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INVERSE STEREOGRAPHIC HYPERBOLIC SECANT

DISTRIBUTION: A NEW SYMMETRIC CIRCULAR MODEL BY

ROTATED BILINEAR TRANSFORMATIONS

Abdullah YILMAZ

Department of Actuarial Sciences, Kirikkale University, TURKEY

Abstract. The inverse stereographic projection (ISP), or equivalently, bilin-

ear transformation, is a method to produce a circular distribution based on
an existing linear model. By the genesis of the ISP method, many impor-

tant circular models have been provided by many researchers. In this study,

we propose a new symmetric unimodal/bimodal circular distribution by the
rotated ISP method considering the hyperbolic secant distribution as a base-

line distribution. Rotation means that fixing the origin and rotating all other

points the same amount counterclockwise. Considering the effect of rotation
on the circular distribution to be obtained with the bilinear transformation,

it is seen that it actually induces a location parameter in the obtained cir-
cular probability distribution. We analyze some of the stochastic properties

of the proposed distribution. The methods for the parameter estimation of

the new circular model and the simulation-based compare results of these es-
timators are extensively provided by the paper. Furthermore, we compare the

fitting performance of the new model according to its well-known symmetric

alternatives, such as Von-Misses, and wrapped Cauchy distributions, on a real
data set. From the information obtained by the analysis on the real data,

we say that the fitting performance of the new distribution is better than its

alternatives according to the criteria frequently used in the literature.

1. INTRODUCTION

Circular or directional data are observed in various fields of science. Data on
angular observations can often be associated with compass measurements. Addi-
tionally, daily, weekly, or hourly observations obtained in the specific time period
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may be circular. Although it may seem attractive in some ways, processing and
evaluating such data linearly can lead to false results. In directional data, the start
and endpoints are neighbors despite having the furthest distance according to lin-
ear metric. As a simple example, the arithmetic mean of two angles 1 and 359
degrees is 180 degrees, although the circular average to be 0 degrees. Therefore, it
requires a special class of distributions known as circular probability distributions
to analyze such data.

Circular probability distributions are usually obtained by circularizing a known
linear probability distribution. The two most common methods for circularization
are wrapping and inverse stereographic projection (ISP). ISP method is based on bi-
linear transformations. Minh and Farnum [8] used bilinear transformations to map
points on the unit circle in the complex plane into points on the real line. Thus,
they used the stereographic projection as a transformation, to produces probability
distributions on the real line by circular models. It was clear that by the inverse of
this transformation (ISP), circular probability distributions could be obtained from
probability distributions on the real line. Many studies on circular distributions
obtained using the ISP method have been added to the literature. Yedlapalli, et
al [11] used to transformation on double Weibull distribution to obtain a symmetric
circular distribution. Kato and Jones [6] proposed a family of four-parameter distri-
butions on the circle that contains the Von Mises and wrapped Cauchy distributions
as special cases. Girija, et al [5] introduced stereographic double exponential dis-
tribution obtained by using double exponential (Laplace) distribution. The same
authors introduced the stereographic logistic model [2] in a later study. Yedlapalli,
et al [12] obtained semicircular (axial) model induced by using modified inverse
stereographic projection on Quasi Lindley distribution. The projection method
used in all these studies is based on the result obtained by Minh and Farnum [8]
in a study in which they introduced the induction of linear models with Möbius
transformations. Möbius transformation (bilinear, fractional linear or linear frac-
tional transformation) provides very convenient methods of finding a one-to-one
mapping of one domain into another. In a general form, Möbius transformation
can be written as

T (z) =
az + b

cz + d
, (1)

where a,b,c and d are complex or real valued coefficients and bc − ad 6= 0. This
transformation was proposed by Minh and Farnum [8] as a new method of generat-
ing probability distributions, which maps every point on a real line onto the point
on a unit circle. Their construction proceeds as follows. In order for T (z) to map
the unit circle on the real line, the constraints Im (c) 6= 0, ad = cb, and a 6= 0 must
be provided. Dividing all coefficients in Eq.(1) by a and imposing the requirement
T (−1) =∞ yields the transformation of the form

T (z) =
cz + c

z + 1
. (2)
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Finally, by taking c = u− iv and z = cos (θ) + i sin (θ), the transformation

x = T (θ) = T (cos (θ) + i sin (θ))

= u+ v
sin (θ)

1 + cos (θ)
= u+ v tan

(
θ

2

)
(3)

is obtained which is known as stereographic transformation. Inverse stereographic
projection yields a circular model when it applied to a linear model. If a random
variable is defined on the whole real line with probability density function (pdf)
f (.) and cumulative distribution function (cdf) F (.) then Θ = T−1 (X) is a random
point on the unit circle, with the pdf g (.) and the cdf G (.), respectively, defined as

g (θ) = f (T (θ))

∣∣∣∣ ddθT (θ)

∣∣∣∣ = f

(
u+ v tan

(
θ

2

))
v

cos(θ) + 1
, (4)

G (θ) = F (T (θ)) = F

(
u+ v tan

(
θ

2

))
, (5)

where θ ∈ [−π, π), u ∈ R and v > 0. Multiplying the coefficients in Eq.(1) by k
yields one to one and the same mapping, where k is an arbitrary (non-zero) complex
number. Since three complex numbers are sufficient to pin down the mapping, i.e.,
there exist a unique Mobius transformation sending any three points (z1, z2, z3) to
any other three points (w1, w2, w3) [9]. Consider the cross-ratio of three points

(z, z1, z2, z3) =
(z − z1) (z2 − z3)

(z − z3) (z2 − z1)
.

where zi 6= zj , i, j = 1, 2, 3 and i 6= j. Then there is a unique Mobius transformation
such that

(z, z1, z2, z3) = (w,w1, w2, w3) .

Moreover, it is known that rotation is to fix the origin and spin all other points
counter-clockwise by the same amount (see Fig.1). By this motivation, if we solve
the equation (

z, e−iα, e−i(α−π/2), e−i(α+π/2)
)

= (w, u, u+ v, u− v)

with respect to w, we have

w = Tα (z) = u− iv
(

1− 2

1 + eiαz

)
. (6)

Note that, multiplication z by eiα has a geometric effect of anti-clockwise rotation
about the origin by an angle of α ∈ [−π, π) . So, it is easy to see that Tα (z) =
T
(
eiαz

)
. Finally, by taking z = cos (θ) + i sin (θ) in Eq.(6), we have

x = Tα (θ) = Tα (cos (θ) + i sin (θ))

= u+ v tan

(
θ + α

2

)
. (7)
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Figure 1. Rotation by α, cross-ratio points z1, z2, z3 and pole (p).

Lemma 1. Pole of transformation in Eq.(6) is z = −e−iα.

Lemma 2. Inverse transformation of Tα is T−1
α (x) = 2 tan−1

(
x−u
v

)
− α.

Lemma 3. Let X be a random variable defined on (−∞,∞) with pdf f (.) and cdf
F (.) . Then Θ = T−1

α (X) is a circular random variable with pdf

g (θ;α) = f (Tα (θ))

∣∣∣∣ ddθTα (θ)

∣∣∣∣
= f

(
u+ v tan

(
θ + α

2

))
v

cos(θ + α) + 1
, (8)

and the corresponding cdf

G (θ;α) = F (Tα (θ)) = F

(
u+ v tan

(
θ + α

2

))
, (9)

where α ∈ [−π, π) , v > 0 and u ∈ R.

The probability density function given by the Eq.(8) provides three properties: i)
g(θ;α) ≥ 0 for ∀θ ∈ R, ii) g (.) is periodic with period 2π, iii)

∫
Γ
g (θ;α) dθ = 1 where

Γ is any interval of length 2π.

Proposition 4. A rotation of Mobius transformation given by the Eq.(2) will in-
duce a location parameter in the probability distribution given by the Eq.(4).

Proof. Proof is clear from lemma 3. �

Corollary 5. The quantile function of Θ = T−1
α (X) is

Q (t) = 2 tan−1

(
F− (t)− t

v

)
− α, (10)
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where t ∈ (0, 1) , F− (t) = inf {x ∈ R : F (x) ≥ t} and F (.) is the cdf of random
variable X.

Proposition 6. Let X be a symmetric random variable around E(X) = u. The
random variable Θ defined as Θ = T−1

α (X) has a symmetrical distribution around
−α.

Proof. If X is symmetric around E(X) = u then, F− (1/2) = u and F−
(

1
2 − r

)
+

F−
(

1
2 + r

)
= 2u, where 0 < r < 1/2 and F−is the quantile function of X. Thus

Q
(

1
2

)
= −α and

Q
(

1
2 − r

)
+Q

(
1
2 + r

)
= 2 tan−1

(
F−( 1

2−r)−u
v

)
+ 2 tan−1

(
F−( 1

2 +r)−u
v

)
− 2α

= 2 tan−1

(
u−F−( 1

2 +r)
v

)
+ 2 tan−1

(
F−( 1

2 +r)−u
v

)
− 2α

= −2α.

Hence Θ has a symmetrical distribution around −α. �

Corollary 7. Since the distribution of Θ is symmetrical about −α

µ = atan (E(sin Θ), E(cos Θ))

= −α,

(E(sin Θ), E(cos Θ) <∞) where atan (., .) is quadrant inverse tangent function de-
fined as

atan (s, c) =


tan−1 (s/c) , c > 0, s ≥ 0

π/2 , c = 0, s > 0
tan−1 (s/c) + π , c < 0
tan−1 (s/c) + 2π , c ≥ 0, s < 0

undefined , c = 0, s = 0

.

In the following section, we show an application of the T−1
α transformation to hy-

perbolic secant distribution. We introduce the methods for estimating the location
parameter induced by T−1

α in the relevant subsections. Also, that section includes
the basic properties of the obtained circular distribution and an application to a
real-life data set.

2. Induce Inverse Stereographic Hyperbolic Secant Model with
Rotated Bilinear Transformations

Suppose X follows hyperbolic secant distribution, then cdf and pdf of X are

F (x) =
2

π
tan−1

(
e
π
2 x
)
, (11)

f (x) =
1

2
sech

(π
2
x
)
, x ∈ R (12)
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respectively. This distribution is also called the inverse-cosh distribution because
of the hyperbolic secant function is equivalent to the reciprocal hyperbolic cosine
function. Note that the pdf given by Eq.(12) is symmetrical around E (X) = 0.
By considering the Eq.(8) and Eq.(9) with Eq.(12) and Eq.(11), we obtain the cdf
and pdf of the inverse stereographic hyperbolic secant distributed random variable
Θ = T−1

α (X) as

G (θ;α, v) =
2

π
tan−1

(
e

1
2πv tan(α+θ

2 )
)
, (13)

g (θ;α, v) =
v

2 (1 + cos(α+ θ))
sech

[
πv

2
tan

(
α+ θ

2

)]
, (14)

respectively, where v > 0 is the scale parameter and α ∈ [−π, π) is the location
parameter. In the rest of this paper, a random variable Θ having cdf as in Eq.(13)
and pdf as in Eq.(14) will be denoted as Θ ∼ ISHS (α, v) . Figure 2 illustrates the
some of possible shapes of the pdf ofrandom variable Θ ∼ ISHS (α, v) for different
values of the parameters α and v.
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Figure 2. Pdf of ISHS (α, v) for different values of α and v.

Figure 2 shows that increasing α values cause counterclockwise rotation, and
increasing v value causes an increase in angular concentration. The modality be-
havior of the ISHS distribution depends only the v parameter. For v < 0.900316,
the distribution is bimodal. The modality behavior is studied more detailed in
Subsection 2.3.

The inverse cdf of hyperbolic secant distribution is F−1 (t) = − 1
π log

(
cot2

(
1
2πt
))
.

Thus, the quantile function of ISHS (α, v) can be easily obtained from Eq.(10) as

Q (t) = −α− 2 tan−1

[
1

πv
log

(
cot2

(
πt

2

))]
, (15)
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where t ∈ (0, 1) .

2.1. Location, Dispersion and Median. For a circular random variable, the pth
cosine moment is defined as cp = E(cos pΘ), and the pth sine moment is defined
as sp = E(sin pΘ) [7]. Thus, the mean direction is calculated as µ = atan (s1, c1),
where atan (., .) is quadrant inverse tangent function. The explicit analytical forms
of cp and sp values can not be obtained for random variable Θ ∼ ISHS (α, v).
However, according to proposition 6 and corollary 7, it is clear that

µ = atan (s1, c1) = −α.

The first trigonometric moments of Inverse Stereographic Hyperbolic Secant distri-
bution are calculated numerically and presented in Figure 3. The following propo-
sitions give useful results for the location parameter of the ISHS distribution.

Proposition 8. Θ ∼ ISHS (α, v)⇔ −Θ ∼ ISHS (−α, v) .

Proposition 9. Θ ∼ ISHS (α, v)⇔ Θ + k ∼ ISHS (α− k, v)

The length of mean direction vector is a measure of angular concentration around
the mean and it is calculated as ρ =

√
c21 + s2

1. By using the value of ρ, the circular
variance is calculated as V = 1− ρ and the circular standard deviation calculated
as σ =

√
−2 ln ρ. These three characteristics are illustrated in Figure 4 for different

values of v.
As a measure of asymmetry, the skewness coefficient for the circular distribution

is calculated as γ1 = s2V
−3/2, where sp denotes the pth central sine moment which

is defined as sp = E [sin p (Θ− µ)]. According to the following proposition, the
skewness coefficient of the ISHS (α, v) distribution are zero for every v > 0.

Proposition 10. All central sine moments of ISHS (α, v) distribution is zero.

Proof. Since g (θ;α, v) is periodic with period 2π and µ = −α, we have

sp = E [sin p (Θ− µ)] =

∫ θ0+2π

θ0

sin [p (θ − µ)] g (θ;α, v) dθ

=

∫ π−α

−π−α
sin [p (θ + α)] g (θ;α, v) dθ.

According to proposition 9 g (θ;α, v) = g (θ + α; 0, v) , and according to proposition
6 g (θ; 0, v) is an even function. Thus, we can write sp as

sp =

∫ π

−π
sin (pθ) g (θ; 0, v) dθ = 0

since sin (pθ) g (θ; 0, v) is an odd function. �

The kurtosis coefficient of a circular distribution is calculated as
γ2 =

(
c2 − ρ4

)
(1− ρ)

−2
, where cp denotes the pth central cosine moment and
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defined as cp = E [cos p (Θ− µ)]. The change of the γ2 value according to the
parameter v of ISHS (α, v) distribution is shown in Figure 4.

1 2 3 4 5 6 7 8 9 10

v

0

0.5

1

1.5

2

2.5

3

α

-0.80255

-0.80255

-0.62421

-0.62421

-0.44586-0.44586

-0
.2

6
7
5
2

-0.26752-0.26752

-0
.2

6
7
5
2

-0
.0

8
9
1
7
3

-0.089173-0.089173

-0
.0

8
9
1
7
3

0.0891730.089173

0
.0

8
9
1
7
3

0
.0

8
9
1
7
3

0.267520.26752

0
.2

6
7
5
2

0
.2

6
7
5
2

0.445860.44586

0
.4

4
5
8
6

0.62421

0.6
2421

0.80255

0.80255

1 2 3 4 5 6 7 8 9 10

v

0

0.5

1

1.5

2

2.5

3

α

-0.82594

-0.82594

-0.82594
-0.82594

-0.67149
-0.67149

-0
.6

7
1
4
9

-0.67149

-0.51703

-0.51703

-0
.5

1
7
0
3

-0.51703 -0.51703

-0.36258

-0.36258

-0
.3

6
2
5
8

-0.36258 -0.36258

-0.20813-0.20813

-0
.2

0
8
1
3

-0
.2

0
8
1
3

-0.20813 -0.20813

-0.053674-0.053674

-0
.0

5
3
6
7
4

-0
.0

5
3
6
7
4

-0.053674 -0.053674

0
.1

0
0
7
8

0
.1

0
0
7
8

0
.2

5
5
2
3

0
.4

0
9
6
9

0
.5

6
4
1
4

Figure 3. Contour plots for first cosine moment (left panel) and
first sine moment (right panel) according to α and v.

The median direction (M) and the interquartile range (Iqr) of ISHS (α, v) dis-
tribution are easily obtained from Eq.(15), as follows, respectively:

M = Q

(
1

2

)
= −α, (16)

IqrΘ = Q (.75)−Q (.25)

= 2

(
tan−1

[
2 log

(
cot
(
π
8

))
πv

]
− tan−1

[
2 log

(
tan

(
π
8

))
πv

])

' 4. tan−1

(
0.5611

v

)
.

2.2. Entropy. The entropy is a measure of variation or uncertainty of a random
variable. Following the formal definition of the entropy, the entropy of the random
variable Θ ∼ ISHS (α, v) is

HΘ = −
∫

Γ

g (θ;α, v) ln g (θ;α, v) dθ,

where Γ is any interval of length 2π. Since Θ is 2π periodic

HΘ = −
∫

Γ

g (θ; 0, v) ln g (θ; 0, v) dθ

= −v
∫

Γ

sech
(

1
2πv tan

(
θ
2

))
2 cos(θ) + 2

log

(
v

sech
(

1
2πv tan

(
θ
2

))
2 cos(θ) + 2

)
dθ. (17)
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We could not get an explicit analytical form of the integral in Eq.(17). Therefore,
we numerically calculated the HΘ with respect to v and illustrated in Figure 4.
Note that the entropy of the circular uniform distribution is ln (2π) and this is
the maximum entropy any circular distribution may have. Figure 4 shows that
the maximum value of the HΘ is below this value. The entropy of the ISHS
distribution attains its maximum value when the circular variance is maximized or
equivalently angular concentration minimized. Thus one can write

v∗ = argmax v>0HΘ = argminv>0 c1

= argminv>0

∫
Γ

cos (θ) g (θ; 0, v) dθ

= argminv>0

∫ π

0

cos (θ) g (θ; 0, v) dθ.

Since the minimum value of the first cosine moment is zero, the value of v∗ is
obtained by solving the equation∫ π

0

cos (θ) g (θ; 0, v) dθ = 0

with respect to v. Using the bisection method, we observed that v∗ ' 0.521567.
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Figure 4. Values of ρ,V ,σ (left axis) and γ2 (right axis) according
to v (left panel). Entropy and ρ values according to v (right panel).

2.3. Modality. The ISHS distribution is unimodal or bimodal depending on the
value of the v parameter. Therefore, it will be sufficient to examine the modality
behavior of the g (θ; 0, v) function, which is symmetric about 0 when Γ = [−π, π).
The first and second derivates of g (θ; 0, v) with respect to θ are

g′ (θ; 0, v) = −
v sech

(
1
2πv tan

(
θ
2

)) (
πv tanh

(
1
2πv tan

(
θ
2

))
− 2 sin(θ)

)
4(cos(θ) + 1)2
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and

g′′ (θ; 0, v) =
v sech

(
1
2πv tan

(
θ
2

))
8(cos(θ) + 1)3

×

4 cos(θ)− 2 cos(2θ) + 6 + πv

 −2πv sech2
(

1
2πv tan

(
θ
2

))
−6 sin(θ) tanh

(
1
2πv tan

(
θ
2

))
+πv


respectively. Since g (θ; 0, v) is symmetric around 0, θ = 0 is a saddle point, ie
g′ (0; 0, v) = 0. If this point is a local minimum, then g′′ (0; 0, v) > 0. Thus,
ISHS distribution is bimodal when g′′ (0; 0, v) = −64−1v

(
π2v2 − 8

)
> 0 ⇐⇒ v <

2
√

2/π ' 0.900316.

2.4. Order Statistics. Let Θ1,Θ2, ...,Θn be a random sample from ISHS (α, v)
distribution and let Θ(1) ≤ Θ(2) ≤ . . . ≤ Θ(n) denote the order statistic for this
sample. Then, the pdf of the random variable Θ(i), i = 1, 2, ..., n is obtained as

hΘ(i)
(θ;α, v) =

n!

(i− 1)!(n− i)!
G(θ;α, v)i−1g(θ;α, v)(1−G(θ;α, v))n−i

=
2i−2π1−ivn! tan−1

(
e

1
2πv tan(α+θ

2 )
)i−1

(i− 1)!(n− i)!(cos(α+ θ) + 1)
(18)

× sech

(
1

2
πv tan

(
α+ θ

2

))1−
2 tan−1

(
e

1
2πv tan(α+θ

2 )
)

π

n−i

.

The pdf of first order (minimum) and nth order (maximum) statistics can be im-
mediately calculated from Eq.(18) as

hΘ(1)
(θ;α, v) =

sech
(

1
2πv tan

(
α+θ

2

))
2 cos(α+ θ) + 2

nv

1−
2 tan−1

(
e

1
2πv tan(α+θ

2 )
)

π

n−1

and

hΘ(n)
(θ;α, v) =

sech
(

1
2πv tan

(
α+θ

2

))
(cos(α+ θ) + 1)

2n−2π1−nnv tan−1
(
e

1
2πv tan(α+θ

2 )
)n−1

,

respectively.

2.5. Inference. In this section, we consider estimating the unknown parameters
of ISHS (α, v) distribution. We will use tree methods commonly used in the liter-
ature, such as, maximum likelihood (ml), weighted least-squares (ls) and moments
estimation (me) methods. Finally, a Monte-Carlo simulation study will be given to
show and compare the performance of ml, me and ls estimators.
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2.5.1. Maximum Likelihood Estimation. Let Θ1,Θ2, ...,Θn be a random sample
from ISHS (α, v) distribution. By considering the random variables Θi, i = 1, 2, ..., n,
The logarithmic likelihood function of α and v can be written as

L (α, v; θ1, θ2, ..., θn) =

n∑
i=1

log

[
1

4
v sec2

(
α+ θi

2

)
sech

(
1

2
πv tan

(
α+ θi

2

))]
.

If the first derivatives of this log-likelihood function with respect to parameters α
and v are taken and equalized them to zero, then we have the following normal
equations

∂L

∂α
=

n∑
i=1

tan

(
1

2
(α+ θi)

)
−1

4
πv

n∑
i=1

sec2

(
α+ θi

2

)
tanh

(
1

2
πv tan

(
α+ θi

2

))
= 0

(19)
and

∂L

∂v
=
n

v
− π

2

n∑
i=1

tan

(
α+ θi

2

)
tanh

(
1

2
πv tan

(
α+ θi

2

))
= 0. (20)

Let us denote the ml estimates of the parameters α and v as α̂ML and v̂ML, respec-
tively. Hence, α̂ML and v̂ML can obtained from the collective solution of Eq.(19)
and Eq.(20). However, these equations do not have an analytical solution. So α̂ML

and v̂ML must be obtained numerically.

2.5.2. Weighted Least Square Estimation. A well-known modification of least square
estimation method is the weighted least square, which has a lower bias than the
ordinary least square estimation. Let us consider the ordered random sample
θ(1) <···< θ(n) from ISHS (α, v) distribution. The weighted least square estimates
of the parameters, say α̂LS and v̂LS are obtained by minimizing

n∑
j=1

(n+ 1)
2

(n+ 2)

j (n− j + 1)

[
2

π
tan−1

(
e

1
2πv tan

(
α+θ(j)

2

))
− j

n+ 1

]2

, (21)

with respect to α and v. Where j
n+1 is the expectation of the empirical distribution

function of the ordered data, see Swain et al. [10]. Numerical methods can be used
to minimize Eq.(21).

2.5.3. Method of Moment Estimation. Let us start by expressing the sample trigono-
metric moments for circular data [7]. The pth order sample cosine moment is defined
as

Cp =
1

n

n∑
i=1

cos (pθi) ,

and sample sine moment is defined as

Sp =
1

n

n∑
i=1

sin (pθi) .
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Now consider the random sample θ1, θ2, . . . , θn from the ISHS (α, v) distribution.
Moment estimates of α and v (α̂ME and v̂ME) are obtained from the collective
solution of equations

C1 − c1 = 0, (22)

and

S1 − s1 = 0 (23)

by using numerical methods, where c1 = E(cos Θ) and s1 = E(sin Θ).

2.5.4. Monte-Carlo Simulation Study. We perform some Monte-Carlo experiments
to compare the performance of ml, ls, and me estimators in different sample sizes.
We consider n = 50, 100, 500, and 1000 sample sizes and the repitation of the
simulation is set as 100 times in each sample size. The algorithm below has been
run for different parameter sets and the results are shown in Table 1.

Step 1. Select n and set values of the parameters α and v.
Step 2. Generate n random numbers from U (0, 1) → un×1.
Step 3. Calculate Q (un×1)→ θn×1, where Q (.) as Eq.(15).
Step 4. Get α̂ML and v̂ML from the collective solution of Eq.(19) and Eq.(20).

Get α̂LS and v̂LS from minimazing Eq.(21).
Get α̂ME and v̂ME from the collective solution of Eq.(22).and Eq.(23).

Step 5. Repeat Step 2 to Step 4 for N = 100 times.
Step 6. Calculate the |Bias (.)| and Mse (.) values of the α̂ and v̂ estimators

for each ml, ls, and me estimates.

As we discussed in relevant sections, the referred equations in Step 4 have no an-
alytical solutions. We carried out the programming in Matlab and used the ’fsolve’
subroutine to solve Eq.(19), Eq.(20), Eq.(22), and Eq.(23). For the minimization
problem in Eq.(21), we used the ’fmincon’ subroutine. In all routines, the initial
values of parameters were taken as −m1 = − atan

(
S1, C1

)
for α and 1 for v.

According to the results in Table 1, it is seen that the Bias and MSE values
decrease to zero as the sample size increases for the estimation of parameters α and
v by all three methods. This shows that the estimates are precise and accurate,
hence, we say that it is consistent and unbiased. It is known that ml estimators
are asymptotically unbiased estimators. So, the results in Table 1 agree with ex-
pectations for ml estimators. In addition, simulation results show that the other
estimators have the same characteristics.
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Table 1. Simulated Bias and MSE values of parameter estimates
for different sample sizes and parameter values.

α = π/2 α = −π/4
α̂ v̂ α̂ v̂

Method n Bias MSE Bias MSE Bias MSE Bias MSE

v=3 ML 50 .0067 .0058 .0551 .1663 .0021 .0068 .0950 .2064

100 .0051 .0031 .1007 .0840 .0098 .0033 .0533 .0954

500 .0017 .0007 .0057 .0160 .0019 .0006 .0204 .0163

1000 .0017 .0003 .0040 .0068 .0018 .0003 .0104 .0067

ME 50 .0066 .0058 .0619 .1703 .0026 .0070 .1012 .2169

100 .0057 .0031 .1007 .0831 .0075 .0032 .0605 .1005

500 .0023 .0007 .0031 .0171 .0018 .0006 .0198 .0168

1000 .0016 .0003 .0038 .0070 .0016 .0003 .0070 .0070

LS 50 .0070 .0057 .0226 .1883 .0018 .0071 .0088 .2178

100 .0052 .0030 .0745 .0910 .0081 .0032 .0177 .1029

500 .0020 .0007 .0082 .0178 .0021 .0006 .0171 .0171

1000 .0015 .0003 .0062 .0072 .0019 .0003 .0099 .0071

v=6 ML 50 .0049 .0015 .1384 .6167 .0064 .0014 .0302 .4931

100 .0024 .0010 .0401 .2787 .0005 .0010 .0963 .3519

500 .0021 .0001 .0189 .0554 .0024 .0002 .0165 .0556

1000 .0003 .0001 .0072 .0264 .0002 .0001 .0085 .0284

ME 50 .0049 .0017 .2071 .5840 .0047 .0017 .0538 .5626

100 .0031 .0010 .0710 .2968 .0001 .0011 .1093 .4181

500 .0020 .0001 .0502 .0677 .0024 .0002 .0132 .0626

1000 .0005 .0001 .0270 .0305 .0007 .0001 .0029 .0321

LS 50 .0049 .0016 .0183 .8181 .0062 .0015 .0939 .5589

100 .0026 .0010 .0021 .3388 .0005 .0010 .0534 .3494

500 .0022 .0001 .0037 .0595 .0024 .0002 .0130 .0605

1000 .0003 .0001 .0049 .0292 .0003 .0001 .0159 .0292

v=0.75 ML 50 .0062 .0114 .0342 .0115 .0117 .0125 .0298 .0122

100 .0105 .0068 .0126 .0043 .0008 .0056 .0086 .0042

500 .0046 .0011 .0023 .0008 .0015 .0011 .0018 .0010

1000 .0008 .0005 .0005 .0004 .0028 .0005 .0014 .0005

ME 50 .0776 .4152 .0358 .0235 .0130 .4464 .0203 .0266

100 .0825 .2560 .0102 .0092 .0658 .2579 .0059 .0097

500 .0111 .0254 .0044 .0010 .0170 .0256 .0003 .0012

1000 .0235 .0108 .0016 .0005 .0111 .0105 .0023 .0005

LS 50 .0232 .0412 .0324 .0159 .0107 .0309 .0202 .0140

100 .0219 .0147 .0074 .0049 .0058 .0139 .0045 .0050

500 .0003 .0026 .0019 .0008 .0023 .0028 .0021 .0011

1000 .0003 .0014 .0001 .0004 .0001 .0013 .0015 .0005
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2.6. Real Data Example. In this section, we study the modeling behavior of the
ISHS distribution on a real-life dataset. We consider the termite mounds data in
Appendix B.13 (set 7) of Fisher [3]. The data consist of n = 66 termite mounds
orientations of Amitermes laurensis in the Cape York Peninsula, North Queensland.
We obtained the parameter estimates by using Matlab’s ’fmincon’ and ’fsolve’ sub-
routines. In these subroutines, the parameter ranges were chosen as wide as possible
to avoid local maxima. The initial values were set to −m1 = − atan

(
S1, C1

)
for

α and 1 for v. In order to make comparisons, we chosed the Von-Mises (VM) and
Wrapped Cauchy (WC) distributions as well-known alternatives from the location
family for modeling symmetrical circular data. Table 2 shows the parameter esti-
mates for each models, and Figure 5 illustrates the fitted pdfs and cdfs. The ISHS
parameters were estimated with three methods; ml, me and ls. Table 2 also includes
the mean direction and resultant length estimates for each models, and the values
of these characteristics obtained from the sample.

Table 2. Parameter estimates, estimated mean direction and re-
sultant length for termit mounds data.

Model Method Parameters Mean Res. Iqr

α̂ v̂ Direction Length

ISHS ML -3.0527 6.7146 3.0527 (174.91◦) 0.9596 0.3335

ME -3.0381 6.4753 3.0381 (174.07◦) 0.9569 0.3457

LS -3.0551 6.9872 3.0551 (175.04◦) 0.9625 0.3205

µ̂ κ̂
VM ML 3.0381 11.8567 3.0381 (174.07◦) 0.9569 0.3968

µ̂ γ̂
WC ML 3.0485 0.14748 3.0485 (174.66◦) 0.8566 0.2974

Sample - - - 3.0381 (174.07◦) 0.9569 0.3491

Table 3 contains Log-likelihood (LL), the Akaike and Bayesian information crite-
ria (AIC and BIC), Watson’s U2(W2) statistics values, Kolmogorov-Smirnov (KS)
and Chi square tests statistics with p-values. Here, it is seen that the data fit all
the distributions selected (p > 0.05). However, it can be said that the proposed
ISHS model is the model that best fits the data since it has the smallest values in
all model selection criteria.
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Table 3. Summary of fits for termit mounds data.

Model -LL AIC BIC W2 K-S (p) Chi sq.(p)
ISHS ML 10.559 25.118 29.497 .040 .06 (.9478) 3.24 (.3557)

ME 10.710 25.419 29.799 .038 .06 (.9487) 3.70 (.2953)

LS 10.628 25.255 29.634 .054 .09 (.6460) 3.05 (.3836)

VM ML 13.537 31.073 35.453 .104 .11 (.3393) 6.21 (.1017)

WC ML 16.768 37.537 41.916 .085 .10 (.4779) 5.52 (.1372)

Plots of the fitted densities are shown in Figure 5. Left panel of this figure
represents the circular data plot, fitted pdfs of the ISHS distribution with ml, me
and ls estimates, fitted vm and wc models. The arrow points out the sample mean
resultant vector

m1 = atan
(
S1, C1

)
= 3.0381 (174.07◦) ,

and resultant length

r1 =

√
C

2

1 + S
2

1

= 0.4971,

where C1 and S1 the first order sample cosine and sine moments, respectively.
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Figure 5. Plots for termite mounds data. Circular data plot,
fitted circular pdfs (left) linear histogram and fitted pdfs (center),
empirical cdf and fitted cdfs (rigth).

All models estimated the average orientation of the mounds to be almost south.
The ISHS model with ME estimates gave the mean orientation and resultant length
the same as in the sample. This is an expected result for moment estimators.
Same thing valid for the VM model. However, when we compare the modeling
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performances with the values in Table 3, we see that the ISHS model is better than
both the VM and the WC model.

3. Conclusion

After Minh and Farnum [8] introduced the ISP method, a number of researchers
have introduced many circular distributions by employing the ISP method. In some
of these (for example; [1], [4] and [6]), the authors added a location parameter to the
circular distributions in their studies. In fact, the location parameter to be added
to the circular probability distributions obtained by the ISP method corresponds
to the rotation property of bilinear transforms. Here, the rotation means fixing the
origin and rotating all other points by the same amount and counterclockwise. In
this study, we considered rotation in bilinear transformations and used the rotated
inverse stereographic projection (T−1

α ) to obtain a new circular model. Thus, we
showed that the circular model to be obtained by the T−1

α (X) transformation will
naturally belong to the location family of the distributions. Before the section in-
cluding the application of the method, we gave some propositions and theorems
that are useful when the transformation is applied to especially symmetric dis-
tributions. In the study, we applied T−1

α to the hyperbolic secant distribution.
Thus, we obtained a symmetrical circular distribution with two parameters. One
of these parameters is the location parameter and induced by rotated inverse stere-
ographic projection T−1

α . To estimate the unknown parameters of the introduced
distribution, the maximum likelihood, the weighted least squares, and the moment
estimators are obtained. By a conducted Monte Carlo simulation study, we show
that, as the sample size increases, both Bias and MSE values decrease for all esti-
mation methods. Finally, we used the introduced distribution on a real dataset. To
compare the fitting performance, we considered the Von-Mises distribution (also
known as the circular normal distribution) and Wrapped Cauchy distribution as
well-known symmetric alternatives. We observed that the fitting performance of
the obtained distribution according to the measures frequently used in the literature
is better than both Von-Mises and Wrapped Cauchy distribution.
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