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Abstract

The paper deals with three dynamic properties of the numerical solution for differential
equations with piecewise constant arguments of advanced and retarded type: oscillation,
stability and convergence. The Euler-Maclaurin methods are used to discretize the equations.
According to the characteristic theory of the difference equation, the oscillation and stability
conditions of the numerical solution are obtained. It is proved that the convergence order of
numerical method is 2n+2. Furthermore, the relationship between stability and oscillation
is discussed for analytic solution and numerical solution, respectively. Finally, several
numerical examples confirm the corresponding conclusions.

1. Introduction

As a special type of delay differential equations [1]- [4], differential equations with piecewise constant argument [5]- [9]
(abbreviated as EPCA) has some characteristics of continuous and discrete dynamic system, so it has important value in
practical application such as population biology [10], neural networks [11, 12], predator-prey model [13], epidemiology [14]
and so on. In recent years, the comprehensive exploration of EPCA has become a scientific issue widely concerned by scholars
in various fields. Because of the complexity of this kind of equation in structure, it is difficult to solve it accurately. Therefore,
it is necessary to study the numerical solution of EPCA, and then clarify the applicability of numerical method in EPCA.
In the study of differential equations with piecewise constant arguments, much research has been focused on the properties
of numerical solution of EPCA. Gao [15] considered numerical oscillation of the Runge-Kutta method for EPCA of mixed
type. In [16], convergence and stability of stochastic EPCA in split-step theta method was considered. The stability of the
Runge-Kutta method for nonlinear neutral EPCA was studied in [17]. Wang and Yao [18] studied the stability and oscillation
of a kind of functional differential equation. Liang et al. [19] considered numerical stability of system u′(t) = Lu(t)+Mu([t])
with matrix coefficients in the case of 2-norm. Different from previous studies, this paper mainly considers the numerical
oscillation, stability and convergence of Euler-Maclaurin methods for forward EPCA with advanced and retarded type, and
gives some new conclusions.
Consider the following equation:

x′(t) = ax(t)+a0x([t])+a1x([t +1]),x(0) = c0, (1.1)

where [·] designates the greatest-integer function.
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Denote

b0(t) = eat +a−1a0(eat −1),b1(t) = a−1a1(eat −1),λ = b0(1)/(1−b1).

Theorem 1.1. [20] Eq. (1.1) has on a unique solution

x(t) = (b0({t})+λb1({t}))λ [t]c0, (1.2)

where {t} is the fractional part of t, if b1(1) 6= 1.

In particular, the solution of Eq. (1.1) is

x(t) =
(

1+
a0 +a1

1−a1
{t}
)(

1+a0

1−a1

)[t]

c0,

for a = 0.

Theorem 1.2. [20] The solution x = 0 of Eq. (1.1) is stable (asymptotically stable) as t→+∞, if and only if

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≥ 0. (1.3)

Theorem 1.3. [20] In each internal (n,n+1), the solution of Eq. (1.1) with the condition x(0) = c0 6= 0 has exact roots

tn = n+
1
a

ln
a0 +a1ea

a+a0 +a1

if (
a0 +

aea

ea−1

)(
a1−

a
ea−1

)
> 0. (1.4)

If (1.4) is not satisfied and a0 6=−aea/(ea−1),c0 6= 0, then solution (1.2) has no zero in [0,+∞).

2. Numerical oscillation and non-oscillation

2.1. Euler-Maclaurin methods and convergence

Firstly, we introduce Bernoulli’s numbers and Bernoulli’s polynomials as follows:

z
ez−1

=
∞

∑
j=0

B j

j!
z j, |z|< 2π,

zexz

ez−1
=

∞

∑
j=0

B j(x)
j!

z j, |z|< 2π,

where B j and B j(x), j = 0,1,2 · · · are called Bernoulli’s number and the jth-order Bernoulli’s polynomial, respectively.

Lemma 2.1. [21] B j and B j(x) have the following several properties:
(I) B0 = 1,B1 =− 1

2 ,B2 j = 2(−1) j+1(2 j)!∑
∞
k=1(2kπ)−2 j,B2 j+1 = 0, j ≥ 1,

(II) B0(x) = 1,B1(x) = x− 1
2 ,B2(x) = x2− x+ 1

6 ,Bk(x) = ∑
k
j=0
(k

j

)
B jxk− j.

Lemma 2.2. [22] Suppose that f (x) has 2n+3rd continuous derivative on [ti, ti+1], then we have

∣∣∣∣∣
∫ tt+1

ti
f (t)dt− h

2
[ f (ti+1)+ f (ti)]+

n

∑
j=1

B2 jh2 j

(2 j)!

[
f (2 j−1) (ti+1)− f (2 j−1) (ti)

]∣∣∣∣∣= O
(
h2n+3) . (2.1)

Let h = 1
m be a given step-size and ti be defined by ti = ih, i = 0,1,2 · · · , then let i = km+ l, l = 0,1,2, · · · ,m−1. The derivative

x( j)(t) exists in every interval [k,k+1). We suppose

f (t) = x′(t) = ax(t)+a0x([t])+a1x([t +1])

for all j = 0,1,2 · · · , then we have

f ′(t) = x′′(t) = ax′(t) = a2x(t)+aa0x([t])+aa1x([t +1]),
f ( j)(t) = x( j+1)(t) = a j+1x(t)+a ja0x([t])+a ja1x([t +1]).

(2.2)
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Apply (2.2) to (2.1), we get

xi+1 = xi +
ha
2
(xi+1 + xi)+ha0xkm +ha1x(k+1)m−

n

∑
j=1

B2 j(ah)2 j

(2 j)!
(xi+1− xi) . (2.3)

Since i = km+ l, l = 0,1,2, · · · ,m−1, (2.3) can be expressed as:

x(k+1)m =
1+a0

1−a1
xkm, (2.4)

xkm+l+1 = (1+(l +1)ha0)xkm +(l +1)ha1x(k+1)m, (2.5)

for a = 0, and

x(k+1)m =
R(z)m + a0

a (R(z)m−1)
1− a1

a (R(z)m−1)
xkm, (2.6)

xkm+l+1 =
(

R(z)l+1 +
a0

a

(
R(z)l+1−1

))
xkm +

a1

a

(
R(z)l+1−1

)
x(k+1)m, (2.7)

for a 6= 0, where l = 0,1, · · · ,m− 2, z = ah, φ(z) = 1− z
2 +∑

n
j=1

B2 jz2 j

(2 j)! and R(z) = 1+ z
φ(z) is the stability function of the

Euler-Maclaurin methods.

Theorem 2.3. For every given n ∈ N, the Euler-Maclaurin method is of order 2n+2.

Proof. Let km≤ i < (k+1)m−1, then by Lemma 2.2 and f (t) = x′(t), we get

x(ti+1)− x(ti) =
∫ ti+1

ti
x′(t)dt =

ha
2
[x(ti+1)+ x(ti)]+ha0x(k)+ha1x(k+1)

−
n

∑
j=1

B2 j(ah)2 j

(2 j)!
[x(ti+1)− x(ti)]+O

(
h2n+3) .

Let i = (k+1)m−1, then for any 0 < ε < h, we have

x(ti+1− ε)− x(ti) =
∫ ti+1−ε

ti
x′(t)dt =

ha
2
[x(ti+1− ε)+ x(ti)]+ha0x(k)+ha1x(k+1)

−
n

∑
j=1

B2 j(ah)2 j

(2 j)!
[x(ti+1− ε)+ x(ti)]+O

(
h2n+3) . (2.8)

Let ε → 0+ in (2.8), (2.7) holds true for i = (k+1)m−1. Suppose

(x(ti+1)− xi+1)

(
1+

ha
2

+
n

∑
j=1

B2 j(ha)2 j

(2 j)!

)
= O

(
h2n+3) ,

then from (2.4)-(2.7) we obtain

(x(ti+1)− xi+1)

(
1+

ha
2

+
n

∑
j=1

B2 j(ha)2 j

(2 j)!

)
= O

(
h2n+3) ,

the proof is complete.

2.2. Oscillation analysis

Theorem 2.4. If {xn} and {xkm} are given by (2.5), (2.7) and (2.4), (2.6), respectively, then {xn} is non-oscillatory if and only
if {xkm} is non-oscillatory.

Proof. The necessity is obvious for a 6= 0. Sufficiency: if {xkm} is non-oscillatory, without loss of generality, we assume
that {xkm} is an eventually negative solution of (2.6), that is, there exists a k0 ∈ R such that xkm < 0 for k > k0. In order
to prove xkm+l < 0 for all k > k0 + 1 and l = 0,1, · · · ,m− 1, we suppose a0 < 0,a1 < 0. If a > 0, then 1 < R(z) < ∞ and
R(z)−m ≤ R(z)−l , therefore from (2.7) we have

R(z)−lxkm+l =
(

1+
a0

a

(
1−R(z)−l

))
xkm +

a1

a

(
1−R(z)−l

)
x(k+1)m

≤
(

1+
a0

a

(
1−R(z)−m))xkm +

a1

a

(
1−R(z)−m)x(k+1)m

= R(z)−mx(k+1)m < 0.

So xkm+l < 0. The case of a < 0 and a = 0 can be studied in the same way. The proof is complete.
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By Theorem 2.4, we can get the following theorem.

Theorem 2.5. The following propositions are equivalent:
(I) {xn} is oscillatory ;
(II) {xkm} is oscillatory ;
(III) The two cases hold

(i) a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1 ,

(ii) a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1 ,
for a 6= 0, and

(i) a0 <−1 and a1 < 1,
(ii) a0 >−1 and a1 > 1,

for a = 0.

Proof. According to Theorem 2.4, the equivalence of (I) and (II) is obvious, then we prove that (II) and (III) are equivalent.
{xn} is oscillatory for a 6= 0 if and only if the corresponding characteristic equation has no positive roots, which is equivalent to

R(z)m + a0
a (R(z)m−1)

1− a1
a (R(z)m−1)

< 0,

so we have

R(z)m + a0
a (R(z)m−1)< 0 and 1− a1

a (R(z)m−1)> 0

or

R(z)m + a0
a (R(z)m−1)> 0 and 1− a1

a (R(z)m−1)< 0,

that is

a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1 .

In the same way, λ = 1+a0
1−a1

for a = 0. The proof is complete.

From Theorem 1.3, we have the following corollary.

Corollary 2.6. If any of the following conditions holds true:
(I) When a 6= 0,

(i) a0 <− aea

ea−1 and a1 <
a

ea−1 ,
(ii) a0 >− aea

ea−1 and a1 >
a

ea−1 ,
(II) When a = 0,

(i) a0 <−1 and a1 < 1,
(ii) a0 >−1 and a1 > 1,

then every solution of Eq. (1.1) is oscillatory.

Lemma 2.7. [21] If |z| ≤ 1, then we have φ(z)≥ 1
2 · for z > 0 and φ(z)≥ 1 for z≤ 0.

Lemma 2.8. [21] If |z| ≤ 1, then
(I) φ(z)≤ z

ez−1 , n is even ;
(II) φ(z)≥ z

ez−1 , n is odd.

Theorem 2.9. If a 6= 0, then the Euler-Maclaurin methods preserve the oscillation of Eq. (1.1) if and only if n is even.

Proof. According to Theorem 2.5 and Corollary 2.6, we can get the Euler-Maclaurin methods preserve the oscillation of (1.1)
if and only if

aea

ea−1 ≤−
aR(z)m

R(z)m−1 or a
ea−1 ≥

a
R(z)m−1

holds true. If a > 0, we have

ea

ea−1 ≥
R(z)m

R(z)m−1 or ea ≤ R(z)m.
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Since the function y = x
x−1 is decreasing, so

ea ≤ R(z)m.

Therefore,
φ(z)≤ z

ez−1
.

From Lemma 2.8, n is even. The case of a < 0 can be proved in the same way.

Theorem 2.10. If a 6= 0, then the Euler-Maclaurin methods preserve the non-oscillation of (1.1) if and only if n is odd.

From Theorem 2.5 and Corollary 2.6, we can get this proof.

Theorem 2.11. When a = 0, the Euler-Maclaurin methods preserve the oscillation and non-oscillation of (1.1) for any n ∈ N.

3. Relationship between stability and oscillation

From Theorem 1.2, we have the following corollary.

Corollary 3.1. The analytic solution of Eq. (1.1) is asymptotically stable as t→+∞, if and only if

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0.

Theorem 3.2. The numerical solution of Eq. (1.1) is asymptotically stable (xn→ 0 as n→ ∞) if and only if

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0.

Proof. According to (2.3) and (2.5), it is well known that xn→ 0 as n→ ∞ if and only if |λ̂ |< 1, where

λ̂ =
R(z)m + a0

a (R(z)m−1)
1− a1

a (R(z)m−1)

for a 6= 0, and

λ̂ =
1+a0

1−a1

for a = 0. So we have

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
> 0

for a 6= 0, and
(a0 +a1)(a1−a0−2)> 0

for a = 0. This completes the proof.

According to Corollary 2.6 and Corollary 3.1, we get the conclusion for the analytic solution.

Theorem 3.3. When a 6= 0, the analytic solution of Eq. (1.1) is
(A1) non-oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 <− aea

ea−1 and a1 ≥ a
ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 >− aea

ea−1 and a1 ≤ a
ea−1

holds true.
(A2) non-oscillatory and unstable if
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(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aea

ea−1 and a1 ≥ a
ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aea

ea−1 and a1 ≤ a
ea−1

holds true.
(A3) oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aea

ea−1 and a1 <
a

ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aea

ea−1 and a1 >
a

ea−1

holds true.
(A4) oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 <− aea

ea−1 and a1 <
a

ea−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
> 0, a0 >− aea

ea−1 and a1 >
a

ea−1

holds true.

According to Theorem 2.5 and Theorem 3.2, we get the corresponding conclusion for the numerical solution.

Theorem 3.4. When a 6= 0, the numerical solution of (1.1) is
(B1) non-oscillatory and asymptoticallystable if

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 <− aR(z)m

R(z)m−1 and a1 ≥ a
R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 >− aR(z)m

R(z)m−1 and a1 ≤ a
R(z)m−1

holds true.
(B2) non-oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aR(z)m

R(z)m−1 and a1 ≥ a
R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aR(z)m

R(z)m−1 and a1 ≤ a
R(z)m−1

holds true.
(B3) oscillatory and unstable if

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(ea+1)
ea−1

)
≤ 0, a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1

holds true.
(B4) oscillatory and asymptotically stable if

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 <− aR(z)m

R(z)m−1 and a1 <
a

R(z)m−1

or

(a+a0 +a1)
(

a1−a0− a(R(z)m+1)
R(z)m−1

)
> 0, a0 >− aR(z)m

R(z)m−1 and a1 >
a

R(z)m−1

holds true.

Theorem 3.5. When a = 0, the analytic solution and numerical solution of Eq. (1.1) are both
(C1) non-oscillatory and asymptotically stable if

(a0 +a1)(a1−a0−2)> 0, a0 <−1 and a1 ≥ 1
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or

(a0 +a1)(a1−a0−2)> 0, a0 >−1 and a1 ≤ 1.

(C2) non-oscillatory and unstable if

(a0 +a1)(a1−a0−2)≤ 0, a0 <−1 and a1 ≥ 1

or

(a0 +a1)(a1−a0−2)≤ 0, a0 >−1 and a1 ≤ 1.

(C3) oscillatory and unstable if

(a0 +a1)(a1−a0−2)≤ 0, a0 <−1 and a1 < 1

or

(a0 +a1)(a1−a0−2)≤ 0, a0 >−1 and a1 > 1.

(C4) oscillatory and asymptotically stable if

(a0 +a1)(a1−a0−2)> 0, a0 <−1 and a1 < 1

or

(a0 +a1)(a1−a0−2)> 0, a0 >−1 and a1 > 1.

4. Numerical examples

Consider the following equations

x′(t) =−x(t)−2x([t])+5x([t +1]), x(0) = 1, (4.1)

x′(t) = x(t)+4x([t])−3x([t +1]), x(0) = 1, (4.2)

x′(t) = x(t)+ x([t])+2x([t +1]), x(0) = 1, (4.3)

x′(t) =−2x(t)−3x([t])−2x([t +1]), x(0) = 1. (4.4)

From Theorem 1.1, the analytic solution of Eq. (4.1) is x(10)≈ 1.51037040806E−4 at t = 10. We listed the absolute errors
(AE) and the relative errors (RE) at n = 2 and t = 10 and the ratio of the errors of the case m = 20 over that of m = 40 . We
can see from Table 1 that the Euler-Maclaurin methods is of order 6 when n = 2. The Euler-Maclaurin methods have good
convergence for this kind of equations.
Further, from (4.1) we know that the coefficients are a =−1,a0 =−2,a1 = 5, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈ 9.6721 > 0,a0 <−

aea

ea−1
≈−0.5820 and a1 ≥

a
ea−1

≈ 1.5820,

so (A1) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 3, we have

z = ha =
a
m

=−0.02,B2 j = 2.3404×10−8,φ(z) = 1.0100,R(z) = 1+
z

φ(z)
= 0.9802.

Table 1: The errors of the Euler-Maclaurin methods (n = 2)

AE RE
m = 2 3.0083E−10 1.9918E−6
m = 3 2.6198E−11 1.7345E−7
m = 5 1.2172E−12 8.0591E−9
m = 10 1.8986E−14 1.2570E−10
m = 20 2.9751E−16 1.9697E−12
m = 40 4.0115E−18 2.6560E−14
ratio 74.16 74.16
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Because

φ(z)≥ z
ez−1

≈ 1.0100,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈ 9.6721 > 0,a0 <−

aR(z)m

R(z)m−1
≈−0.5820 and a1 ≥

a
R(z)m−1

≈ 1.5820,

so (B1) in Theorem 3.4 holds true.

From Figure 4.1 we can see that the analytic solution and the numerical solution of (4.1) are asymptotically stable and
non-oscillatory, which is agreement with Theorems 3.3 (A1) and 3.4 (B1).

Figure 4.1: The analytic solution (left) and the numerical solution (right, n = 3 ) of (4.1).

From (4.2) we know that the coefficients are a = 1,a0 = 4,a1 =−3, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈−18.3279≤ 0,a0 >−

aea

ea−1
≈−1.5820 and a1 ≤

a
ea−1

≈ 0.5820,

so (A2) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 3, we have

z = ha =
a
m

= 0.02,B2 j = 2.3404×10−8,φ(z) = 0.9900,R(z) = 1+
z

φ(z)
= 1.0202.

Because

φ(z)≥ z
ez−1

≈ 0.9900,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈−18.3279≤ 0,a0 >−

aR(z)m

R(z)m−1
≈−1.5820 and a1 ≤

a
R(z)m−1

≈ 0.5820,

so (B2) in Theorem 3.4 holds true.

From Figure 4.2 we can see that the analytic solution and the numerical solution of (4.2) are unstable and non-oscillatory,
which is agreement with Theorems 3.3 (A2) and 3.4 (B2).
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Figure 4.2: The analytic solution (left) and the numerical solution (right, n = 3 ) of (4.2).

From (4.3) we know that the coefficients are a = 1,a0 = 1,a1 = 2, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈−4.6558≤ 0,a0 >−

aea

ea−1
≈−1.5820 and a1 >

a
ea−1

≈ 0.5820,

so (A3) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 4, we have

z = ha =
a
m

= 0.02,B2 j = 2.3404×10−8,φ(z) = 0.9900,R(z) = 1+
z

φ(z)
= 1.0202.

Because
φ(z)≥ z

ez−1
≈ 0.9900,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈−4.6558≤ 0,a0 >−

aR(z)m

R(z)m−1
≈−1.5820 and a1 >

a
R(z)m−1

≈ 0.5820,

so (B3) in Theorem 3.4 holds true.
From Figure 4.3 we can see that the analytic solution and the numerical solution of (4.3) are unstable and oscillatory, which is
agreement with Theorems 3.3 (A3) and 3.4 (B3).

Figure 4.3: The analytic solution (left) and the numerical solution (right, n = 4 ) of (4.3).
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From (4.4) we know that the coefficients are a =−2,a0 =−3,a1 =−2, then

(a+a0 +a1)

(
a1−a0−

a(ea +1)
ea−1

)
≈ 11.3825 > 0,a0 <−

aea

ea−1
≈−0.3130 and a1 <

a
ea−1

≈ 2.3130,

so (A4) in Theorem 3.3 holds true. On the other hand, let m = 50,n = 4, we have

z = ha =
a
m

=−0.04,B2 j = 2.3404×10−8,φ(z) = 1.0201,R(z) = 1+
z

φ(z)
= 0.9608.

Because

φ(z)≥ z
ez−1

≈ 1.0201,

then we obtain

(a+a0 +a1)

(
a1−a0−

a(R(z)m +1)
R(z)m−1

)
≈ 11.3825 > 0,a0 <−

aR(z)m

R(z)m−1
≈−0.3130 and a1 <

a
R(z)m−1

≈ 2.3130,

so (B4) in Theorem 3.4 holds true.

From Figure 4.4 we can see that the analytic solution and the numerical solution of (4.4) are asymptotically stable and
oscillatory, which is agreement with Theorems 3.3 (A4) and 3.4 (B4).

Figure 4.4: The analytic solution (left) and the numerical solution (right, n = 4 ) of (4.4).

In particular, when a = 0, Eq. (4.1) becomes

x′(t) =−2x([t])+5x([t +1]), x(0) = 1, (4.5)

that is, a0 =−2,a1 = 5, so we have

(a0 +a1)(a1−a0−2) = 15 > 0, a0 <−1 and a1 ≥ 1,

so (C1) in Theorem 3.5 holds true.

From Figure 4.5 we also see that the analytic solution and the numerical solution of (4.5) are asymptotically stable and
non-oscillatory, which is agreement with Theorem 3.5 (C1).
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Figure 4.5: The analytic solution (left) and the numerical solution (right) of (4.5).

When a = 0, Eq. (4.2) becomes

x′(t) = 4x([t])−3x([t +1]), x(0) = 1, (4.6)

that is, a0 = 4,a1 =−3, so we have

(a0 +a1)(a1−a0−2) =−9≤ 0, a0 >−1 and a1 ≤ 1,

so (C2) in Theorem 3.5 holds true.
From Figure 4.6 we also see that the analytic solution and the numerical solution of (4.6) are unstable and non-oscillatory,
which is agreement with Theorem 3.5 (C2).

Figure 4.6: The analytic solution (left) and the numerical solution (right) of (4.6).

When a = 0, Eq. (4.3) becomes

x′(t) = x([t])+2x([t +1]), x(0) = 1, (4.7)

that is, a0 = 1,a1 = 2, so we have

(a0 +a1)(a1−a0−2) =−3≤ 0, a0 >−1 and a1 > 1,
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so (C3) in Theorem 3.5 holds true.
From Figure 4.7 we also see that the analytic solution and the numerical solution of (4.7) are unstable and oscillatory, which is
agreement with Theorem 3.5 (C3).

Figure 4.7: The analytic solution (left) and the numerical solution (right) of (4.7).

When a = 0, Eq. (4.4) becomes

x′(t) =−3x([t])−2x([t +1]), x(0) = 1, (4.8)

that is, a0 =−3,a1 =−2, so we have

(a0 +a1)(a1−a0−2) = 5 > 0, a0 <−1 and a1 < 1,

so (C4) in Theorem 3.5 holds true.
From Figure 4.8 we also see that the analytic solution and the numerical solution of (4.8) are asymptotically stable and
oscillatory, which is agreement with Theorem 3.5 (C4).

Figure 4.8: The analytic solution (left) and the numerical solution (right) of (4.8).
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5. Conclusion

In this paper, the Euler-Maclaurin methods are applied to discrete differential equations with piecewise constant arguments of
advanced and retarded type. We obtained the stability, oscillation conditions and convergence order of numerical methods. The
type of Euler-Maclaurin methods for solving differential equations with piecewise constant arguments is extended and the
results of corresponding literature are generalized. In the future, we will consider the application of the numerical method to
the multi-dimensional and fractional cases.
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Appendix A

The following code is the Matlab detail of Table 1.
%n = 2
syms d;
a =−1;
a0 =−2;
a1 = 5;
x0 = 1;
t = 10;
m = 2;
h = 1/m;
z = h∗a;
R1 = symsum(1/d∧2,1, in f );R1 = double(R1);
R2 = symsum(1/d∧4,1, in f );R2 = double(R2);
A = 1− z/2+R1∗ z∧2/(2∗ pi∧2)−R2∗ z∧4/(8∗ pi∧4);
R = 1+ z/A;
k1 = (R∧m+(a0/a)∗ (R∧m−1))/(1− (a1/a)∗ (R∧m−1));
x = zeros(1,11);
x(1) = x0;
for k = 1 : 10

x(k+1) = k1∗ x(k)
end
b0 = (exp(a)+(exp(a)−1)∗ (a0/a))/(1− (a1/a)∗ (exp(a)−1));
X = b0∧10;
AE = abs(x(11)−X)
RE = abs(AE/X)

Appendix B

The following code is the Matlab detail of Figure 4.1.
a =−1;
a0 =−2;
a1 = 5;
x0 = 1;
%t = 10;
m = 50;
h = 1/m;
z = h∗a;
for j = 1 : 3

for k = 1 : 10
B = 2∗ (−1)∧( j+1)∗ f actorial(2∗ j)∗ sum((2∗ k ∗ pi)∧(−2∗ j));
A = 1− z/2+ sum((B∗ z∧(2∗ j))/ f actorial(2∗ j));

end
end
R = 1+ z/A;
k1 = (R∧m+(a0/a)∗ (R∧m−1))/(1− (a1/a)∗ (R∧m−1));
x = zeros(1,12∗m);
%x(0) = x0;
x(m) = x0;
t = zeros(1,11∗m+1);
for k = 1 : 11

x(m∗ (k+1)) = k1∗ x(m∗ k);
for l = 0 : m−2

k2 = R∧(l +1)+(a0/a)∗ (R∧(l +1)−1);
k3 = (a1/a)∗ (R∧(l +1)−1);
x(k ∗m+ l +1) = k2∗ x(k ∗m)+ k3∗ x((k+1)∗m);

end
end
y = x(m : end);
for i = 0 : 11∗m
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t(i+1) = i/m;
end
subplot(1,2,2)
plot(t,y,′ r−′)
xlabel(′t ′);
ylabel(′x n′);
hold on;
for n = 0 : 10

for t = n : 0.01 : n+1
z = ((exp(a∗ (t−n))+(a0/a)∗ (exp(a∗ (t−n))−1))+(exp(a)+(a0/a)∗ (exp(a)−1))/(1− (a1/a)∗ (exp(a)−

1))∗ (a1/a)∗ (exp(a∗ (t−n))−1))∗ ((exp(a)+(a0/a)∗ (exp(a)−1))/(1− (a1/a)∗ (exp(a)−1)))∧n;
subplot(1,2,1)
plot(t,z,′ b− .′)
hold on

end
end
hold off
xlabel(′t ′);
ylabel(′x(t)′);
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