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Abstract. In this paper, sufficient conditions are obtained for nonoscilla-

tion/oscillation of all solutions of a class of higher-order difference equations
involving the generalized difference operator of the form

∆k
a(pn∆

2
ayn) = f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn),

where ∆a is generalized difference operator which is defined as ∆ayn = yn+1−
ayn , a ̸= 0.

1. Introduction

In this paper, we study nonoscillation and oscillation of solutions of a class of
higher-order difference equations of the form

∆k
a(pn∆

2
ayn) = f(n, yn,∆ayn, ...,∆

k+1
a yn), n ∈ N, (1)

where N is the set of natural numbers, a ∈ R\{0}, R is the set of real numbers,
{pn} is a real sequence with pn ̸= 0 for n ∈ N and f : N × Rk+2 −→ R. The
generalized difference operator ∆a is defined as ∆ayn = yn+1 − ayn. For a = 1, we
write ∆1 = ∆ where ∆ is known forward difference operator. We define inductively
∆k

ayn = ∆a(∆
k−1
a yn) for k ≥ 2. By a solution of Eq. (1) we mean a sequence {yn}

of real numbers which satisfies Eq. (1) identically. We consider only nontrivial
solutions, i.e., such for which sup{|yn| : n ≥ i} > 0 for every i ∈ N. A solution
of Eq. (1) is called non-oscillatory if it is eventually of constant sign (positive
or negative) otherwise it is called oscillatory. For a ∈ R\{0}, Eq. (1) always
admits a solution on N. The oscillation and nonoscillation of solutions of difference
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equations are very popular for researchers in the last two decades. For this we refer
the monograps [1,2,3]. The oscillation and nonoscillation of solutions of higher
order difference equations has been studied by many authors. For example in
[9], oscillation criteria are obtained for higher-order neutral-type nonlinear delay
difference equations of the form

∆
(
rn
(
∆k−1 (yn + pnyτn

)
))

+ qnf (yσn
) = 0, n ≥ n0,

where rn, pn, qn ∈ [n0,∞) , rn > 0, qn > 0; 0 ≤ pn ≤ p0 < ∞, lim
n→∞

τn = ∞,

lim
n→∞

σn = ∞, σn ≤ n, σn is nondecreasing, ∆τn ≥ τ0 > 0, τσ = στ ;
f(u)
u ≥ m > 0

for u ̸= 0. In [5], Agarval et al. established some new criteria for the oscillation of
higher order difference equations of the form

∆
(
∆m−1 (xn)

)α
+ qnx

α[n− τ ] = 0,

where m ≥ 2, τ ≥ 1 and α is the ratio of positive odd integers. In [4], Agarval et
al. established sufficient conditions for the oscillation of all solutions of the even
order difference equations of the form

∆mxn + pn∆
m−1xn + F (xn−g,∆xn−h) = 0, m is even,

by comparing it with certain difference equations of lower order whose oscillatory
character is known. In [6], some oscillation criteria for solutions of nonlinear higher-
order forced difference equations are established. The investigations are carried out
without assuming that the coefficients of the equations are of a definite sign and
by showing that the forcing term needs not be the mth difference of an oscilla-
tory function. In [13], Saker et al. established some new oscillation criteria for a
certain class of third order nonlinear delay difference equations by employing the
generalized Riccati transformation technique. In [7], sufficient conditions are estab-
lished for the oscillatory and asymptotic behavior of higher–order half–linear delay
difference equation of the form

∆
(
pn
(
∆m−1 (xn + qnxτn)

)α)
+ rnx

β
σn

= 0, n ≥ n0,

where it is assumed that
∞∑

s=n0

1
ps

1
α

< ∞. In [8] Bolat et al. investigated the oscilla-

tory behavior of solutions of the th order half-linear functional difference equations
with damping term of the form

∆
(
pnQ

(
∆m−1yn

))
+ qnQ

(
∆m−1yn

)
+ rnQ (yτn

) = 0, n ≥ n0,

where m is even and Q(s) = |s|α−2
s, α > 1 is a fixed real number.

The generalized difference operator ∆a is a generalization of the difference op-
erator ∆. Due to the relation between the ordinary difference operator ∆ and gen-
eralized difference operator ∆a, most difference equation can be considered more
effectively by using generalized difference operator ∆a. In the literature there are
number of papers on the behavior of the difference equations involving operator



190 A. NAR, Y. BOLAT, S. U. DEĞER, M. GEVGEŞOĞLU

∆a. In [12], Popenda obtained sufficient conditions for nonoscillation/oscillation of
solutions of a class of nonlinear nonhomogeneous second order difference equations
involving generalized difference of the form

∆2
axn = F (n, xn,∆bxn). (2)

For some results of this type we refer the reader to the recent papers [11,14,15]. In
[16], Tan and Yang generalized and improved the result of Popenda by considering
the equation

∆a(pn∆axn) + qn∆axn = F (n, xn,∆bxn). (3)

In [10], Parhi and Panda obtained sufficient conditions for nonoscillation /oscillation
of all solutions of a class of nonlinear third order difference equations of the form

∆a(pn∆
2
ayn) + qn∆

2
ayn = f(n, yn,∆ayn,∆

2
ayn). (4)

Our purpose is to establish oscillation and nonoscillation criteria for a class of
higher-order difference equations involving generalized difference operator of the
form Eq. (1).

2. Auxiliary Lemmas

Lemma 1. [10] Let {yn}be a real sequence. If {∆byn}, b > 0, is eventually of one
sign, then {yn} is non-oscillatory.

Lemma 2. [10] For b > 0, a real sequence {yn} is oscillatory if and only if {∆l
byn}

is oscillatory for all integers l ≥ 0, where ∆0
byn ≡ yn

Lemma 3. For n ∈ Z, ∆ayn+1 = ∆2
ayn + a∆ayn.

Proof. By the definition of generalized difference operator, we write ∆ayn = yn+1−
ayn. Thus, If we apply the generalized difference to the both sides of this equality,
we obtain that ∆2

ayn = ∆ayn+1 − a∆ayn. □

Lemma 4. [10] Let b < 0 and k ∈ N. Then ∆k
byl = bl+k∆k(yl

bl
), l ∈ N, for any

sequence {yn} of real numbers.

Lemma 5. For m ≥ 1, ∆m
a (pn∆

2
ayn) =

m∑
i=0

(−1)i
(
m
i

)
aipn+m−i∆

2
ayn+m−i.

Proof. One can easily show it using the definition of the generalized difference
operator. □

Lemma 6. For k ≥ 1, ∆ayl =
k∑

i=0

ai
(
k
i

)
∆k+1−i

a yl−k.

Proof. From Lemma 3, we can write ∆ayl−1 = ∆2
ayl−2+a∆ayl−2. If we apply the

generalized difference operator to the both sides of this equality, we obtain ∆2
ayl−1 =

∆3
ayl−2 + a∆2

ayl−2. Also from Lemma 3, we can write ∆ayl = ∆2
ayl−1 + a∆ayl−1.

Then we have
∆ayl = ∆3

ayl−2 + 2a∆2
ayl−2 + a2∆ayl−2.
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Thus we obtain

∆ayl−1 = ∆3
ayl−3 + 2a∆2

ayl−3 + a2∆ayl−3.

Similarly, by applying the generalized difference operator to the both sides of last
equality , we obtain that

∆2
ayl−1 = ∆4

ayl−3 + 2a∆3
ayl−3 + a2∆2

ayl−3.

By writing ∆ayl−1 and ∆2
ayl−1 in the last equation, we obtain

∆ayl = ∆4
ayl−3 + 3a∆3

ayl−3 + 3a2∆2
ayl−3 + a3∆ayl−3,

and so on , we reach

∆ayl =

k∑
i=0

ai
(
k

i

)
∆k+1−i

a yl−k.

□

Lemma 7. ∆2
ayn+k−1 =

∑k−1
i=0

(
k−1
i

)
ai∆k+1−i

a yn, for k ≥ 1, n ∈ N.

Proof. By the Lemma 3, we have

∆2
ayn+1 = ∆3

ayn + a∆2
ayn. (5)

From (5) we can write

∆2
ayn+2 = ∆3

ayn+1 + a∆2
ayn+1. (6)

Applying generalized difference operator to the Equation (5), we obtain ∆3
ayn+1 =

∆4
ayn + a∆3

ayn. Hence from (5) and (6) we have

∆2
ayn+2 = ∆4

ayn + 2a∆3
ayn + a2∆2

ayn.

Similarly, we obtain

∆2
ayn+3 = ∆5

ayn + 3a∆4
ayn + 3a2∆3

ayn + a3∆2
ayn

and so on we reach

∆2
ayn+k−1 =

k−1∑
i=0

(
k − 1

i

)
ai∆k+1−i

a yn, for k ≥ 1, n ∈ N. (7)

From (7) we can write

∆2
ayn =

k−1∑
j=0

(
k − 1

j

)
aj∆k+1−j

a yn−k+1, for k ≥ 1, n ∈ N. (8)

The proof is completed. □
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3. Nonoscillation of Solutions

In this section non-oscillatory behaviour of solutions of Eq. (1) is studied.

Theorem 1. Let a > 0. Assume that

k∑
i=0

ai
(
k
i

)
∆k+1−i

a yn

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≥ 0, (9)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Assume that {yn} is a possible oscillatory solution of Eq. (1). Hence, for
every s ∈ N, there exists l > s such that yl ≥ 0 and yl+1 < 0 or yl > 0 and yl+1 ≤ 0.
Therefore, ∆ayl = yl+1 − ayl < 0. By the Lemma 5 and Lemma 7, for n ≥ l, Eq.
(1) can be written as

∆ayn+1 = a∆ayn +
1

pn

[
f(n− k, yn−k, ...,∆

k+1
a yn−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m

)
∆k+2−m

a yn−k

 . (10)

Multiplying (10) by ∆ayl and considering (9) we have

∆ayl∆ayl+1 = a(∆ayl)
2 +

∆ayl
pl

[
f(l − k, yl−k, ...,∆

k+1
a yl−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m

)
∆k+2−m

a yl−k

 > 0

Hence ∆ayl+1 < 0, since ∆ayl =
k∑

i=0

ai
(
k
i

)
∆k+1−i

a yl−k < 0. Putting n = l + 1 in

(10) and proceeding as above, we obtain ∆ayl+1∆ayl+2 > 0. Hence ∆ayl+2 < 0 .
Generally, we see that ∆ayl+t < 0 for t ∈ N. That is, ∆ayl+t is eventually of one
sign. From Lemma 1 it follows that {yn} is eventually non-oscillatory. This is a
contradiction to our assumption. Thus the theorem is proved.

□

Theorem 2. Let a > 0. Assume that

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)
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+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≤ 0, (11)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Let {yn} be a solution of Eq. (1). We claim that it is non-oscillatory. If
not, then {yn} is oscillatory. Hence, for every s ∈ N, there exists l > s such that
yl ≥ 0 and yl+1 < 0 or yl > 0 and yl+1 ≤ 0. Therefore, ∆ayl = yl+1 − ayl < 0. For
n ≥ l, we can write Eq. (1) as in (10). Considering (10) and ∆ayl < 0, we have

∆ayl+1 = a∆ayl +
1

pl

[
f(l − k, yl−k, ...,∆

k+1
a yl−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m

)
∆k+2−m

a yl−k


< 0.

Putting n = l+ 1 in (10) and by (11) we obtain ∆ayl+2 < 0. By similar processes,
we reach that ∆ayl+s < 0 for s ∈ N. Hence {yn} is eventually non-oscillatory by
Lemma 1. This contradiction completes the proof. □

Theorem 3. Let a > 0. Assume that

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

≥ 0,

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.

Proof. Assume that {yn} is an oscillatory solution of Eq. (1). So we choose n > n0,
where n0 ∈ N, such that yn ≤ 0 and yn+1 > 0 or yn < 0 and yn+1 ≥ 0. Thus
∆ayn = yn+1 − ayn > 0. The rest of proof can be made. □

Theorem 4. Let a > 0. Assume that
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) = 0, if ∆2

ayn = 0

∑k−1
j=0 (

k−1
j )aj∆k+1−j

a yn

pn+k

[
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) +

∑k
j=1

(
k
j

)
aj

×
(∑j

m=1

(
j
m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

]
> 0, if ∆2

ayn ̸= 0

(12)

is satisfied. Then all solutions of Eq. (1) are non-oscillatory.
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Proof. Let X is the set of all solutions y = {yn} of Eq. (1). Assume that X1 =
{y ∈ X : ∆2

ayn = 0 for some n ∈ N} and X2 = X −X1. Suppose that y = {yn} is
a solution of Eq. (1). If y ∈ X1, then there exists t ∈ N such that ∆2

ayt = 0. From
the first part of assumption (12) it follows that f(t, yt,∆ayt,∆

2
ayt, ...,∆

k+1
a yt) = 0.

Thus from Eq. (1) we obtain

∆k
a(pt∆

2
ayt) = 0.

Hence, by from Lemma 5, we have

k∑
i=0

(−1)i
(
k

i

)
aipt+k−i∆

2
ayt+k−i = 0.

In here we know that pt+k∆
2
ayt+k =

(
k
1

)
apt+k−1∆

2
ayt+k−1−

(
k
2

)
a2pt+k−2∆

2
ayt+k−2+

...− (−1)kakpt∆
2
ayt. If ∆

2
ayt = 0, ∆ayt+1 = a∆ayt. Thus, If we apply the general-

ized difference operator to both sides of the last equality, we obtain that ∆2
ayt+1 =

a∆2
ayt. Since ∆2

ayt = 0, ∆2
ayt+1 = 0. Since ∆2

ayt+1 = 0, ∆ayt+2 = a∆ayt+1.
Likewise if we apply the generalized difference operator to both sides of the last
equality , we obtain that ∆2

ayt+2 = a∆2
ayt+1. Since ∆2

ayt+1 = 0, ∆2
ayt+2 = 0. Con-

tinuing the progress in the same way yields pt+k∆
2
ayt+k = 0, that is, ∆2

ayt+k = 0.
Writing t + k instead of n in Eq. (1) and using the first part of (15), we ob-

tain ∆k
a(pt+k∆

2
ayt+k) = 0, that is,

∑k
i=0(−1)i

(
k
i

)
aipt+2k−i∆

2
ayt+2k−i = 0. If

∆2
ayt+k = 0, ∆ayt+k+1 = a∆ayt+k. If we apply the generalized difference oper-

ator to both sides of the last equality, we obtain that ∆2
ayt+k+1 = a∆2

ayt+k. Thus
∆2

ayt+k+1 = 0 . Continuing the progress in the same way for the first part of
(12) yields ∆2

ayt+s = 0 for s ∈ N. We may observe that ∆2
ayt+1 = 0 implies

∆ayt+2 = a∆ayt+1 and ∆2
ayt+2 = 0 implies ∆ayt+3 = a∆ayt+2 = a2∆ayt+1. In

general case, we obtain

∆ayt+l = al−1∆ayt+1, l ∈ N. (13)

If ∆ayt+1 = 0, then ∆ayt+l = 0 for l ∈ N. Hence

yt+l+1 = ayt+l, l ∈ N. (14)

Since the solution {yn} of Eq. (1) is nontrivial, we can find n0 ∈ N, n0 ≥ t + 1,
such that yn0 ̸= 0. Putting l = n0 − t, n0 − t + 1, ... in (13) we get yn0+1 = ayn0 ,
yn0+2 = ayn0+1 = a2yn0 , etc. In general, yn0+s = asyn0 , s ∈ N. Hence {yn} is
eventually of one sign, that is, {yn} is non-oscillatory. From (13) it follows that
since ∆ayt+1 > 0 or < 0, ∆ayt+l > 0 or < 0 for l ∈ N. Hence {∆ayn} is eventually
of one sign. Thus {yn} is eventually of one sign by Lemma 1. Consequently, {yn}
is non-oscillatory.

Now let y ∈ X2. Then ∆2
ayn ̸= 0 for all n ∈ N. Eq. (1) can be written in the

form

∆2
ayn+k =

1

pn+k

[
f(n, yn, ...,∆

k+1
a yn)
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+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 . (15)

Putting n = l− k+1 in (15) for a fixed l and multiplying (15 ) by ∆2
ayl, we obtain

∆2
ayl∆

2
ayl+1 =

∆2
ayl

pl+1

[
f(l − k + 1, yl−k+1, ...,∆

k+1
a yl−k+1)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pl−m+1

)
∆k+2−m

a yl−k+1


> 0

by the second part of the assumption (12). Since ∆2
ayl ̸= 0 , ∆2

ayl > 0 or < 0, also
∆2

ayl+1 > 0 or < 0. Putting n = l − k + 2 in (15) and considering the second part
of (12), we have ∆2

ayl+2∆
2
ayl+1 > 0. Therefore since ∆2

ayl > 0 or < 0, ∆2
ayl+2 > 0

or < 0. The repeated considering of the second part of (12), we yield ∆2
ayl+k > 0

or < 0 for k ∈ N. Hence from (8) we have ∆2
ayl =

∑k−1
j=0

(
k−1
j

)
aj∆k+1−j

a yl−k+1 > 0

or < 0.Thus {∆2
ayn} is non-oscillatory. From Lemma 2 it follows that {yn} is

non-oscillatory. Thus the theorem is proved. □

4. Oscillation of Solutions

In this section, we study oscillatory behavior of all solutions of Eq. (1).

Theorem 5. Let a < 0. Assume that∑k
i=0 a

i
(
k
i

)
∆k+1−i

a yn

pn+k

[
f(n, yn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 ≤ 0, (16)

is satisfied. Then all solutions of Eq. (1) are oscillatory.

Proof. Let {yn} be a solution of Eq. (1). If ∆ayn = 0, then yn+1 = ayn . Hence
{yn} is oscillatory because of a < 0. Suppose that ∆ayn ̸= 0. If we write Eq. (1)

as in (10) and multiply both of this equality ∆ayn =
∑k

i=0 a
i
(
k
i

)
∆k+1−i

a yn−k for
∆ayn ̸= 0, we have

∆ayn∆ayn+1 = a(∆ayn)
2 +

∆ayn
pn

[
f(n− k, yn−k, ...,∆

k+1
a yn−k)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m

)
∆k+2−m

a yn−k


< 0.
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Hence (16) holds. By the Lemma 4 we have an+1∆
(
yn

an

)
an+2∆

( yn+1

an+1

)
< 0, that

is, a2n+3∆
(
yn

an

)
∆
( yn+1

an+1

)
< 0. Since a < 0, then

∆
(yn
an

)
∆
(yn+1

an+1

)
> 0, n ∈ N. (17)

If ∆
(
yn

an

)
> 0, then ∆

( yn+1

an+1

)
> 0. As (17) holds for every n ∈ N, then ∆

( yn+1

an+1

)
> 0

implies that ∆
( yn+2

an+2

)
> 0 and so on. Hence {∆

(
yn

an

)
} is eventually of one sign.

Consequently, { yn

an } is eventually of one sign by Lemma 1 for b = 1. This implies

that {yn} is oscillatory because a < 0. Similarly, if ∆
(
yn

an

)
< 0, then {yn} is

oscillatory. Thus the theorem is proved. □

Remark 1. If

1

pn+k

[
f(n, yn,∆ayn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 = 0, (18)

then all solutions of Eq. (1) are oscillatory. Indeed, if {yn} is a non-oscillatory
solution of Eq. (1), then there exists ko ∈ N such that yn > 0 or < 0 for n ≥ k0.
Eq. (1) can be written in the form

∆2
ayn+k =

1

pn+k

[
f(n, yn, ...,∆

k+1
a yn)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

 .

Then considering (18), we have ∆2
ayn+k = 0, n ∈ N. Then for k ≥ 1, ∆2

ayn+1 = 0
implies that ∆ayn+2 = a∆ayn+1. Similarly, ∆2

ayn+2 = 0 implies that ∆ayn+3 =
a∆ayn+2 = a2∆ayn+1 . In general case, ∆2

ayn+k = 0 implies that ∆ayn+k+1 =
ak∆ayn+1, k ∈ N. In particular, ∆ayk0+k+1 = ak∆ayk0+1 for n ≥ k0. Let yn > 0
for n ≥ k0. We consider three possibilities for ∆ayk0+1, viz., ∆ayk0+1 = 0 , > 0 and
< 0 and obtain a contradiction in each case. If ∆ayk0+1 = 0, then ∆ayk0+k+1 = 0,
that is, yk0+k+2 = ayk0+k+1 < 0 for k ∈ N, a contradiction to the fact that yn > 0
for n ≥ k0. Let ∆ayk0+1 > 0. Then ∆ayk0+2k+2 = a2k+1∆ayk0+1 < 0 implies that
yk0+2k+3 = ayk0+2k+2 < 0, a contradiction. If ∆ayk0+1 < 0, then ∆ayk0+2k+1 =
a2k ∆ayk0+1 < 0 implies that yk0+2k+2 < ayk0+2k+1 < 0, a contradiction. Thus
yn > 0 for n ≥ k0 is not possible. Let yn < 0 for n ≥ k0. Proceeding as above
we arrive at a contradiction in each of the three cases, viz., ∆ayk0+1 = 0, > 0 and
< 0. Hence yn < 0 for n ≥ k0 is not possible. Thus {yn} is oscillatory.
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Theorem 6. Let a < 0. Assume that
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) = 0, if ∆2

ayn = 0

∑k−1
j=0 (

k−1
j )aj∆k+1−j

a yn

pn+k

[
f(n, yn,∆ayn,∆

2
ayn, ...,∆

k+1
a yn) +

∑k
j=1

(
k
j

)
aj

×
(∑j

m=1

(
j
m

)
(−1)m+1pn+k−m

)
∆k+2−m

a yn

]
< 0, if ∆2

ayn ̸= 0

(19)

is satisfied. Then all solutions of Eq. (1) are oscillatory.

Proof. Let X be the set of all solutions y = {yn} of Eq. (1). Assume that X1 =
{y ∈ X : ∆2

ayn = 0 for some n ∈ N} and X2 = X − X1. Suppose that y = {yn}
be a non-oscillatory solution of Eq. (1). Hence {yn} is eventually of one sign. If
y ∈ X1, then there exists t ∈ N such that ∆2

ayt = 0. Thus from Eq. (1) and (19) it

follows that ∆k
a(pt∆

2
ayt) = 0, that is,

∑k
i=0(−1)i

(
k
i

)
aipt+k−i∆

2
ayt+k−i = 0. Then

pt+k∆
2
ayt+k =

(
k

1

)
apt+k−1∆

2
ayt+k−1−

(
k

2

)
a2pt+k−2∆

2
ayt+k−2+...−(−1)kakpt∆

2
ayt.

If ∆2
ayt = 0, then ∆ayt+1 = a∆ayt. If we apply the generalized difference operator

to both sides of the last equality, we obtain that ∆2
ayt+1 = a∆2

ayt. Since ∆2
ayt = 0,

∆2
ayt+1 = 0. Since ∆2

ayt+1 = 0, ∆ayt+2 = a∆ayt+1. Likewise , if we apply
the generalized difference operator to both sides of the last equality, we obtain
that ∆2

ayt+2 = a∆2
ayt+1. Since ∆2

ayt+1 = 0, ∆2
ayt+2 = 0. By recurrence of the

processes ,we obtain that pt+k∆
2
ayt+k = 0, that is, ∆2

ayt+k = 0. If ∆2
ayt+1 = 0,

for k ≥ 1, ∆ayt+2 = a∆ayt+1. Since ∆2
ayt+2 = 0, ∆ayt+3 = a∆ayt+2 = a2∆ayt+1

and so on. Generally, we have ∆ayt+k = ak−1∆ayt+1. We can choose k0 ∈ N
such that yk > 0 or < 0 for k ≥ k0. Let yk > 0 for k ≥ k0. If ∆ayt+1 = 0,
then ∆ayt+k0

= 0 and hence yt+k0+1 = ayt+k0
< 0, a contradiction. If ∆ayt+1 >

0, then ∆ayt+2k0 = a2k0−1∆ayt+1 < 0 and hence yt+2k0+1 = ayt+2k0 < 0, a
contradiction. If ∆ayt+1 < 0, then ∆ayt+2k0+1 = a2k0∆ayt+1 < 0 implies that
yt+2k0+2 = ayt+2k0+1 < 0, a contradiction. Similar contradiction is obtained if
yk < 0 for k ≥ k0. Thus y /∈ X1. Now let y ∈ X2. Hence ∆2

ayn ̸= 0 for all n ∈ N.
Writing Eq. (1) as we obtain

∆2
ayn∆

2
ayn+1 =

∆2
ayn

pn+1

[
f(n− k + 1, yn−k+1,∆ayn−k+1, ...,∆

k+1
a yn−k+1)

+

k∑
j=1

(
k

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn−m+1

)
∆k+2−m

a yn−k+1


< 0,

by the second of (19). In here ∆2
ayn =

∑k−1
j=0

(
k−1
j

)
aj∆k+1−j

a yn−k+1. Applying

Lemma 4 we get a2n+5∆2
(
yn

an

)
∆2
( yn+1

an+1

)
< 0. Hence ∆2

(
yn

an

)
∆2
( yn+1

an+1

)
> 0,

n ∈ N, since a < 0. If ∆2
(
yn

an

)
> 0, then ∆2

( yn+1

an+1

)
> 0. This in turn implies
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that ∆2
( yn+2

an+2

)
> 0 and so on. If ∆2

(
yn

an

)
< 0, then ∆2

( yn+1

an+1

)
< 0 which in turn

implies that ∆2
( yn+2

an+2

)
< 0 and so on. Therefore {∆2

(
yn

an

)
} is of one sign. By

Lemma 1, {∆
(
yn

an

)
} is eventually of one sign and hence { yn

an } is eventually of one
sign . Consequently {yn} is oscillatory. This contradicts our assumption y = {yn}
be a non-oscillatory solution of Eq. (1) . Thus y /∈ X2. Consequently, all solutions
of Eq. (1) are oscillatory and this completes the proof of the theorem. □

5. Examples

Example 1. Consider

4∆4
ayn = (1− 8a)∆3

ayn + 2a(1− 2a)∆2
ayn + a2∆ayn, (20)

where a > 0, pn = 4, k = 2 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn) = (1 − 8a)∆3

ayn +
2a(1− 2a)∆2

ayn + a2∆ayn. Since

2∑
i=0

ai
(
2
i

)
∆2+1−i

a yn

pn+2

[
f(n, yn,∆ayn, ...,∆

2+1
a yn)

+

2∑
j=1

(
2

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+2−m

)
∆2+2−m

a yn


=

∆3
ayn + 2a∆2

ayn + a2∆ayn
pn+2

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn)

+2apn+1∆
3
ayn + a2(2pn+1 − pn)∆

2
ayn
]

=
∆3

ayn + 2a∆2
ayn + a2∆ayn
4

[
(1− 8a)∆3

ayn + 2a(1− 2a)∆2
ayn + a2∆ayn

+4a∆3
ayn + 2a2∆2

ayn
]

=
(∆3

ayn + 2a∆2
ayn + a2∆ayn)

2

4
≥ 0,

all solutions of (20) are non-oscillatory by Theorem 1. In other way, Equation (20)
can be written as

4yn+4 + (−1− 8a)yn+3 + (4a2 + a)yn+2 = 0.

The characteristic equation concerning with this equation is given by

4λ4 + (−1− 8a)λ3 + (4a2 + a)λ2 = 0,

that is,
(λ− a)(4λ3 + (−1− 4a)λ2) = 0.

A fundamental set of all solutions of (20) equation is
{
{an}, {( 1+4a

4 )n}
}
. Thus we

again see that all solutions of (20) are non-oscillatory.
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Example 2. Consider the equation

− 2∆5yn = 6∆4yn + 6∆3yn + 2∆2yn + (∆yn)
2, (21)

where a = 1, pn = −2, k = 3 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn,∆

4
ayn) = 6∆4yn +

6∆3yn + 2∆2yn + (∆yn)
2. Thus

1

pn+3

[
f(n, yn,∆ayn, ...,∆

3+1
a yn)

+

3∑
j=1

(
3

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+3−m

)
∆3+2−m

a yn


=

1

pn+3

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn,∆

4
ayn)

+3apn+2∆
4
ayn + 3a2(2pn+2 − pn+1)∆

3
ayn + a3(3pn+2 − 3pn+1 + pn)∆

2
ayn
]

=
1

−2

[
6∆4yn + 6∆3yn + 2∆2yn + (∆yn)

2

−6∆4yn − 6∆3yn − 2∆2yn
]

= − (∆yn)
2

2
≤ 0

and the condition of Theorem 2 is satisfied. Hence it follows that all solutions of
(21) are non-oscillatory. In particular, yn ≡ c, where c ̸= 0 is a constant, is a
non-oscillatory solution of the equation.

Example 3. Consider

− 2∆5yn = 6∆4yn + 6∆3yn + 2∆2yn − (∆yn)
2, (22)

where a = 1, pn = −2, k = 3 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn,∆

4
ayn) = 6∆4yn +

6∆3yn + 2∆2yn − (∆yn)
2. Thus

1

pn+3

[
f(n, yn,∆ayn, ...,∆

3+1
a yn)

+

3∑
j=1

(
3

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+3−m

)
∆3+2−m

a yn


=

1

pn+3

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn,∆

4
ayn)

+3apn+2∆
4
ayn + 3a2(2pn+2 − pn+1)∆

3
ayn + a3(3pn+2 − 3pn+1 + pn)∆

2
ayn
]

=
1

−2

[
6∆4yn + 6∆3yn + 2∆2yn − (∆yn)

2

−6∆4yn +−6∆3yn +−2∆2yn
]

=
(∆yn)

2

2
≥ 0.
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Then all solutions of the equation (22) are non-oscillatory due to Theorem 3.

Example 4. Consider
3∆3

ayn = 2∆2
ayn, (23)

where a > 0, pn = 3, k = 1 and f(n, yn,∆ayn,∆
2
ayn) = 2∆2

ayn. f(n, yn,∆ayn,∆
2
ayn) =

0 if ∆2
ayn = 0, and if ∆2

ayn ̸= 0,∑1−1
j=0

(
1−1
j

)
aj∆1+1−j

a yn

pn+1

f(n, yn,∆ayn,∆
2
ayn, ...,∆

1+1
a yn) +

1∑
j=1

(
1

j

)
aj

×

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn

]

=
∆2

ayn
pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]

=
∆2

ayn
3

[
2∆2

ayn + 3a∆2
ayn
]

=
(∆2

ayn)
2(2 + 3a)

3
> 0,

Therefore all solution of (23) are non-oscillatory by Theorem 4. We can make the
proof by the another way. For this, we can write the Eq. (23) as in the form

3yn+3 − (9a+ 2)yn+2 + (9a2 + 4a)yn+1 − (2a2 + 3a3)yn = 0.

The characteristic equation concerning with this equation is

3λ3 − (9a+ 2)λ2 + (9a2 + 4a)λ− (2a2 + 3a3) = 0,

that is,
(λ− a)(3λ2 − (6a+ 2)λ+ 3a2 + 2a) = 0.

Hence a fundamental set of all solutions of Eq. (23) is
{
{an}, {nan}, {

(
3a+2

3

)n}
.

Thus all solutions of (23) are non-oscillatory.

Example 5. Consider

∆3
ayn = −(1 + a)∆2

ayn − a∆ayn, (24)

where a < 0, pn = 1, k = 1 and f(n, yn,∆ayn,∆
2
ayn) = −(1 + a)∆2

ayn − a∆ayn.
Since ∑1

i=0 a
i
(
1
i

)
∆1+1−i

a yn

pn+1

[
f(n, yn, ...,∆

1+1
a yn)

+

1∑
j=1

(
1

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn


=

∆2
ayn + a∆ayn

pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]
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=
∆2

ayn + a∆ayn
1

[
−(1 + a)∆2

ayn − a∆ayn + a∆2
ayn
]

= −(∆2
ayn + a∆ayn)

2

≤ 0,

all solutions of the equation are oscillatory by Theorem 5. In particular, a funda-
mental set of all solutions of Eq. (24) is {{(an)}, {(a− 1)

n}}. Thus all of solutions
of (24) are oscillatory.

Example 6. Consider

2∆4
ayn = −(4a∆3

ayn + 2a2∆2
ayn), (25)

where a < 0, pn = 2, k = 2 and f(n, yn,∆ayn,∆
2
ayn,∆

3
ayn) = −(4a∆3

ayn +
2a2∆2

ayn). Since

1

pn+2

[
f(n, yn,∆ayn, ...,∆

2+1
a yn)

+

2∑
j=1

(
2

j

)
aj

(
j∑

m=1

(
j

m

)
(−1)m+1pn+2−m

)
∆2+2−m

a yn


=

1

pn+2

[
f(n, yn,∆ayn,∆

2
ayn,∆

3
ayn) + 2apn+1∆

3
ayn + a2(2pn+1 − pn)∆

2
ayn
]

=
1

2

[
−(4a∆3

ayn + 2a2∆2
ayn) + 4a∆3

ayn + 2a2∆2
ayn
]

= 0,

all solutions of the equation (25) are oscillatory in view of Remark 1. In particular,
{an} and {nan} are two oscillatory solutions of the equation.

Example 7. Consider

3∆3
ayn = −2∆2

ayn, (26)

where a < 0, k = 1, pn = 3 and f(n, yn,∆ayn,∆
2
ayn) = −2∆2

ayn. Hence ∆2
ayn = 0

implies that f(n, yn,∆ayn,∆
2
ayn) = 0. If ∆2

ayn ̸= 0, then∑1−1
j=0

(
1−1
j

)
aj∆1+1−j

a yn

pn+k

f(n, yn,∆ayn,∆
2
ayn, ...,∆

1+1
a yn) +

1∑
j=1

(
1

j

)
aj

×

(
j∑

m=1

(
j

m

)
(−1)m+1pn+1−m

)
∆1+2−m

a yn

]

=
∆2

ayn
pn+1

[
f(n, yn,∆ayn,∆

2
ayn) + apn∆

2
ayn
]

=
∆2

ayn
3

[
−2∆2

ayn + 3a∆2
ayn
]
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= (∆2
ayn)

2

(
−2 + 3a

3

)
< 0.

Hence by Theorem 6 all solution of (26) are oscillatory . On the other hand, the
characteristic equation of (26) is

(λ− a)2(3λ2 + (2− 6a)λ+ 3a2 − 2a) = 0.

Hence a fundamental set of all solutions of Eq. (26) is {{an}, {nan}, {
(
3a−2

3

)n}}
which consists of all oscillatory solutions.

6. Conclusion

In this paper we investigated the sufficient conditions of the oscillation and non-
oscillation of higher -order difference equations (1). In this study, we used definitions
of generalized difference operator and oscillation/non-oscillation for the proof of the
results. Also, we have considered both cases of a < 0 and a > 0. We have obtained
non-oscillatory behaviour of solution of Eq. (1) in Section 3, we have studied oscil-
latory behaviour of solution of Eq. (1) in Section 4, respectively. Finally, we have
discussed some examples related to our main results.
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