the case of 𝑘 = 3 in Table 1 and in Table 2 for 𝑘 = 6. The 

results for (𝜆 = 1, 𝛽 = 2) are given in Tables 3-4 for the cases of 𝑘 = 3 and 𝑘 = 6, respectively.    

 

Table 1. The biases and MSEs of the parameters with the corresponding ALs of their 
bootstrap confidence intervals for 𝜆 = 0.5, 𝛽 = 1.5 and 𝑘 = 3. 

   

   

Bias MSE AL Bias MSE AL 
0.3 20 12 0.06097 0.06940 0.84447 0.06257 0.00563 0.48692 
 20 16 0.04744 0.04856 0.70748 0.05520 0.00472 0.40638 
 30 20 0.02843 0.03077 0.64449 0.05105 0.00454 0.33880 
 30 25 0.01690 0.01964 0.57217 0.04394 0.00459 0.30308 
 50 36 0.00944 0.01385 0.46583 0.04296 0.00423 0.28017 
 50 40 0.00373 0.01082 0.44077 0.04177 0.00454 0.27271 
0.5 20 12 0.05305 0.06887 0.83940 0.05718 0.00549 0.47574 
 20 16 0.04390 0.04423 0.72729 0.05058 0.00434 0.38692 
 30 20 0.02426 0.03107 0.63857 0.04596 0.00454 0.33622 
 30 25 0.01257 0.01866 0.56463 0.04446 0.00476 0.30222 
 50 36 0.00576 0.01221 0.46822 0.04449 0.00471 0.27490 
 50 40 0.00117 0.01126 0.43360 0.04146 0.00446 0.27072 
0.7 20 12 0.05152 0.06754 0.84920 0.06233 0.00761 0.47314 
 20 16 0.02640 0.04042 0.70939 0.05245 0.00477 0.37323 
 30 20 0.02755 0.02744 0.63170 0.04892 0.00509 0.34551 
 30 25 0.02712 0.02271 0.58473 0.04496 0.00491 0.31101 
 50 36 0.00894 0.01339 0.46850 0.04147 0.00476 0.28031 
 50 40 0.00240 0.01060 0.43945 0.03877 0.00454 0.27118 
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We observed that the biases, MSEs and average lengths of the approximate confidence 

intervals decrease in parallel to increasing on sample size. There is not any important difference 

on the estimates depend on the number of components (𝑘). Further, the probability of removals 

does not have a particular effect on estimates. All the results in three cases of probabilities have 

similar simulation performances. Consequently, we obtained consistent results in all cases. 

 

Table 2. The biases and MSEs of the parameters with the corresponding ALs of their 
bootstrap confidence intervals for 𝜆 = 0.5, 𝛽 = 1.5 and 𝑘 = 6. 

   

   

Bias MSE AL Bias MSE AL 
0.3 20 12 0.07030 0.08150 0.83815 0.06354 0.00606 0.50764 
 20 16 0.04234 0.04586 0.72219 0.05469 0.00510 0.39249 
 30 20 0.02869 0.02841 0.64501 0.05062 0.00468 0.34083 
 30 25 0.01300 0.01976 0.56148 0.04337 0.00440 0.30330 
 50 36 0.00516 0.01169 0.46611 0.04578 0.00465 0.27590 
 50 40 0.00474 0.01253 0.43711 0.04182 0.00459 0.27523 
0.5 20 12 0.06024 0.06522 0.85010 0.05954 0.00615 0.48695 
 20 16 0.03810 0.04188 0.71511 0.05260 0.00442 0.39463 
 30 20 0.02754 0.03160 0.63684 0.05198 0.00461 0.34509 
 30 25 0.02109 0.02156 0.58106 0.04435 0.00448 0.30417 
 50 36 0.00014 0.01243 0.46125 0.04449 0.00438 0.27514 
 50 40 0.00746 0.01235 0.44253 0.04119 0.00409 0.27586 
0.7 20 12 0.05720 0.07554 0.84534 0.05960 0.00632 0.47743 
 20 16 0.04914 0.04955 0.72545 0.05357 0.00496 0.39973 
 30 20 0.01967 0.02756 0.63881 0.05139 0.00447 0.33068 
 30 25 0.01625 0.02352 0.56296 0.04805 0.00447 0.31099 
 50 36 0.00385 0.01171 0.46686 0.04487 0.00449 0.27583 
 50 40 0.00869 0.01078 0.44548 0.03858 0.00476 0.27243 
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Table 3. The biases and MSEs of the parameters with the corresponding ALs of their 
bootstrap confidence intervals for 𝜆 = 1, 𝛽 = 2 and 𝑘 = 3. 

   

   

Bias MSE AL Bias MSE AL 
0.3 20 12 0.01727 0.14345 1.00151 0.20391 0.06430 1.55047 
 20 16 0.00760 0.12160 0.90089 0.17249 0.04474 1.26196 
 30 20 0.01283 0.09564 0.83383 0.15410 0.02569 1.12320 
 30 25 0.01331 0.08726 0.77273 0.14315 0.02101 0.95903 
 50 36 0.01619 0.07471 0.70575 0.11857 0.01614 0.78106 
 50 40 0.03218 0.06752 0.68455 0.11654 0.01190 0.73962 
0.5 20 12 0.03521 0.14584 1.00377 0.21151 0.07450 1.59286 
 20 16 0.00185 0.12563 0.89244 0.18014 0.04656 1.25016 
 30 20 0.01092 0.10407 0.81456 0.15482 0.03225 1.12985 
 30 25 0.00382 0.09400 0.75545 0.14648 0.02628 0.98921 
 50 36 0.00479 0.07316 0.68935 0.11427 0.01536 0.82130 
 50 40 0.02208 0.06503 0.68145 0.10944 0.01297 0.75505 
0.7 20 12 0.03761 0.15484 0.98146 0.21400 0.07623 1.62090 
 20 16 0.02614 0.12077 0.89880 0.17864 0.04285 1.29916 
 30 20 0.00227 0.10221 0.81540 0.15043 0.02725 1.12054 
 30 25 0.00164 0.08828 0.76343 0.13621 0.02279 0.98271 
 50 36 0.01549 0.07078 0.69996 0.12125 0.01628 0.79451 
 50 40 0.00308 0.06747 0.67549 0.10821 0.01355 0.78754 

 

Table 4. The biases and MSEs of the parameters with the corresponding ALs of their 
bootstrap confidence intervals for 𝜆 = 1, 𝛽 = 2 and 𝑘 = 6. 

   

   

Bias MSE AL Bias MSE AL 
0.3 20 12 0.04035 0.15425 0.99655 0.21166 0.08066 1.58733 
 20 16 0.02112 0.12347 0.88820 0.17598 0.04283 1.29655 
 30 20 0.01423 0.10455 0.82374 0.15706 0.03097 1.12677 
 30 25 0.00953 0.09017 0.76600 0.13271 0.02073 0.97943 
 50 36 0.00581 0.07264 0.69369 0.11653 0.01341 0.81110 
 50 40 0.01761 0.06868 0.68364 0.11309 0.01386 0.75519 
0.5 20 12 0.01738 0.11963 0.89555 0.17869 0.04469 1.28519 
 20 16 0.00730 0.11728 0.90559 0.17456 0.04480 1.26237 
 30 20 0.00948 0.10377 0.82158 0.15060 0.02636 1.09565 
 30 25 0.00093 0.09112 0.76493 0.14171 0.02346 0.97332 
 50 36 0.00558 0.07241 0.69744 0.11780 0.01462 0.80725 
 50 40 0.01564 0.06758 0.66947 0.11532 0.01337 0.77856 
0.7 20 12 0.02181 0.14438 0.99082 0.20551 0.06194 1.56433 
 20 16 0.00548 0.12176 0.88975 0.17694 0.04447 1.28427 
 30 20 0.01437 0.10081 0.80788 0.15438 0.02974 1.15162 
 30 25 0.00477 0.09139 0.75898 0.13893 0.02136 0.97482 
 50 36 0.02201 0.06699 0.71090 0.11792 0.01401 0.78432 
 50 40 0.00777 0.06801 0.67141 0.11158 0.01406 0.78040 
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5. CONCLUSION 

In this study, a k-unit series system with Erlang-truncated exponential components is 

handled under a progressive censoring scheme. We considered removals in progressive 

censoring under the binomial distribution. It is seen that the maximum likelihood estimations 

and approximate confidence intervals perform well. Further, we considered asymptotic 

confidence intervals for the maximum likelihood estimators but regularity conditions were not 

satisfied always. For this reason, we discarded the asymptotic method and preferred the 

bootstrap method.  As a result, the ETE distribution can be used for such a system under 

different progressive censoring schemes and parameter estimation can be obtained by using 

these theoretical findings.  
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