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1. Introduction

A conventional way to compare two manifolds is by defining smooth maps from one manifold to
another. One such map is submersion, whose rank equals to the dimension of the target manifold.
Riemannian submersion between Riemannian submanifolds were first introduced by O’ Neill and Gray
[1, 2]. Later many authors studied different geometric properties of the Riemannian submersions [3],
semi-slant submersions [4–6], hemi-slant submersions [7–9], semi-invariant submersions [10–12], anti-
invariant submersions [13–15].

On the other hand, Friedmann et al. defined the concept of the semi-symmetric non-metric con-
nection in a differential manifold [16]. Hayden studied metric connection with torsion a Riemannian
manifold [17]. Later, Yano investigated a Riemannian manifold with new connection, which is called a
semi-symmetric metric connection [18]. Afterwards, Agashe et al. studied semi-symmetric non-metric
connection (SSNMC) on a Riemannian manifold [19]. Many author have studied semi-symmetric
connection [20–26].

Let M be differentiable manifold with linear connection ∇. Therefore, for all K,L ∈ Γ(TN), we
get

T (K,L) = ∇KL−∇LK − [K,L],

where T is torsion tensor of ∇. If the torsion tensor T = 0, then the connection ∇ is said to be
symmetric, otherwise it is called non-symmetric. Moreover, for all K,L ∈ Γ(TN), the connection ∇
is said to be semi-symmetric if

T (K,L) = η(L)K − η(K)L

where η is a 1-form on N . However, ∇ is called metric connection if ∇g = 0 with Riemannian metric
g, otherwise it is said to be non-metric.
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In [27], Akyol and Beyendi studied the idea of Riemannian submersion with SSNMC. They inves-
tigated O’Neill’s tensor fields, obtain derivatives of those tensor fields and compare curvatures of the
total manifold, the base manifold and the fibres by computing curvatures.

The main purpose of this paper is to investigate geometry of semi-invariant Riemannian submersion
from a Kaehler manifold with SSNMC to a Riemannian manifold.

2. Preliminaries

Definition 2.1. Let F : (Nn, gN ) → (Bb, gB) be a submersion between two Riemannian manifolds.
Then, F said to be Riemannian submersion if

i. F has maximal rank.

ii. The differential F∗ preserves the lenghts of horizontal vectors.

On the other hand, F−1(k) is an (n − b) dimensional submanifold of N , for each k ∈ N The
submanifolds F−1(k) are called fibers. Moreover, vector fields tangent to fibers are called vertical and
vector fields orthogonal to fibers are horizantal. A vector field X on N is called basic if X is horizontal
and F∗Xq = Xπ∗(q) for all q ∈ N . We determine that V and H define projections kerF∗ and (kerF∗)

⊥,
respectively.

On the other hand, a Riemannian submersion F : N → B determines tensor fields T and A on N
such that,

T (E,F ) = TEF = H∇M

VEVF + V∇M

VEHF, (1)

A(E,F ) = AEF = V∇M

HEHF +H∇M

HEVF (2)

for any E,F ∈ Γ(TM) (see [1]). By virtue of (1) and (2), one can obtain

∇M

V W = TV W + ∇̂V W (3)

∇M

V X = TV X +H(∇M

V X) (4)

∇M

XV = V(∇M

XV ) +AXV (5)

∇M

XY = AXY +H(∇M

XY ) (6)

for all V,W ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥). Further, if X is basic, then

H(∇M

V X) = AXV (7)

On the other hand, let N,B be two Rieamannian manifold and F : N → B is a smooth map.
Therefore, the second fundamental form of F is expressed by

(∇F∗)(K,L) = ∇B

KF∗L− F∗(∇
N

KL) (8)

for K,L ∈ Γ(TN). Moreover, π is said to be a totally geodesic map if (∇F∗)(K,L) = 0 for K,L ∈
Γ(TN) [28].

Now, we recall the definition of Kaehler manifold. Let N be a Hermitian manifold with respect
Hermitian structure (J, g) such that

J2 = −I (9)

and
g(E,F ) = g(JE, JF ) (10)

for all E,F ∈ Γ(TN),where g(JE, F ) = −g(E, JF ).
A Hermitian manifold is called Kaehler manifold if

∇J = 0 (11)
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On the other hand, we define a linear connection ∇̃ on Kaehler manifold N such that

∇̃EF = ∇EF + η(F )E (12)

where E,F ∈ Γ(TN), ∇ is a Levi-Civita connection on N and η is a 1-form with the vector field P on
N by

η(E) = g(E,P )

By virute of (12), we arrive that

T̃ (E,F ) = η(F )E − η(E)F

and
(∇̃Eg)(F,K) = −η(F )g(E,K)− η(K)g(E,F )

where T̃ is torsion tensor of ∇̃. Then, ∇̃ defined a semi-symmetric non metric conection with (12).
Let N be a Kaehler manifold. We using (12), for all K,L ∈ Γ(TN), we get,

(∇KJ)L = ∇KJL− J∇KL

= ∇̃KJL− η(L)K − J∇̃KL+ η(L)JK

Then, using (11) we obtain,
(∇̃KJ)L = η(L)JK − η(L)K (13)

Now, we call O’Neill’s tensor fields for SSNMC [27]. For all K,L ∈ Γ(TN), we have,

T̃KL = TKL+ η(hL)vK

and
ÃKL = AKL+ η(vL)hK

Then, using last two equations, we obtain

∇̃KL = TKL+ v∇̃KL (14)

∇̃KX = TKX + h∇̃KX + η(X)K (15)

∇̃XK = AXK + v∇̃XK + η(K)X (16)

∇̃XY = AXY + h∇̃XY (17)

where for all K,L ∈ Γ(kerF∗), X, Y ∈ Γ((kerF∗)
⊥).

3. Semi-Invariant Riemannian Submersion

Definition 3.1. Let N and B be a Kaehler manifold and Riemannian manifold, respectively. Let
us assume that F : N → B be a Riemannian submersion. Therefore, F is called semi-invariant
Riemannian submersion if there is a distribution D1 ⊆ kerF∗ such that

kerF∗ = D1 ⊕D2

and
JD1 = D1, JD2 ⊆ (kerF∗)

⊥

where D2 is orthogonal complementary to D1 in kerF∗ ( [12]).
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Example 3.2. Let F be a submersion. We denote that

F : R6 −→ R3

(x1, x2, x3, x4, x5, x6) (x1+x2√
2

, x3+x6√
2

, x4+x5√
2

)

Then, it follows that

kerF∗ = span{V1 =
∂

∂x1
− ∂

∂x2
, V2 =

∂

∂x3
− ∂

∂x6
, V3 = − ∂

∂x4
− ∂

∂x5
}

and

(kerF∗)
⊥ = span{H1 =

∂

∂x1
+

∂

∂x2
, H2 =

∂

∂x3
+

∂

∂x6
, H3 =

∂

∂x4
+

∂

∂x5

Hence we have JV1 = −V1, JV2 = H3 and JV3 = −H2. Thus it follows that D1 = span{V1} and
D2 = span{H2, H3}. On the other hand, we arrive that,

gR3(F∗H2, F∗H2) = gR6(H2, H2), gR3(F∗H3, F∗H3) = gR6(H3, H3)

where gR3 and gR6 determine metrics of R3 and R6, respectively. Then, F is semi-invariant Riemannian
submersion.

Let F : (N, J, g) → (B, g) be a semi-invariant Riemannian submerion such that N and B are
Kaehler manifold and Riemannian manifold respectively. For all K ∈ Γ(TN), we write

E = VE +HE

where VE ∈ Γ(kerF∗) and HE ∈ Γ((kerF∗)
⊥). Then, for all K ∈ Γ(kerF∗), we write

JK = ϕK + ωK (18)

where ϕK ∈ Γ(D1) and ωK ∈ Γ(JD2).
Since F is a semi-invariant Riemannian submersion, we can determine

(kerF∗)
⊥ = JD2 ⊕ µ

where JD2 and µ are complementary to each other. Similarly, x ∈ Γ((kerF∗)
⊥), we get

JX = BX + CX (19)

where BX ∈ Γ(D2) and CX ∈ Γ(µ).

4.Geometry of Distributions

We note that, for brevity we use a abbreviation ”F is a semi-invariant Riemannian submersion with
SSNMC” for F : (N, J, g) → (B, g) be a semi-invariant Riemannian submersion from Kaehler manifold
with SSNMC M and Riemannian manifold N .

Theorem 4.1. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D1 is integrable if and only if we have

gB(F∗(TV BZ + h∇̃V CZ), F∗(ωU))− gB(F∗(TUBZ + h∇̃UCZ), F∗(ωV )) = gN (v∇̃UBZ + TUCZ, ϕV )

−gN (v∇̃V BZ + TV CZ, ϕU)

+2gN (ϕU, V )η(Z)

for all U, V ∈ Γ(D1) and Z ∈ Γ(D2).
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Proof. Firstly, we using (10) and (13). For all U, V ∈ Γ(D1) and Z ∈ Γ(D2), we arrive that

gN (∇̃UV,Z) = gN (∇̃UJV, JZ) (20)

By virtue of (13) and (20), we get,

gN ([U, V ], Z) = gN (∇̃UJV, JZ)− gN (∇̃V JU, JZ)

After some calculations, we conclude,

gN ([U, V ], Z) = −gN (JV, ∇̃UJZ) + gN (JU, ∇̃V JZ)

We know that F is a semi-invariant Riemannian submersion, by virtue of (19), (14), (15) and (18),
we conclude that,

gN ([U, V ], Z) = −gN (ϕV, v∇̃UBZ + TUCZ)− gN (wV, TUBZ + h∇̃UCZ)− η(CZ)gN (JV, U)

+gN (ϕU, v∇̃V BZ + TV CZ) + gN (wU, TV BZ + h∇̃V CZ) + η(CZ)gN (JU, V )

which gives proof.

Theorem 4.2. Let F be a semi-invariant Riemannian submersion with SSNMC . Therefore, the
distribution D2 is integrable if and only if we have

gB(F∗(TZϕU + h∇̃ZwU), F∗(JW )) = gB(F∗(TWϕU + h∇̃WwU), F∗(JZ))

for all U ∈ Γ(D1) and Z,W ∈ Γ(D2).

Proof. By virtue of (12), (10) and (13), we get

gN ([Z,W ], U) = gN (∇̃ZJW, JU)− gN (∇̃WJZ, JU)

for all U ∈ Γ(D1) and Z,W ∈ Γ(D2). Therefore, we conclude

gN ([Z,W ], U) = −gN (JW, ∇̃ZJU) + gN (JZ, ∇̃WJU)

Then, using (18), (14) and (15), we arrive,

gN ([Z,W ], U) = −gN (JW, TZϕU + h∇̃ZwU) + gN (JZ, TWϕU + h∇̃WwU)

which proves assertion.

Theorem 4.3. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D1 defines a totally geodesic foliation on N if and only if we have

F∗(∇̃UJV ) ∈ Γ(µ)

and

gB(F∗(TUϕV ), F∗(CX)) + gB(F∗(h∇̃UwV ), F∗(CX)) = gN (v∇̃UϕV + TUwV,BX)

+gN (U,BX)η(wV )

for all U, V ∈ Γ(D1), Z ∈ Γ(D2) and X ∈ Γ(kerF⊥
∗ ).

Proof. We know that, D1 defines a totally geodesic foliation on M if and only if gN (∇̃UV,Z) = 0
and gN (∇̃UV,X) = 0, for all U, V ∈ Γ(D1), Z ∈ Γ(D2) and X ∈ Γ(kerF⊥

∗ ).
Then, using (13) and (10), we get,

gN (∇̃UV,Z) = gN (∇̃UJV, JZ)



Journal of New Theory 35 (2021) 62-71 / Semi-Invariant Riemannian Submersions with ... 67

Since E = VE +HE, for all E ∈ Γ(TM), we have

gN (∇̃UV,Z) = gN (H∇̃UJV, JZ)

Therefore, F is a semi-invariant Riemannian submersion and character of F , we arrive that,

gN (∇̃UV,Z) = gB(F∗(H∇̃UJV ), F∗(JZ))

Moreover, using (13) and (10), we get

gN (∇̃UV,X) = gN (∇̃UJV, JX)

By virtue of (14) and (15), we get

gN (∇̃UV,X) = gN (TUϕV + h∇̃UwV,CX) + gN (v∇̃UϕV,BX) + η(wV )gN (U,BX)

or

gN (∇̃UV,X) = gB(F∗(TUϕV + h∇̃UwV ), F∗(CX)) + gM (v∇̃UϕV,BX) + η(wV )gN (U,BX)

which gives our assertion.

Theorem 4.4. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D2 defines a totally geodesic foliation on N if and only if we have

gB(F∗(TZBX), F∗(CX)) + gB(F∗(h∇̃ZCX), F∗(CX)) = −gN (v∇̃ZBX + TZCX,BX)− η(CX)gN (Z,BX)

and

gB(F∗(TZϕU), F∗(CW )) + gB(F∗(h∇̃ZwU), F∗(CW )) = gN (v∇̃ZϕU + TZwU,BW )

+gN (Z,BW )η(wU)− gN (Z, ϕU)η(wW )

for all Z,W ∈ Γ(D2), U ∈ Γ(D1) and X ∈ Γ(kerF⊥
∗ ).

Proof. For all Z,W ∈ Γ(D2), X ∈ Γ(kerF⊥
∗ ), using (10), and (13), we conclude,

gN (∇̃ZW,X) = gN (∇̃ZJW, JX)

Then, from (19), (14) and (15), we have,

gN (∇̃ZW,X) = gN (TZBX + v∇̃ZBX + TZCX + h∇̃ZCX + η(CX)Z,BX + CX)

We know that F is semi-invariant Riemannian submersion, we conclude,

gN (∇̃ZW,X) = gB(F∗(TZBX+h∇̃ZCX), F∗(CX))+gN (v∇̃ZBX+TZCX,BX)+η(CX)gN (Z,BX)

Moreover, for all Z,W ∈ Γ(D2), U ∈ Γ(D1), using (10), and (13),

gN (∇̃ZW,U) = −gN (JW, ∇̃ZJU)

By virtue of (19), (14) and (15), imply that

gN (∇̃ZW,U) = −gN (BW +CW,TZϕU + v∇̃ZϕU + TZwU + h∇̃ZwU + η(wU)Z)− η(JW )gN (Z, JU)

Since F is semi-invariant Riemannian submersion, we arrive,

gN (∇̃ZW,U) = −gB(F∗(TZϕU + h∇̃ZwU), F∗(CW ))− gN (BW, v∇̃ZϕU + TZwU)

−η(wU)gN (BW,Z)− η(wW )gN (Z, ϕU)

which give proof.
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Corollary 4.5. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the fibers
of F are the locally product Riemannian manifold of leaves of D1 and D2 if and only if

F∗(∇̃UJV ) ∈ Γ(µ),

gB(F∗(TUϕV ), F∗(CX)) + gB(F∗(h∇̃UwV ), F∗(CX)) = gN (v∇̃UϕV + TUwV,BX)

+gN (U,BX)η(wV )

and

gB(F∗(TZBX), F∗(CX))+gB(F∗(h∇̃ZCX), F∗(CX)) = −gN (v∇̃ZBX+TZCX,BX)−η(CX)gN (Z,BX)

gB(F∗(TZϕU), F∗(CW )) + gB(F∗(h∇̃ZwU), F∗(CW )) = gN (v∇̃ZϕU + TZwU,BW )

+gN (Z,BW )η(wU)− gM (Z, ϕU)η(wW )

for all U, V ∈ Γ(D1), Z,W ∈ Γ(D2) and X ∈ Γ(kerF⊥
∗ ).

Theorem 4.6. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution kerF⊥

∗ is integrable if and only if we have

AY CX −AXCY + v∇̃Y BX − v∇̃XBY /∈ Γ(D1)

and

gB(F∗(AY BX), F∗(wZ)) + gB(F∗(h∇̃Y CX,F∗(wZ)) = −gN (v∇̃Y BX +AY CX,ϕZ)

+η(X)gN (Y − wY,wZ)− η(Y )gN (X − wX,wZ)

for all X ∈ Γ(kerF⊥
∗ ), Z ∈ Γ(D2) and U ∈ Γ(D1) .

Proof. We using (12), (10) and (13), for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1), we have

gN ([X,Y ], U) = gN (∇̃XJY, JU)− gN (∇̃Y JX, JU)

Then, using (19), (16) and (17), we arrive,

gN ([X,Y ], U) = −gN (−v∇̃XBY −AXCY + v∇̃Y BX +AY CX,U)

Moreover, for Z ∈ Γ(D2), by (12), (10) and (13), we get

gN ([X,Y ], Z) = gN (∇̃XJY, JZ)− η(Y )gN (X − JX, JZ)

−gN (∇̃Y JX, JZ) + η(X)gN (Y − JY, JZ)

Therefore, by virtue of (18), (15) and (16), we conclude that

gN ([X,Y ], Z) = −gN (AY BX + h∇̃Y CX,wZ)− gN (v∇̃Y BX +AY CX,ϕZ)

−η(Y )gN (X − wX,wZ) + η(X)gN (Y − wY,wZ)

On the other hand, F is semi-invariant Riemannian submersion, therefore we get,

gN ([X,Y ], Z) = −gB(F∗(AY BX + h∇̃Y CX), F∗(wZ))− gN (v∇̃Y BX +AY CX,ϕZ)

−η(Y )gN (X − wX,wZ) + η(X)gN (Y − wY,wZ)

which conclude proof.
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Theorem 4.7. Let F be a semi-invariant Riemannian submersion with SSNMC . Therefore, the
distribution kerF⊥

∗ defines a totally geodesic foliation on N if and only if we have

v∇̃XBY +AXCY ∈ Γ(D2)

and
gB(F∗(h∇̃XCY ), F∗(wZ)) = −gN (AXBY, JZ)

for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. We using (10), (13) and (19), for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1), we have

gN (∇̃XY,U) = gN (∇̃XBY, JU) + gM (∇̃XCY, JU)

Therefore, using (15), (16) and (10), we arrive

gN (∇̃XY, U) = −gN (J(v∇̃XBY +AXCY ), U)

Moreover, for Z ∈ Γ(D2), using (10), (19),(16) and (17), we conclude,

gN (∇̃XY, Z) = gN (AXBY + v∇̃XBY + η(BY )X +AXCY + h∇̃XCY, JZ)

Also, character of F , we obtain

gN (∇̃XY,Z) = gB(F∗(h∇̃XCY ), F∗(wZ)) + gN (AXBY, JZ)

which completes proof.

Theorem 4.8. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution kerF∗ defines a totally geodesic foliation on N if and only if we have

v∇̃KL+ TKwL+ η(wL)E ∈ Γ(D1)

and

gB(F∗(TKϕL), F∗(CX)) + gB(F∗(h∇̃KwL), F∗(CX)) = −gN (v∇̃KϕL,BX)− gN (TKwL,BX)

−η(ϕL)gN (K,BX)

for all K,L ∈ Γ(kerF∗) and X ∈ Γ(µ).

Proof. We know that kerF∗ denote a totally geodesic foliation on N if and only if gN (∇̃KL,X) = 0
and gN (∇̃KL, JZ) = 0 for all Z ∈ Γ(D2), K, L ∈ Γ(kerF∗) and X ∈ Γ(µ).

Then, by (10), (13) and (18), we get

gN (∇̃KL,X) = gN (∇̃KϕL, JX) + gN (∇̃KwL, JX)

Therefore, using (14), (15) and (19), we have

gN (∇̃KL,X) = gN (v∇̃KϕL+ TKwL+ η(ϕL)K,BX) + gN (TKϕL+ h∇̃KwL,CX)

We know that F is semi-invariant Riemannian submersion, we arrive

gN (∇̃KL,X) = gN (v∇̃KϕL+ TKwL+ η(ϕL)K,BX) + gB(F∗(TKϕL+ h∇̃KwL), F∗(CX))

Moreover, from (10), (13) ,(18), (14) and (15), we obtain,

gN (∇̃KL, JZ) = gN (v∇̃KL+ TKwL+ η(wL)E,Z)

which give proof.
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Corollary 4.9. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the total
space M is a locally product manifold of the leaves of kerF⊥

∗ and kerF∗ if and only if

v∇̃XBY +AXCY ∈ Γ(D2),

gB(F∗(h∇̃XCY ), F∗(wZ)) = −gN (AXBY, JZ)

and
v∇̃KL+ TKwL+ η(wL)E ∈ Γ(D1),

gB(F∗(TKϕL), F∗(CX)) + gB(F∗(h∇̃KwL), F∗(CX)) = −gN (v∇̃KϕL,BX)− gN (TKwL,BX)

−η(ϕL)gN (K,BX)

for all X,Y ∈ Γ(kerF⊥
∗ ),K, L ∈ Γ(kerF∗) and Z ∈ Γ(D2).

5. Conclusion

Riemannian submersions and SSNMC have an important application for many sciences such as physics
and mathematical physics. Researchers have increased studies on this field from different areas in
recent years. In this paper, the idea of examining Riemann submersion with different connections is
emphasized. We defined and studied Riemannian submersions with SSNMC for the first time. We
investigated geometry of foliatons with SSNMC. The works on this subject will be useful tools for the
applications of Riemannian submersion with different connections.
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