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Abstract
In this paper, we handle focal surfaces of surface of revolution in Galilean 3-space G3. We
define the focal surfaces of surface of revolution and we obtain some results for these types
of surfaces to become flat and minimal. Also, by giving some examples to these surfaces,
we present the visualizations of each type of focal surface of surface of revolution in G3.
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1. Introduction
The concept of line congruences is first defined in the area of visualization by Hagen

et al in 1991 [11]. Actually, line congruences are surfaces which are obtained from by
transforming one surface to another by lines. Focal surface is one of these congruences.
For a given surface M with the parametrization X(u, v), the line congruence is defined as

C(u, v, z) = X(u, v) + zE(u, v). (1.1)
Here E(u, v) is the set of unit vectors and z is a distance. For each pair (u, v), the equation
(1.1), expresses a line of the congruence and called as generatrix. On every generatrix of
C, there are two points called as focal points and the focal surface is the locus of the focal
points. If E(u, v) = N(u, v), the unit normal vector field of the surface, then C is a normal
congruence. In this case, the parametric equation of the focal surface C = X∗(u, v) of
X(u, v) is given as

X∗(u, v) = C(u, v, z) = X(u, v) + κi
−1N(u, v); i = 1, 2

where κis; (i = 1, 2) are the principal curvature functions of X(u, v) [10]. Focal surfaces
are the subject of many studies such as [10,15–17,19,23,26].

Galilean geometry is a non-Euclidean geometry and associated with Galilei principle of
relativity. This principle can be explained briefly as "in all inertial frames, all law of physics
are the same." (Except for the Euclidean geometry in some cases), Galilean geometry is
the easiest of all Klein geometries, and it is revelant to the theory of relativity of Galileo
and Einstein. One can have a look at the studies [20,24] for Galilean geometry. Recently,
many works related to Galilean geometry have been done by several authors in [4, 6, 21].
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2. Preliminaries
In Galilean 3-space G3, we can give the following basic concepts.
The vector a = (a1, a2, a3) is isotropic if a1 = 0 and non-isotropic otherwise. Thus, for

the standard coordinates (x, y, z), the x-axis is non-isotropic while the others are isotropic.
The yz-plane, i.e. x = 0, is Euclidean and the xy-plane and xz-plane are isotropic. The
scalar product of the vectors a = (a1, a2, a3) and b = (b1, b2, b3) and the length of the
vector a = (a1, a2, a3) in G3 are respectively defined as

⟨a, b⟩ =
{

a1b1, if a1 ̸= 0 ∨ b1 ̸= 0
a2b2 + a3b3, if a1 = 0 ∧ b1 = 0,

∥a∥ =
{

|a1| , if a1 ̸= 0
a2

2 + a2
3, if a1 = 0.

The cross product of the vectors a = (a1, a2, a3) and b = (b1, b2, b3) in G3 is also defined
as

a ∧ b =

∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
[18]. An admissible unit speed curve α : I ⊂ R → G3 is given with the parametrization

α(u) = (u, y(u), z(u)).
Let M be a surface parametrized with

X(u1, u2) = (x(u1, u2), y(u1, u2), z(u1, u2))
in G3. To represent the partial derivatives, we use

x,i = ∂x

∂ui
and x,ij = ∂2x

∂ui∂uj
, 1 ≤ i, j ≤ 2.

If x,i ̸= 0 for some i = 1, 2, then the surface is admissible (i.e. having not any Euclidean
tangent planes). The first fundamental form I of the surface M is defined as

I = (g1du1 + g2du2)2 + ε(h11d2
u1 + 2h12du1du2 + h22d2

u2),
where gi = x,i, hij = y,i y,j +z,i z,j ; i, j = 1, 2 and

ε =
{

0, if du1 : du2 is non − isotropic,
1, if du1 : du2 is isotropic.

Let a function W is given by

W =
√

(x,1 z,2 −x,2 z,1 )2 + (x,2 y,1 −x,1 y,2 )2. (2.1)
Then, the unit normal vector field is given as

N = 1
W

(0, −x,1 z,2 +x,2 z,1 , x,1 y,2 −x,2 y,1 ). (2.2)

Similarly, the second fundamental form II of the surface M is defined as
II = L11d2

u1 + 2L12du1du2 + L22d2
u2 ,

where
Lij = 1

g1
⟨g1(0, y,ij , z,ij ) − gi,j(0, y,1 , z,1 ), N⟩ , g1 ̸= 0

or
Lij = 1

g2
⟨g2(0, y,ij , z,ij ) − gi,j(0, y,2 , z,2 ), N⟩ , g2 ̸= 0.

The Gaussian and the mean curvatures of M are defined as

K = L11L22 − L2
12

W 2 and H = g2
2L11 − 2g1g2L12 + g2

1L22
2W 2 . (2.3)
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A surface is called as flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish
[4, 20]. The principal curvatures κ1 and κ2 of the surface M are given as

κ1 = g2
2L11 − 2g1g2L12 + g2

1L22
W 2 and κ2 = L11L22 − L2

12
g2

2L11 − 2g1g2L12 + g2
1L22

, (2.4)

respectively [22].

3. Surface of revolution in G3

Surface of revolution is studied in different spaces by many authors in [1–3, 5, 7–9, 12–
14,25]. In Galilean 3-space, surface of revolution is studied in [7].

Definition 3.1. A surface of revolution in Galilean 3-space G3 is a surface formed by the
rotation of a curve, a profile curve. The rotation is either an Euclidean rotation about
an axis in the supporting plane of the profile curve, or an isotropic rotation for which a
bundle of fixed planes is chosen [7].

Since there exists two kinds of planes (Euclidean and isotropic) in G3, the profile curve
can lie on one of these two planes. An Euclidean plane contains only isotropic vectors,
while an isotropic plane contains both isotropic and non-isotropic vectors. Thus, three
types of surface of revolution can be defined in G3. An Euclidean rotation about the
non-isotropic x-axis is given by x′

y′

z′

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 x
y
z

 ,

where θ is the Euclidean angle. An isotropic rotation about the fixed plane z = constant
is given by  x′

y′

z′

 =

 1 0 0
θ 1 0
0 0 1

 x
y
z

+

 cθ
c
2θ2

0

 ,

where c is a constant.
Type I Surface of Revolution in G3: Let the unit speed profile curve α lies on the
Euclidean yz-plane and be parametrized with α(v) = (0, f(v), g(v)) for the real valued
functions f and g. For this profile curve, an isotropic rotation about the z-axis is given 1 0 0

u 1 0
0 0 1

 0
f(v)
g(v)

+

 cu
c
2u2

0

 .

Then, parametrization of type I surface of revolution in G3 is given by

X(u, v) =
(

cu, f(v) + c

2
u2, g(v)

)
(3.1)

[21].

Theorem 3.2 ([7]). A type I surface of revolution in the Galilean 3-space is flat or,
equivalently, minimal, if and only if it is either

1) a parabolic cylinder parameterized by

X(u, v) =
(

cu, a + c

2
u2, g(v)

)
,

2) a part of an isotropic plane, consisting of a family of parabolas, parameterized by

X(u, v) =
(

cu, f(v) + c

2
u2, a

)
,
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3) or a parabolic cylinder parameterized by

X(u, v) =
(

cu, f(v) + c

2
u2, af(v) + b

)
. (3.2)

Here a, b, c ∈ R with c ̸= 0 and a ̸= 0.

Type II Surface of Revolution in G3: In this case, let the unit speed profile curve
α lies on the isotropic xy-plane and be parametrized with α(v) = (v, g(v), 0) for the real
valued function g. For this profile curve, an isotropic rotation about the y-axis is given 1 0 0

0 1 0
u 0 1

 v
g(v)

0

+

 cu
0

c
2u2

 .

Then, parametrization of type II surface of revolution in G3 is given by

X(u, v) =
(

v + cu, g(v), uv + c

2
u2
)

(3.3)

[7].

Theorem 3.3 ([7]). A type II surface of revolution in the Galilean 3-space is flat or,
equivalently, minimal, if and only if it is either

1) a part of an isotropic plane, consisting of a family of parabolas, parameterized by

X(u, v) =
(

v + cu, a, uv + c

2
u2
)

,

2) a parabolic cylinder parameterized by

X(u, v) =
(

a + cu, g(v), au + c

2
u2
)

,

3) or a cyclic surface (parabolic sphere) parameterized by

X(u, v) =
(

v + cu, av2 + b, uv + c

2
u2
)

,

where a, b, c ∈ R with c ̸= 0.

Type III Surface of Revolution in G3: Again, let the unit speed profile curve α lies
on the isotropic xy-plane and be parametrized with α(v) = (v, g(v), 0) for the real valued
function g. For this profile curve, an Euclidean rotation about the x-axis is given 1 0 0

0 cos u sin u
0 − sin u cos u

 v
g(v)

0

 .

Then, parametrization of type III surface of revolution in G3 is given by
X(u, v) = (v, g(v) cos u, −g(v) sin u) (3.4)

[21].

Theorem 3.4 ([7]). A type III surface of revolution in the Galilean 3-space is flat if and
only if it is either

1) a cylinder over an Euclidean circle parameterized by
X(u, v) = (v, a cos u, −a sin u) ,

2) or a circular cone with vertex (b, 0, 0) parameterized by
X(u, v) = (ag(v) + b, g(v) cos u, −g(v) sin u) ,

where a, b ∈ R with a ̸= 0.
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4. Focal surfaces of surface of revolution in G3

In this section, we respectively give the focal surfaces of surface of revolution which are
mentioned in [7]. Furthermore, we obtain some results for these types surfaces to become
flat and minimal.

4.1. Focal surface of type I surface of revolution
Let α(v) = (0, f(v), g(v)) be a unit speed curve in G3. Then, taking c = 1 in (3.1), type

I surface of revolution M can be written as in the following form

X(u, v) =
(

u, f(v) + u2

2
, g(v)

)
. (4.1)

Since α is a unit speed curve lying on the Euclidean plane, then we have (f ′(v))2 +
(g′(v))2 = 1. The tangent space of M at an arbitrary point is spanned by the vectors

Xu = (1, u, 0), Xv = (0, f ′(v), g′(v)).

From (2.1) and (2.2), W = ((f ′(v))2 + (g′(v))2)
1
2 = 1 and the unit normal vector of M is

N(u, v) = (0, −g′(v), f ′(v)).
Further, we get

g1 = 1 and g2 = 0.

Thus, the coefficients of the second fundamental form are obtained as
L11 = −g′(v), , L12 = 0, L22 = f ′(v)g′′(v) − f ′′(v)g′(v). (4.2)

From (2.3), the Gaussian and the mean curvatures of M are

K = −g′(f ′g′′ − f ′′g′), H = f ′g′′ − f ′′g′

2
[7].
By (2.4) and (4.2), we obtain the principal curvatures κ1, κ2 of M as

κ1 = f ′g′′ − f ′′g′ and κ2 = −g′. (4.3)
From the definition of the focal surface of a given surface and using the equations (4.3),
we obtain two focal surfaces M∗

1 and M∗
2 of M with the parametrizations

X∗
1 (u, v) =

(
u, f(v) − g′(v)

κ1(v)
+ u2

2
, g(v) + f ′(v)

κ1(v)

)
, (4.4)

X∗
2 (u, v) =

(
u, f(v) + u2

2
+ 1, g(v) − f ′(v)

g′(v)

)
, (4.5)

respectively, which are type I surface of revolution, too.
From Theorem 3.2, we have the following results:

Proposition 4.1. Let M be a type I surface of revolution with the parametrization (4.1).
If M is a part of an isotropic plane, consisting of a family of parabolas with g′ = 0, f ′ ̸= 0,
i.e. M is flat or, equivalently minimal, then we cannot construct the focal surfaces of M .

Proposition 4.2. Let M be a type I surface of revolution with the parametrization (4.1).
If M is a parabolic cylinder with f ′ = 0, g′ ̸= 0, i.e. M is flat or, equivalently minimal,
then we have only the focal surface M∗

2 with the parametrization

X∗
2 (u, v) =

(
u, c + u2

2
, g(v)

)
,

which means that M∗
2 is a parabolic cylinder and it is flat or, equivalently, minimal, too.

Here c is a constant.
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Proposition 4.3. Let M be a type I surface of revolution with the parametrization (4.1).
If M is a a parabolic cylinder with f ′g′′ − f ′′g′ = 0, g′ ̸= 0, f ′ ̸= 0, i.e. M is flat or,
equivalently minimal, then we have only the focal surface M∗

2 with the parametrization

X∗
2 (u, v) =

(
u, f(v) + u2

2
+ 1, af(v) + b

)
,

which means that M∗
2 is a parabolic cylinder and flat or, equivalently minimal, too. Here

a, b ∈ R with a ̸= 0.

Example 4.4. Let us consider the type I surface of revolution M given with the parametriza-
tion (4.1) and the focal surface M∗

1 of M with the parametrization (4.4) in G3. For the
functions f(v) = v2 and g(v) = 1

2v
√

1 − 4v2+ 1
4arcsin(2v), the surface and its focal surface

have the following parametrizations, respectively,

X(u, v) =
(

u, v2 + u2

2
,
1
2

v
√

1 − 4v2 + 1
4

arcsin(2v)
)

,

X∗
1 (u, v) =

(
u, −v2 + u2

2
+ 1

2
, −1

2
v
√

1 − 4v2 + 1
4

arcsin(2v)
)

.

By using the maple programme, we plot the graph of the surface of revolution and its
focal surface in G3.

Figure 1. Surface of revolution M and the focal surface M∗
1

Example 4.5. Let us consider the type I surface of revolution M given with the parametriza-
tion (4.1) and the focal surface M∗

2 of M with the parametrization (4.5) in G3. For the
functions f(v) = cosv and g(v) = sinv, the surface and its focal surface have the following
parametrizations, respectively,

X(u, v) =
(

u, cosv + u2

2
, sinv

)
,

X∗
2 (u, v) =

(
u, cosv + u2

2
+ 1, sinv + sinv

cosv

)
.

By using the maple programme, we plot the graph of the surface of revolution and its
focal surface in G3.
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Figure 2. Surface of revolution M and the focal surface M∗
2

For the first focal surface M∗
1 , the tangent space is spanned by the vectors

(X∗
1 )u = (1, u, 0), (X∗

1 )v = (0, λ1(v), λ2(v)),
where

λ1(v) = f ′(v) − g′′(v)κ1(v) − g′(v)κ′
1(v)

(κ1(v))2 ,

λ2(v) = g′(v) + f ′′(v)κ1(v) − f ′(v)κ′
1(v)

(κ1(v))2 .

Thus, from (2.1) and (2.2), W ∗ = ((λ1(v))2 + (λ2(v))2)
1
2 and the unit normal vector field

N∗ of M∗
1 is

N∗ = 1
W ∗ (0, −λ2(v), λ1(v)). (4.6)

Further, we get
g∗

1 = 1, g∗
2 = 0. (4.7)

The second partial derivatives of X∗
1 are

(X∗
1 )uu = (0, 1, 0), (X∗

1 )uv = (0, 0, 0), (X∗
1 )vv = (0, λ′

1(v), λ′
2(v)). (4.8)

Thus from the equations (4.6)-(4.8), the coefficients of the second fundamental form be-
come

L∗
11 = −λ2(v)

W ∗ , , L∗
12 = 0, L∗

22 = −λ′
1(v)λ2(v) + λ1(v)λ′

2(v)
W ∗ . (4.9)

By using the equations (4.7) and (4.9), we give the following theorems:

Theorem 4.6. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

1 be the focal surface of M with the parametrization (4.4) in G3. Then, the
Gaussian and the mean curvatures of M∗

1 are

K∗ = −λ2(λ1λ′
2 − λ′

1λ2)
(W ∗)4 ,

H∗ = λ1λ′
2 − λ′

1λ2
2(W ∗)3 .

Theorem 4.7. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

1 be the focal surface of M with the parametrization (4.4) in G3. The focal
surface M∗

1 is flat if and only if one of the following differential equations is hold:
g′(v)(κ1(v))2 + f ′′(v)κ1(v) − f ′(v)κ′

1(v) = 0,
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or

g′(v)(κ1(v))2 + f ′′(v)κ1(v) − f ′(v)κ′
1(v) = (f ′(v)(κ1(v))2 − g′′(v)κ1(v) + g′(v)κ′

1(v))c1,

where c1 is an integral constant.

Proof. Let the focal surface M∗
1 be flat. Then by the expression of the Gaussian curvature,

either λ2(v) = 0 or λ1(v)λ′
2(v) − λ′

1(v)λ2(v) = 0. If λ2(v) = 0, then the first differential
equation holds. If λ1(v)λ′

2(v) − λ′
1(v)λ2(v) = 0, we have λ′

2(v)
λ2(v) = λ′

1(v)
λ1(v) . Inregrating

both sides of the last equation, we get λ2(v) = λ1(v)c1, which corresponds to the second
differential equation. �

Theorem 4.8. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

1 be the focal surface of M with the parametrization (4.4) in G3. The focal
surface M∗

1 is minimal if and only if the following differential equation is hold:

g′(v)(κ1(v))2 + f ′′(v)κ1(v) − f ′(v)κ′
1(v) = (f ′(v)(κ1(v))2 − g′′(v)κ1(v) + g′(v)κ′

1(v))c1,

where c1 is an integral constant.

Corollary 4.9. If the focal surface M∗
1 is minimal, then it is flat.

Now, we consider the focal surface M∗
2 given with the parametrization (4.5) in G3. The

tangent space of the focal surface M∗
2 is spanned by the vectors

(X∗
2 )u = (1, u, 0), (X∗

2 )v = (0, f ′(v), λ3(v)),

where

λ3(v) = g′(v) + κ1(v)
(g′(v))2 , W ∗ = ((f ′(v))2 + (λ3(v))2)

1
2 .

From (2.2), the unit normal vector field N∗ of M∗
2 is

N∗ = 1
W ∗ (0, −λ3(v), f ′(v)). (4.10)

Further, we get
g∗

1 = 1, g∗
2 = 0. (4.11)

The second partial derivatives of X∗
2 are

(X∗
2 )uu = (0, 1, 0), (X∗

2 )uv = (0, 0, 0), (X∗
2 )vv = (0, f ′′(v), λ′

3(v)). (4.12)

Thus from the equations (4.10)-(4.12), the coefficients of the second fundamental form
become

L∗
11 = −λ3(v)

W ∗ , , L∗
12 = 0, L∗

22 = f ′(v)λ′
3(v) − f ′′(v)λ3(v)

W ∗ . (4.13)

By using the equations (4.11) and (4.13), we give the following theorems:

Theorem 4.10. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

2 be the focal surface of M with the parametrization (4.5) in G3. Then, the
Gaussian and the mean curvatures of M∗

2 are

K∗ = −λ3(f ′λ′
3 − f ′′λ3)

(W ∗)4 ,

H∗ = f ′λ′
3 − f ′′λ3

2(W ∗)3 ,

respectively.
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Theorem 4.11. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

2 be the focal surface of M with the parametrization (4.5) in G3. The focal
surface M∗

2 is flat if and only if one of the following systems is hold:
(g′(v))3 − f ′′(v)g′(v) + f ′(v)g′′(v) = 0,

(f ′(v))2 + (g′(v))2 = 1, g′(v) ̸= 0,

or
(g′(v))3 − f ′′(v)g′(v) + f ′(v)g′′(v) = f ′(v)c2,

(f ′(v))2 + (g′(v))2 = 1, g′(v) ̸= 0,

where c2 is an integral constant.

Proof. Let the focal surface M∗
2 be flat. Then by the expression of the Gaussian curvature,

either λ3(v) = 0 or f ′(v)λ′
3(v) − f ′′(v)λ3(v) = 0. If λ3(v) = 0, then the first differential

equation system holds. If f ′(v)λ′
3(v) − f ′′(v)λ3(v) = 0, we have λ′

3(v)
λ3(v) = f ′′(v)

f ′(v) . Inregrating
both sides of the last equation, we get λ3(v) = f ′(v)c2, which corresponds to the second
differential equation system. �
Theorem 4.12. Let M be a type I surface of revolution given with the parametrization
(4.1) and M∗

2 be the focal surface of M with the parametrization (4.5) in G3. The focal
surface M∗

2 is mimimal if and only if the following system is hold:
(g′(v))3 − f ′′(v)g′(v) + f ′(v)g′′(v) = f ′(v)c2,

(f ′(v))2 + (g′(v))2 = 1, g′(v) ̸= 0,

where c2 is an integral constant.

Corollary 4.13. If the focal surface M∗
2 is minimal, then it is flat.

4.2. Focal surface of type II surface of revolution
Let α(v) = (v, g(v), 0) be a unit speed curve in G3. Then, taking c = 1 in (3.3), type II

surface of revolution M can be written as in the following form

X(u, v) =
(

u + v, g(v), uv + u2

2

)
. (4.14)

The tangent space of M at an arbitrary point is spanned by the vectors
Xu = (1, 0, u + v), Xv = (1, g′(v), u).

From (2.1) and (2.2), W = (v2 + (g′(v))2)
1
2 and the unit normal vector field of M is

N(u, v) = 1
W

(0, v, g′(v)).

Further, we get
g1 = 1 and g2 = 1.

Thus, the coefficients of the second fundamental form are obtained

L11 = g′(v)
W

, , L12 = g′(v)
W

, L22 = vg′′(v)
W

. (4.15)

The Gaussian and the mean curvatures of M are

K = g′(vg′′ − g′)
W 4 , H = vg′′ − g′

2W 3

[7].
From (2.4) and (4.15), we obtain the principal curvatures κ1, κ2 of M as

κ1 = 1
W 3

(
vg′′ − g′) and κ2 = g′

W
. (4.16)
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From the definition of the focal surface of a given surface and using the equations (4.16),
we obtain two focal surfaces M∗

1 and M∗
2 of M as

X∗
1 (u, v) =

(
u + v, g(v) + v

Wκ1(v)
, uv + u2

2
+ g′(v)

Wκ1(v)

)
, (4.17)

X∗
2 (u, v) =

(
u + v, g(v) + v

g′(v)
, uv + u2

2
+ 1

)
, (4.18)

respectively.
From Theorem 3.3., we obtain the following results:

Proposition 4.14. Let M be a type II surface of revolution with the parametrization
(4.14). If g′ = 0, g is a constant function, then we cannot construct the focal surfaces of
M .

Proposition 4.15. Let M be a type II surface of revolution with the parametrization
(4.14). If M is a cyclic surface (parabolic sphere), i.e. flat or, equivalently minimal, then
we have only the focal surface M∗

2 with the parametrization

X∗
2 (u, v) = (u + v, cv2 + d, uv + u2

2
+ 1), (4.19)

which means that M∗
2 is a cyclic surface (parabolic sphere) and flat or, equivalently mini-

mal, too.

Example 4.16. Let us consider the type II surface of revolution M given with the
parametrization (4.14) and the focal surface M∗

1 of M with the parametrization (4.17)
in G3. For the function g(v) = ev, the surface and its focal surface have the following
parametrizations, respectively

X(u, v) =
(

u + v, ev, uv + u2

2

)
,

X∗
1 (u, v) =

(
u + v, ev + (v2 + e2v)v

ev(v − 1)
, uv + u2

2
+ (v2 + e2v)ev

ev(v − 1)

)
.

By using the maple programme, we plot the graph of the surface of revolution and its
focal surface in G3.

Figure 3. Surface of revolution M and the focal surface M∗
1

Example 4.17. Let us consider the type II surface of revolution M given with the
parametrization (4.14) and the focal surface M∗

2 of M with the parametrization (4.18)
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in G3. For the function g(v) = ev, the surface and its focal surface have the following
parametrizations, respectively

X(u, v) =
(

u + v, ev, uv + u2

2

)
,

X∗
2 (u, v) =

(
u + v, ev + v

ev
, uv + u2

2
+ 1

)
.

By using the maple programme, we plot the graph of the surface of revolution and its
focal surface in G3.

Figure 4. Surface of revolution M and the focal surface M∗
2

For the first focal surface M∗
1 , the tangent space is spanned by the vectors

(X∗
1 )u = (1, 0, u + v), (X∗

1 )v = (1, λ4(v), λ5(v)),

where

λ4(v) = g′(v) + Wκ1(v) − v(Wκ1(v))′

(Wκ1(v))2 ,

λ5(v) = u + g′′(v)Wκ1(v) − g′(v)(Wκ1(v))′

(Wκ1(v))2 .

Thus, from (2.1) and (2.2), W ∗ = ((−λ5(v) + u + v)2 + (λ4(v))2)
1
2 and the unit normal

vector field N∗ of M∗
1 is

N∗ = 1
W ∗ (0, −λ5(v) + u + v, λ4(v)). (4.20)

Further, we get
g∗

1 = 1, g∗
2 = 1. (4.21)

The second partial derivatives of X∗
1 are

(X∗
1 )uu = (0, 0, 1), (X∗

1 )uv = (0, 0, 1), (X∗
1 )vv = (0, λ′

4(v), λ′
5(v)). (4.22)

Thus from the equations (4.20)-(4.22), the coefficients of the second fundamental form
become

L∗
11 = λ4(v)

W ∗ , , L∗
12 = λ4(v)

W ∗ , L∗
22 = λ′

4(v)(−λ5(v) + u + v) + λ4(v)λ′
5(v)

W ∗ . (4.23)

By using the equations (4.21) and (4.23), we give the following theorems:
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Theorem 4.18. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

1 be the focal surface of M with the parametrization (4.17) in G3. Then, the
Gaussian and the mean curvatures of M∗

1 are

K∗ = λ4
(W ∗)4

(
λ′

4(−λ5 + u + v) + λ4(λ′
5 − 1)

)
,

H∗ = λ′
4(−λ5 + u + v) + λ4(λ′

5 − 1)
2(W ∗)3 .

Theorem 4.19. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

1 be the focal surface of M with the parametrization (4.17) in G3. The focal
surface M∗

1 is flat if and only if one of the following differential equations is hold:

g′ (vg′′ − g′)2

(v2 + (g′)2)2 + vg′′ − g′

v2 + (g′)2 − v

(
vg′′ − g′

v2 + (g′)2

)′
= 0,

or

(g′ + vh) (vg′′ − g′)2

(v2 + (g′)2)2 + (1 − g′′h) vg′′ − g′

v2 + (g′)2 + (g′h − v)
(

vg′′ − g′

v2 + (g′)2

)′
= 0,

where h = h(u) is a function of the variable u.

Proof. Let the focal surface M∗
1 be flat. Then by the expression of the Gaussian curvature,

either λ4(v) = 0 or λ′
4(v)(−λ5(v)+u+v)+λ4(v)(λ′

5(v)−1) = 0. If λ4(v) = 0, then the first
differential equation holds. If λ′

4(v)(−λ5(v)+u+v)+λ4(v)(λ′
5(v)−1) = 0, we have λ′

4(v)
λ4(v) =

λ′
5(v)−1

λ5(v)−u−v . Inregrating both sides of the last equation, we get λ4(v) = (λ5(v) − u − v)h(u),
which corresponds to the second differential equation. �
Theorem 4.20. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

1 be the focal surface of M with the parametrization (4.17) in G3. The focal
surface M∗

1 is minimal if and only if the following differential equation is hold:

(g′ + vh) (vg′′ − g′)2

(v2 + (g′)2)2 + (1 − g′′h) vg′′ − g′

v2 + (g′)2 + (g′h − v)
(

vg′′ − g′

v2 + (g′)2

)′
= 0,

where h = h(u) is a function of the variable u.

Corollary 4.21. If the focal surface M∗
1 is minimal, then it is flat.

Now, we consider the focal surface M∗
2 given with the parametrization (4.18). The

tangent space of the focal surface M∗
2 is spanned by the vectors

(X∗
2 )u = (1, 0, u + v), (X∗

2 )v = (1, λ6(v), u),
where

λ6(v) = g′(v) + g′(v) − vg′′(v)
(g′(v))2 , W ∗ = ((λ6(v))2 + v2)

1
2 .

Thus, from (2.2), the unit normal vector field N∗ of M∗
2 is

N∗ = 1
W ∗ (0, v, λ6(v)). (4.24)

Further, we get
g∗

1 = 1, g∗
2 = 1. (4.25)

The second partial derivatives of X∗
2 are

(X∗
2 )uu = (0, 0, 1), (X∗

2 )uv = (0, 0, 1), (X∗
2 )vv = (0, λ′

6(v), 0). (4.26)
Thus from the equations (4.24)-(4.26), the coefficients of the second fundamental form
become

L∗
11 = λ6(v)

W ∗ , , L∗
12 = λ6(v)

W ∗ , L∗
22 = vλ′

6(v)
W ∗ . (4.27)
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By using the equations (4.25) and (4.27), we give the following theorems:

Theorem 4.22. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

2 be the focal surface of M with the parametrization (4.18) in G3. Then, the
Gaussian and the mean curvatures of M∗

2 are

K∗ = λ6(vλ′
6 − λ6)

(W ∗)4 ,

H∗ = vλ′
6 − λ6

2(W ∗)3 .

Theorem 4.23. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

2 be the focal surface of M with the parametrization (4.18) in G3. The focal
surface M∗

2 is flat if and only if either

g(v) = ±
√

−v2 + c1 + c2,

where c1 and c2 are integral contants or
(g′(v))3 + g′(v) − vg′′(v) − v(g′(v))2c3 = 0,

where c3 is an integral contant.

Proof. Let the focal surface M∗
2 be flat. Then by the expression of the Gaussian curvature,

either λ6(v) = 0 or vλ′
6(v) − λ6(v) = 0. If λ6(v) = 0, then g(v) = ±

√
−v2 + c1 + c2. If

vλ′
6(v) − λ6(v) = 0, we have λ′

6(v)
λ6(v) = 1

v . Inregrating both sides of the last equation, we get
λ6(v) = c3v, which corresponds to the second differential equation. �

Theorem 4.24. Let M be a type II surface of revolution given with the parametrization
(4.14) and M∗

2 be the focal surface of M with the parametrization (4.18) in G3. The focal
surface M∗

2 is minimal if and only if

(g′(v))3 + g′(v) − vg′′(v) − v(g′(v))2c3 = 0,

where c3 is an integral contant.

Corollary 4.25. If the focal surface M∗
2 is minimal, then it is flat.

4.3. Focal surface of type III surface of revolution
Let α(v) = (v, g(v), 0) be a unit speed curve in G3. Then, from (3.4), type III surface

of revolution M is given as in the following:
X(u, v) = (v, g(v)cosu, −g(v)sinu). (4.28)

The tangent space of M at an arbitrary point is spanned by the vectors
Xu = (0, −g(v)sinu, −g(v)cosu), Xv = (1, g′(v)cosu, −g′(v)sinu).

Thus from (2.1) and (2.2), W = |g(v)| and the unit normal vector field of M is
N(u, v) = (0, −cosu, sinu). (4.29)

Further, we get
g1 = 0 and g2 = 1. (4.30)

Thus, the coefficients of the second fundamental form are obtained
L11 = g(v), , L12 = 0, L22 = −g′′(v). (4.31)

The Gaussian and the mean curvatures of M are

K = −g′′

g
, H = 1

2g
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[7]. Then from (2.4) and (4.31), we get the principal curvature functions as

κ1 = 1
g

, and κ2 = −g′′.

For the function κ1 = 1
g , the focal surface degenerates to a curve. Thus, we obtain the

focal surface M∗ of M for the function κ2 = −g′′ as

X∗(u, v) =
(

v,

(
g(v) + 1

g′′(v)

)
cosu, −

(
g(v) + 1

g′′(v)

)
sinu

)
, (4.32)

where g′′ ̸= 0.

Example 4.26. Let us consider the type III surface of revolution M given with the
parametrization (4.28) and the focal surface M∗ of M with the parametrization (4.32)
in G3. For the function g(v) = lnv, the surface and its focal surface have the following
parametrizations, respectively

X(u, v) = (v, ln(v)cosu, −ln(v)sinu),
X∗(u, v) = (v, (ln(v) − v2)cosu, −(ln(v) − v2)sinu).

By using the maple programme, we plot the graph of the surface of revolution and its
focal surface in G3.

Figure 5. Surface of revolution M and the focal surface M∗

The tangent space of the focal surface M∗ is spanned by the vectors

(X∗)u = (0, −λ7(v)sinu, −λ7(v)cosu),
(X∗)v = (1, λ′

7(v)cosu, −λ′
7(v)sinu),

where λ7(v) = g(v) + 1
g′′(v) and W ∗ = |λ7(v)|. Thus, from (2.2) the unit normal vector

field N∗ of M∗ is
N∗ = (0, −cosu, sinu). (4.33)

Further, we get
g∗

1 = 0, g∗
2 = 1. (4.34)

The second partial derivatives of X∗ are

(X∗)uu = (0, −λ7(v)cosu, λ7(v)sinu),
(X∗)uv = (0, −λ′

7(v)sinu, −λ′
7(v)cosu), (4.35)

(X∗)vv = (0, λ′′
7(v)cosu, −λ′′

7(v)sinu).
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Thus from the equations (4.33)-(4.35), the coefficients of the second fundamental forms
become

L∗
11 = λ7(v), , L∗

12 = 0, L∗
22 = −λ′′

7(v). (4.36)
By using the equations (4.34) and (4.36), we give the following theorems:

Theorem 4.27. Let M be a type III surface of revolution given with the parametrization
(4.28) and M∗ be the focal surface of M with the parametrization (4.32) in G3. Then, the
Gaussian and the mean curvatures of M∗ are

K∗ = −λ′′
7

λ7
, H∗ = 1

2λ7
.

Theorem 4.28. Let M be a type III surface of revolution given with the parametrization
(4.28) and M∗ be the focal surface of M with the parametrization (4.32) in G3. The focal
surface M∗ is flat if and only if (

g(v) + 1
g′′(v)

)′′
= 0. (4.37)

Corollary 4.29. The focal surface M∗ cannot be minimal.

Acknowledgment. The author is very grateful to Prof. Dr. Günay Öztürk for his
valuable contribution and to the anonymous referees for their valuable suggestions.

References
[1] D. Aberre and K. Agraval, Surfaces of revolution in n dimensions, Int. J. Math. Educ.

Sci. Technol. 38, 843-852, 2009.
[2] K. Arslan, B. Kılıç Bayram, B. Bulca and G. Öztürk, Generalized rotation surfaces

in E4, Results. Math. 61, 315-327, 2012.
[3] K. Arslan, B. Bayram, B. Bulca, D. Kosova and G. Öztürk, Rotational surfaces in

higher dimensional Euclidean spaces, Rend. Circ. Mat. Palermo (2) 67, 59-66, 2018.
[4] M.E. Aydın, M.A. Külahçı and A.O. Öğrenmiş, Constant curvature translation sur-

faces in Galilean 3-space, Int. Electron. J. Geom. 12, 9-19, 2019.
[5] D.V. Cuong, Surfaces of revolution with constant Gaussian curvature in four-space,

Asian-Eur. J. Math. 6, 1350021-1–1350021-7, 2013.
[6] M. Dede, C. Ekici and A.C. Çöken, On the parallel surfaces in the Galilean space,

Hacet. J. Math. Stat. 42, 605-615, 2013.
[7] M. Dede, C. Ekici and W. Goemans, Surfaces of revolution with vanishing curvature

in Galilean 3-space, Zh. Mat. Fiz. Anal. Geom. 14, 141-152, 2018.
[8] W. Goemans, Flat double rotational surfaces in Euclidean and Lorentz-Minkowski

4-space, Publ. Inst. Math. 103, 61-68, 2018.
[9] A. Gray, E. Abbana and S. Salamon, Modern Differential Geometry of Curves and

Surfaces with Mathematica, (3rd edition), Studies in Advanced Mathematics, Chap-
man and Hall/CRC, Boca Raton, FL, 2006.

[10] H. Hagen and S. Hahmann, Generalized Focal Surfaces: A New Method for Surface
Interrogation, Proceedings Visualization’92, Boston, 70-76, 1992.

[11] H. Hagen, H. Pottmann and A. Divivier, Visualization functions on a surface, J.
Visual. Comput. Anim. 2, 52-58, 1991.

[12] A. Kazan and H. Karadağ, A classification of surfaces of revolution in Lorentz-
Minkowski space, Int. J. Contemp. Math. Sci. 6, 1915-1928, 2011.

[13] K. Kenmotsu, Surfaces of revolution with prescribed mean curvature, Tohoku Math.
J. 32, 147-153, 1980.

[14] K. Kenmotsu, Surfaces of revolution with periodic mean curvature, Osaka J. Math.
40, 687-696, 2003.



Revolution surface with its focal surface in G3 1737

[15] B. Özdemir, A characterization of focal curves and focal surfaces in E4, Ph.D. Thesis,
Uludağ University, 2008.

[16] B. Özdemir and K. Arslan, On generalized focal surfaces in E3, Rev. Bull. Calcutta
Math. Soc. 16, 23-32, 2008.

[17] G. Öztürk and K. Arslan, On focal curves in Euclidean n-space Rn, Novi Sad J. Math.
48, 35-44, 2016.

[18] B.J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in
the Galilean space G3, Glas. Mat. Ser. III 22, 449-457, 1987.

[19] D. Pei and T. Sano, The focal developable and the binormal indicatrix of a nonlightlike
curve in Minkowski 3-space, Tokyo J. Math. 23, 211-225, 2000.

[20] O. Röschel, Die Geometrie Des Galileischen Raumes, Forschungszentrum Graz Re-
search Centre, Austria, 1986.

[21] Z.M. Sipus, Ruled Weingarten surfaces in the Galilean space, Period. Math. Hungar.
56, 213-225, 2008.

[22] Z.M. Sipus and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space,
Int. J. Math. Math. Sci. 12, 1-28, 2012.

[23] M.D. Shepherd, Line congruences as surfaces in the space of lines, Differential Geom.
Appl. 10, l-26, 1999.

[24] I.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-
Verlag Inc., New York, 1979.

[25] D.W. Yoon, Surfaces of revolution in the three dimensional pseudo-Galilean space,
Glas. Mat. Ser. III 48, 415-428, 2013.

[26] J. Yu, X. Yin, X. Gu, L. McMillan and S. Gortler, Focal surfaces of discrete geometry,
Eurographics Symposium on Geometry Processing, 2007.


