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ABSTRACT 
 

A mammographic feature extraction scheme through textural and geometrical descriptors is examined to implement in a 

computer-aided diagnosis system for breast cancer diagnosis in this paper. This scheme is verified on a selected subset of 

suspicious regions (Region of Interest – ROI) detected on a publicly available mammogram image database constructed by the 

Mammographic Image Analysis Society. The ROI detection is succeeded using the Chan-Vese active contour modelling after 

some pre-processing operations which are median filtering, morphological operations, and a region-growing method performed 

for digitization noise reduction, artifact suppression and background removal, and pectoral muscle removal, respectively, 

applied on mammogram images. Then, a new adaptive convex hull approach is introduced for extracting geometrical 

descriptors of ROIs accompanied by the Haralick features extracted from the gray-level co-occurrence matrices for textural 

description. In addition to geometrical and textural features, a hybrid mammographic feature vector is constructed by 

concatenating these features. All three feature vectors are separately utilized to diagnose ROIs via Random Forest classifier 

using 5-fold cross-validation. Experimental studies show that the textural features diagnose benignity more specifically and 

malignancy more accurately; and they are more effective on discriminating healthy ROIs when concatenated with geometrical 

features. Hence, a feature combination of these three features is proposed for diagnosis. The proposed feature combination is 

determined to be more effective for more accurate diagnoses of benignity and malignancy. 
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1. INTRODUCTION 
 

Early diagnosis of breast cancer gains more importance since breast cancer is the most common type of 

cancer in the female populace and the number of related demises is increasing day by day [1]. Hence, 

breast imaging techniques need to be evaluated in terms of their usability for early diagnosis. Today’s 

technology allows breast imaging via mammography, breast Magnetic Resonance Imaging (MRI), 

sonography, Computer Tomography (CT), Positron Emission Tomography (PET), and thermography 

[2, 3]. Although breast MRI can be used as primer imaging for patients having high risk of breast cancer, 

it is usually performed after a patient is diagnosed with cancer to assess the extent of it [2, 3]. Similarly, 

CT and PET are used to evaluate metastasis or response to therapy [2]. Thermography has the risk to 

increase the false negative and false positive measurements due to asymmetric internal body temperature 

[3]. Sonography, on the other hand, has limitations of low-resolution images and low sensitivity [2, 3]. 

Mammography, despite holding bounded information because of not much different X-ray permeability 

of healthy and cancerous cells due to low dose radiation application and not being suitable for dense 

breast, is a well-known and mostly used radiological imaging technique for early diagnosis of breast 

cancer diagnosis [2-5]. Besides, re-analysing mammography images via Computer Aided Diagnosis 

(CAD) systems can give the chance of early diagnosis, despite the lack of information and reduce the 

breast cancer-caused mortality rate [6-8]. 
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CAD systems designed for breast cancer diagnosis are responsible for both detection and diagnosis of 

this disease. This responsibility requires four fundamental stages. Difficulties for the detection phase of 

the CAD systems, such as low contrast of the images, digitization noise, labelling artifacts, background, 

and pectoral muscles in whole breast mammograms, are eliminated in the pre-processing stage. The 

second stage is the detection of suspicious regions, called as ROIs, for breast cancer. The descriptive 

and discriminative features of the ROIs are then extracted in the third stage, and finally, diagnosis is 

achieved using these features in the classification stage. 

 

The feature extraction stage of any CAD system directly affects the system performance by the way 

how data is represented. Besides utilizing statistical features [9-18] for breast cancer diagnosis, use of 

mammographic features [17, 19-22] like shape, spicule index, contour, size, density, and brightness 

would be more consistent through a radiologist's evaluation. Although pixel intensity is a sufficient 

measure for brightness, additional textural information [11, 16, 17, 23-25] is required for density 

determination as well as geometrical techniques [16, 26-30] should be used for shape and contour 

definition. In addition, subspace projections are also used for breast cancer diagnosis in the literature 

[31, 32]. 

 

In medical science, radiologists analyse the suspicious regions in a mammography image by their size, 

density, shape, contour traceability, and accompanying findings. It is known that radiolucent, regular-

shaped, and bounded-contoured ROIs sign the benign cancer possibility while radiopacity, irregular-

shape and unbounded-contour increase the risk of malignancy [33]. Besides, radiologists state that the 

breast tissue type directly affects the interpretation above symptoms. Therefore, a radiologist leaded 

especially for extracting some geometrical descriptors in the earlier phases of this study before some 

mathematical and geometrical expressions are developed. Under these circumstances, textural, and 

geometrical feature extraction techniques such as Centroid Distance (CD) approach [29] and Edge Step 

(ES) approach [30] are thought to be descriptive for health status. Accordingly, feature vectors defining 

ROIs’ textural and geometrical structures are examined via a pre-designed CAD system [34, 35] for 

breast cancer diagnosis, in this paper. Noise reduction, background removal, artifact suppression, and 

pectoral muscle removal are carried out [34] and the ROIs are identified [22] in the pre-processing and 

detection stages of this CAD system, respectively. In the feature extraction stage, an Adaptive Convex 

Hull (ACH) approach is examined for geometrical feature extraction while textural formation of ROIs 

is formalized by Haralick features [36-38] computed from Gray-Level Co-Occurrence Matrix (GLCM) 

of mammogram ROIs. These features are utilized in the classification stage using a 5-fold cross-

validation technique via Random Forest classifier.  

 

This paper is organized as follows. The database used in this paper is introduced in the following section 

where the theoretical explanations on the applied methods for each of above-mentioned stages are also 

given. The experimental studies including feature vector construction, classification, and performance 

evaluation are described in Section 3. In Section 4, the achieved results are specified and extendedly 

discussed while the main conclusions are given in the last section. 

 

2. MATERIALS AND METHODS 

 

2.1. Database 
 

The discriminative power of the geometrical and textural features is discussed over the health status 

classification results verified on the publicly available Mammographic Image Analysis Society (MIAS) 

digital mammogram database [39]. This database comprises two-breast Mediolateral Oblique (MLO) 

view mammography images of 161 objects having fatty, fatty-glandular, and dense tissue types with 

330 diagnoses as 207 normal, 69 benign cancers and 54 malignant cancers, at a size of 1024×1024 and 

resolution of 8 bits/pixel in “. pgm” imaging format, with their ground truth information. Figure 1 shows 

sample images for each breast tissue type in columns and health status in rows. 
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Figure 1.  Sample mammography images from the MIAS database [34]. 

 

2.2. Pre-Processing 
 

The ROIs in a mammography image typically differs through brighter intensity levels from the breast 

parenchyma. However, as it is clearly seen in Figure 2, the presence of low- and/or high-level labelling 

artifacts and pectoral muscles in a mammogram also have brighter intensity levels than the breast 

parenchyma. Hence, a pre-processing stage is necessitated for a successful ROI detection process.  

 

 

 

Figure 2. Sample MLO-view mammography image [34]. 

 

 

Initially, all mammography images are resized to a size of 256×256 using bi-cubic interpolation, for 

ease of operation, and adaptive median filter is applied on mammography images for digitization noise 

reduction while preserving gross details such that pectoral muscle and ROI edges [34]. Then, labelling 

artifacts are suppressed and the background is removed by defining the breast parenchyma as the largest 

area of the binarized noise-reduced mammograms [34]. As the last step of the pre-processing stage, 

pectoral muscle removal is realized using a region growing algorithm [34]. Figure 3 demonstrates the 

pre-processing stage on a sample image [35]. 
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Figure 3. The phases for the pre-processing stage of the proposed system: (a) The original image; (b) The noise-

reduced image; (c) The artifacts-suppressed image; (d) The background-removed and left-aligned image; 

(e) The pectoral muscle-removed image [35]. 

 
 
2.3. Region-of-Interest (ROI) Detection 
 

The ROI detection is realized by using Chan-Vese active contour modelling [40] by manual initial seed 

point selection and morphological operations are applied for ROI enhancement [35]. This scheme is 

visualized on a sample mammography image in Figure 4. 

 

2.4. Feature Extraction 

 

2.4.1. Haralick feature extraction 

 

The textural structure of ROIs is defined by Haralick features, introduced by Haralick et al. [36], Soh et 

al. [37], and Clausi [38], extracted from the GLCM of the relevant ROIs, in this paper. 

 

 

 
Figure 4. The phases for the adopted ROI detection system: (a) The pre-processed image; (b) The user-defined initial seed 

point (red) for the Chan-Vese algorithm; (c) The segmented ROI in the original binary image; (d) The enhanced 

ROI in the original binary image; (e) The binary ROI image; (f) The gray-scaled ROI image; (g) The segmented 

ROI region; (h) The reference ROI region [35]. 
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The GLCM of any image 𝐼 is constructed by computing the second order joint probability density 

function 𝑃(𝑖, 𝑗|𝑑, 𝜃), and customizes the textural feature map of this image by pixel frequency 

calculation, in a defined spatial relationship, based on gray-level intensity values [36]. The spatial 

relationship of any pixel pair is defined by the distance 𝑑 and the angle 𝜃 between these pixels. The 

function 𝑃(𝑖, 𝑗|𝑑, 𝜃)  for an 𝑁-gray-level image 𝐼 is computed by (1), and is resulted in an 𝑁 × 𝑁 –sized 

matrix that comprises of the probabilities of the co-occurrence of intensities 𝑖 and 𝑗 between each 

reference pixel 𝐼(𝑥, 𝑦) and its neighbor 𝐼(𝑥 + ∆𝑥  , 𝑦 + ∆𝑦) at a distance 𝑑 through the direction of 𝜃 

[36].  

𝑃(𝑖, 𝑗|𝑑, 𝜃) = ∑ ∑ {
1 ,   𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑁
𝑗=1

𝑁
𝑖=1                   (1) 

The frequently used directions 𝜃, for GLCM construction, are shown in Figure 5 for unit distance, and 
the textural, Haralick, features extracted from the GLCMs with their mathematical representations are 

given in Table 1. 

 

 

 
Figure 5. The frequently used directions for GLCM construction (𝑑 = 1). 

 

 

2.4.2. Adaptive convex hull approach 

 

The ES approach is proposed by Türkoğlu and Hanbay [30] for geometrical shape examinations of the 

leaves inspired by the CD method introduced by Mahdikhanlou and Ebrahimnezhad [29]. The CD 

method uses the distances of a fixed-value of ß-degree-incremented 𝑛 (𝑛 =
360

ß
) points (p1, p2,⋯ , p𝑛) 

on the boundary curve to the center-of-gravity (CoG) for a geometrical description of the leaves. The 

ES approach determines the 𝑛 (𝑛 =
Perimeter of the ROI

step−size
) points (p1, p2,⋯ , p𝑛) on the boundary curve 

by a fixed-size of pixel lengths (step-size) resulting in different ß-degrees unlike the CD approach. Then, 

𝑛 × 3 – dimensional feature matrix for each ROI is constructed by computing the angle between each 

pair of points and the CoG (ß1, ß2,⋯ , ß𝑛), edge-distance between each pair of points (k1, k2,⋯ , k𝑛), 
and the edge-CoG distance of each point (d1, d2,⋯ , d𝑛). These features are visualized in Figure 6. 

 

In this paper, an ACH approach is examined where the number of the points (𝑛) on the boundary of the 

ROIs are fixed to a certain number for each ROI, resulting in the same value of angles 

(ß =
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑂𝐼

𝑛
) between each boundary point and the CoG of the ROI; but different in each 

ROI. Thus, the ACH approach differs from the ES approach by the same angle values within ROIs and 

from CD by different angle values between ROIs. Then, the angles (ß𝑛), the edge-CoG distances (d𝑛), 
and (d) the edge distances (k𝑛) are computed and 𝑛 × 3 – dimensional features are achieved as in the 

ES approach. 
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Figure 6. The CD and ES approaches on a sample ROI: (a) The CD approach; (b) The ES approach – angles (ß𝑛); (c) The ES 

approach – edge-to-CoG distances (𝑑𝑛); (d) The ES approach – sequential edge distances (𝑘𝑛). 

 

 
Table 1. Textural features and their mathematical representations [24]. 

 
Textural Features Mathematical Representations 

𝑃(𝑖, 𝑗): 𝐺𝐿𝐶𝑀 = [
𝑃(1,1) ⋯ 𝑃(1, 𝑁)
⋮ ⋱ ⋮

𝑃(𝑁, 1) ⋯ 𝑃(𝑁,𝑁)
] 

𝑃𝑥(𝑖) =∑𝑃(𝑖, 𝑗)     ,     𝑃𝑦(𝑗) =∑𝑃(𝑖, 𝑗)

𝑁

𝑖=1

𝑁

𝑗=1

 

𝑃𝑥+𝑦(𝑘) = ∑∑𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1
𝑖+𝑗=𝑘

   ,   𝑘 = 2, 3,⋯ , 2𝑁 

𝑃𝑥−𝑦(𝑘) = ∑∑𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1
|𝑖−𝑗|=𝑘

   ,   𝑘 = 0, 1,⋯ ,𝑁 − 1 

𝜇𝑥 =∑∑𝑖 ⋅ 𝑃(𝑖, 𝑗)

𝑗𝑖

     ,     𝜇𝑦 =∑∑𝑗 ⋅ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

𝜎𝑥 =∑∑(𝑖 − 𝜇𝑥)

𝑗𝑖

2

⋅ 𝑃(𝑖, 𝑗)     ,     𝜎𝑦 =∑∑(𝑗 − 𝜇𝑦)

𝑗𝑖

2

⋅ 𝑃(𝑖, 𝑗) 

f1 Autocorrelation [37] ∑∑(𝑖 ∙ 𝑗) ∙ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

f2 Contrast [36, 37] ∑𝑛2

{
 

 

∑∑𝑃(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1
|𝑖−𝑗|=𝑛 }

 

 𝑁−1

𝑛=0
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f3 Correlation (MATLAB R2021a) 
∑ ∑ (𝑖 − 𝜇𝑥)𝑗 ∙ (𝑗 − 𝜇𝑦)𝑖 ∙ 𝑃(𝑖, 𝑗)

𝜎𝑥 ∙ 𝜎𝑦
 

f4 Correlation [36, 37] 
∑ ∑ (𝑖, 𝑗)𝑗 ∙𝑖 𝑃(𝑖, 𝑗) − 𝜇𝑥 ∙ 𝜇𝑦

𝜎𝑥 ∙ 𝜎𝑦
 

f5 Cluster Prominence [37] ∑∑{𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦}
4
∙ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

f6 Cluster Shade [37] ∑∑{𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦}
3
∙ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

f7 Dissimilarity [37] ∑∑|𝑖 − 𝑗| ∙ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

f8 Energy [36, 37] ∑∑{𝑃(𝑖, 𝑗)}2

𝑗𝑖

 

f9 Entropy [37] −∑∑𝑃(𝑖, 𝑗) ∙ 𝑙𝑜𝑔{𝑃(𝑖, 𝑗)}

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

f10 Homogeneity (MATLAB R2021a) ∑∑
1

1+ |𝑖 − 𝑗|
∙ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

f11 Homogeneity [37] ∑∑
1

1+ (𝑖 − 𝑗)2
∙ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

f12 Maximum Probability [37] max
𝑖,𝑗

𝑃(𝑖, 𝑗) 

f13 Sum of Squares: Variance [36] ∑∑(𝑖 − 𝜇)2 ∙ 𝑃(𝑖, 𝑗)

𝑗𝑖

 

f14 Sum Average [36] ∑𝑖 ∙ 𝑃𝑥+𝑦(𝑖)

2𝑁

𝑖=2

 

f15 Sum Variance [36] ∑(𝑖 − 𝑓14)
2 ∙ 𝑃𝑥+𝑦(𝑖)

2𝑁

𝑖=2

 

f16 Sum Entropy [36] −∑𝑃𝑥+𝑦(𝑖) ∙ 𝑙𝑜𝑔{𝑃𝑥+𝑦(𝑖)}

2𝑁

𝑖=2

 

f17 Difference Variance [36] variance of 𝑃𝑥−𝑦 

f18 Difference Entropy [36] −∑ 𝑃𝑥−𝑦(𝑖) ∙ 𝑙𝑜𝑔{𝑃𝑥−𝑦(𝑖)}
2𝑁
𝑖=2  

f19 
Information Measure of Correlation 1 [36] 

 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋;𝐻𝑌}
 

𝐻𝑋𝑌 = −∑∑𝑃(𝑖, 𝑗) ∙ 𝑙𝑜𝑔(𝑃(𝑖, 𝑗))

𝑗𝑖

 

𝐻𝑋𝑌1 = −∑∑𝑃(𝑖, 𝑗) ∙ 𝑙𝑜𝑔 (𝑝𝑥(𝑖) ∙ 𝑝𝑦(𝑖))

𝑗𝑖

 

𝐻𝑥 ve 𝐻𝑌, 𝑝𝑥 ve 𝑝𝑦′nin entropi değerleridir. 

f20 Information Measure of Correlation 2 [36] 

(1 − 𝑒𝑥𝑝[−2 ∙ (𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])
1
2⁄  

𝐻𝑋𝑌2 = −∑∑𝑃𝑥(𝑖) ∙ 𝑃𝑦(𝑖) ∙ 𝑙𝑜𝑔{𝑃𝑥(𝑖) ∙ 𝑃𝑦(𝑖)}

𝑗𝑖

 

f21 Inverse Difference Normalized [38] Normalized Homogeneity (MATLAB R2021a) 
f22 Inverse Difference Moment Normalized [38] Normalized Homogeneity [37] 
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3. EXPERIMENTAL STUDY 

 

In the experimental studies, 110 ROIs, confirmed by a radiologist as accurately detected on 

mammography images in the MIAS database, are used.  This selected dataset consisted of diagnoses as 

52 normal, 39 benign cancers and 19 malignant cancers. 

 

3.1. Feature Vector Construction 

 

The textural description of the ROIs is provided by the Haralick features in this paper. Accordingly, the 

features given in Table 1 are extracted from the GLCMs composed by 𝜃 = 90𝑜 and 𝑑 = {1, 2, 3, 4}, 
and four 22 × 1–dimensional feature vectors are obtained. The resultant 22 × 1–dimensional textural 

feature vector is the mean of these four vectors and named as “Haralick Feature Vector (HaFV)” in this 

paper.  

 

Geometric identification is realized by the ACH approach by selecting the number of points (𝑛) on the 

boundary of the ROIs as 92 for each ROI. The angles (ß), the edge-to-CoG distances (d𝑛), and (d) the 

sequential edge distances (k𝑛) are computed and concatenated for each ROI to construct its 276 × 1–

dimensional “Adaptive Convex Hull Feature Vector (AChFV)”.  

 

Besides, 298 × 1–dimensional Hybrid Feature Vector (HyFV) of a ROI is constructed by concatenating 

the AChFV and HaFV. The feature vector construction process is summarized in Table 2. 
 

Table 2. Feature vector construction process. 

Haralick Feature Vector (HaFV) 
Adapted Edge Step Feature Vector 

(AChFV) 

Hybrid Feature Vector 

(HyFV) 

22 × 1 276 × 1 298 × 1 

Haralick Features in Table 1 extracted 

from GLCM composed by 𝜃 = 90𝑜 and 

𝑑 = {1, 2, 3, 4}. 
[

(ß1 d1 k1)
′

(ß2 d2 k2)
′

⋮
(ß92 d92 k92)

′

] [
ACH_FV
Ha_FV

] 

 

3.2. Classification and Performance Evaluation 

 

The 22-dimensional Haralick features, the 276-dimensional AChFV features, and the 298-dimensional 

hybrid features are utilized in the diagnosis stage via Random Forest (RF) classifier, linear Support 

Vector Machines (SVM) classifier, Logistic Linear Classifier (LOGLC), and Artificial Neural Networks 

(ANN) using 5-fold cross-validation. A feed-forward backpropagation network consisting one hidden 

layer with 20 neurons is trained and simulated for the ANN classifier. The discriminative power of each 

feature vector is evaluated using the metrics of sensitivity (𝑆𝑁𝑆), specificity (𝑆𝑃𝐶), positive predictive 

value (𝑃𝑃𝑉), negative predictive value (𝑁𝑃𝑉), false-positive rate (𝐹𝑃𝑅), false negative rate (𝐹𝑁𝑅), 

false discovery rate (𝐹𝐷𝑅), false omission rate (𝐹𝑂𝑅), and accuracy (𝐴𝐶𝐶). The classification process 

is repeated for each fold in the cross-validation technique, and the PEMs of each health status class are 

computed as given in Table 3. The PEMs of any diagnosis process are then evaluated in terms of 

weighted average of the per class metrics, for each fold. The average PEMS of the diagnosis process is 

the arithmetic mean of the weighted metrics computed in each fold. 
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Table 3. Performance evaluation metrics and their mathematical representations. 

Performance Evaluation 

Metrics (PEMs) 
Mathematical Representations 

𝐶: Number of health status 

classes (𝐶 = 3) 
𝑖: Class index (𝑖 = 1, 2, 3) 𝑁𝑖: number of samples belong to 𝑖th class 

𝑇𝑃𝑖: number of True Positives 

belong to 𝑖th class 

𝑇𝑁𝑖: number of True Negatives 

belong to 𝑖th class 

𝐹𝑃𝑖: number of False Positives 

belong to 𝑖th class 

𝐹𝑁𝑖: number of False 

Negatives belong to 𝑖th class 

 Per class metrics Weighted metrics 

𝑺𝑵𝑺 % 𝑆𝑁𝑆𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
∙ 100 % 𝑆𝑁𝑆 =

∑ 𝑆𝑁𝑆𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑺𝑷𝑪 % 𝑆𝑃𝐶𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
∙ 100 % 𝑆𝑃𝐶 =

∑ 𝑆𝑃𝐶𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑷𝑷𝑽 % 𝑃𝑃𝑉𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
∙ 100 % 𝑃𝑃𝑉 =

∑ 𝑃𝑃𝑉𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑵𝑷𝑽 % 𝑁𝑃𝑉𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑁𝑖
∙ 100 % 𝑁𝑃𝑉 =

∑ 𝑁𝑃𝑉𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑭𝑷𝑹 % 𝐹𝑃𝑅𝑖 =
𝐹𝑃𝑖

𝐹𝑃𝑖 + 𝑇𝑁𝑖
∙ 100 % 𝐹𝑃𝑅 =

∑ 𝐹𝑃𝑅𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑭𝑵𝑹 % 𝐹𝑁𝑅𝑖 =
𝐹𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
∙ 100 % 𝐹𝑁𝑅 =

∑ 𝐹𝑁𝑅𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑭𝑫𝑹 % 𝐹𝐷𝑅𝑖 =
𝐹𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
∙ 100 % 𝐹𝐷𝑅 =

∑ 𝐹𝐷𝑅𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑭𝑶𝑹 % 𝐹𝑂𝑅𝑖 =
𝐹𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑁𝑖
∙ 100 % 𝐹𝑂𝑅 =

∑ 𝐹𝑂𝑅𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

𝑨𝑪𝑪 % 𝐴𝐶𝐶𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
∙ 100 % 𝐴𝐶𝐶 =

∑ 𝐴𝐶𝐶𝑖 ∙ 𝑁𝑖
𝐶
𝑖=1

∑ 𝑁𝑖
𝐶
𝑖=1

 

 

4. RESULTS AND DISCUSSION 

 

In this paper, textural and geometrical features are utilized on a pre-designed CAD system [34, 35] in 

the light of a radiologist-eye, for breast cancer diagnosis. The experiments are performed on a computer 

with I5− 7200U at 2.5 GHz and 8-Gb memory and have been carried out using MATLAB R2021a. 

 

In the first phase of these experiments, breast cancer diagnosis is realized in three processes consist of 

textural, geometrical, and hybrid (an ensemble of textural and geometrical) classification using the 

HaFVs, AChFVs, and HyFVs, respectively.  The average PEMs achieved in these processes are shown 

in Tables 4-7.  Analysing the PEMs in Table 4 for all three cases, it is seen that better diagnosis is 

succeeded when HyFVs are used via all classifiers except the SVM.  The RF classifier is found to 

diagnose the ROIs more accurately.  Hence, the average PEMs of normal, benign, and malignant 

diagnoses via RF classifier are individually analysed.  Although the HyFVs show the best performance 

for the overall diagnosis, it is seen, from the Figures 7-9, that the HaFVs, the AChFVs, and the HyFVs 

have different impacts on different health status.  Figure 8 indicates that the ROIs without any 

abnormalities are more accurately diagnosed when the HyFVs are used, and the HaFVs play a key role 

for malignancy diagnosis as seen in Figure 8.  In case of benignity, Figure 9 shows that the HyFVs 

provide more sensitive and accurate diagnosis while the HaFVs diagnose more specifically reducing the 

false positives. 
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Table 4.  Findings of overall diagnosis processes achieved via RF classifier. 

 

 

Table 5.  Findings of overall diagnosis processes achieved via SVM classifier. 

 

 

 
 

Classifier Average PEMs 

RF 

 

Total Confusion Matrices 

HaFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 38 15 2 

Benign 19 19 2 

Malignant 4 6 10 

 

AChFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 36 18 1 

Benign 12 24 4 

Malignant 3 7 10 

 

HyFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 38 16 1 

Benign 11 26 3 

Malignant 2 9 9 
 

Classifier Average PEMs 

SVM 

 

Total Confusion Matrices 

HaFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 36 18 1 

Benign 16 19 5 

Malignant 4 1 15 

 

ChFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 37 15 3 

Benign 18 17 5 

Malignant 5 13 2 
 

HyFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 38 15 2 

Benign 21 16 3 

Malignant 5 13 2 
 

63,48

77,31

65,41

77,81

22,69

36,52 34,59

22,19

73,46

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC

HaFV AChFV HyFV

48,70

65,37

46,01

69,40

34,63

51,30 53,99

30,60

62,91

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC
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Table 6.  Findings of overall diagnosis processes achieved via LOGLC classifier 

 
 

Table 7.  Findings of overall diagnosis processes achieved via ANN classifier 

 

 

 

 

Classifier Average PEMs 

LOGLC 

 

Total Confusion Matrices 

HaFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 34 14 7 

Benign 17 16 7 

Malignant 2 1 17 

 

AChFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 34 18 3 

Benign 12 21 7 

Malignant 4 11 5 
 

HyFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 38 14 3 

Benign 11 24 5 

Malignant 4 11 5 

 

Classifier Average PEMs 

ANN 

 

Total Confusion Matrices 

HaFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 31 23 1 

Benign 13 24 3 

Malignant 2 10 8 

 

AChFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 27 28 0 

Benign 12 23 5 

Malignant 3 8 9 
 

HyFV 
Classified to 

Normal Benign Malignant 

Ground 

Truth 

Normal 38 14 3 

Benign 12 25 3 

Malignant 3 7 10 

 

58,26

74,98

58,02

75,90

25,02

41,74 41,98

24,10

70,81

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC

HaFV AChFV HyFV

63,48

77,21

64,06

77,57

22,79

36,52 35,94

22,43

73,38

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC

HaFV AChFV HyFV
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The PEM scores and the confusion matrices in Table 6 show that the healthy and benignity diagnoses 

power of the HyFVs are increased when the LOGLC classifier is used however the malignancy 

discriminability is decreased as it is also by using the SVM classifier as seen in Table 5. There is no 

significant difference found on diagnosis either the Random Forest or the ANN classifier is used (see 

Tables 4 and 7). The PEM scores and the confusion matrices achieved by all classifiers except SVM, 

show that deficiency of textural features in benign diagnosis is relatively compensated when used in 

combination with geometric features. 

 
 

 

 

Figure 7. Average PEMs of normal diagnoses, achieved when RF classifier is used. 

 
 

 

 

Figure 8. Average PEMs of malignant diagnoses, achieved when RF classifier is used. 
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Figure 9. Average PEMs of benign diagnoses, achieved when RF classifier is used. 

 
In line with the findings obtained in the first phase of the experiments, a combination of the HaFV, the 

AChFV, and the HyFV via majority voting is employed for diagnosis in the second phase. The average 

PEMs achieved for each health status in this phase are shown in Figure 10. The accuracy values for 

benign and malignant diagnoses increased, and the number of false positives is decreased by this feature 

combination.  

 
 

 

 

Figure 10. Average PEMs of diagnosis processes via feature combination, achieved when RF classifier is used. 

 

Although there is a slight deterioration in the PEM values of healthy diagnoses and an insignificant 

increase in overall PEMs (see Figure 11), more accurate diagnoses of benignity and especially 

malignancy show that the usage of feature combination is more effective. 

 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC

72,00

28,00

65,00

50,98

78,13

35,00

49,02

21,88

66,09

%

HaFV AChFV HyFV

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

SNS SPC PPV NPV FPR FNR FDR FOR ACC

6
5

,3
8 7

7
,5

9

7
2

,3
4

7
1

,4
3

2
2

,4
1 3

4
,6

2

2
7

,6
6

2
8

,5
7

7
1

,8
2

6
9

,2
3

6
7

,6
1

5
4

,0
0

8
0

,0
0

3
2

,3
9

3
0

,7
7

4
6

,0
0

2
0

,0
0

6
8

,1
8

5
2

,6
3

9
6

,7
0

7
6

,9
2

9
0

,7
2

3
,3

0

4
7

,3
7

2
3

,0
8

9
,2

8

8
9

,0
9

%

Normal Benign Malignant



Işıklı Esener et al. / Eskişehir Tech. Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 23 (1) – 2022 
 

83 

 

 

 

Figure 11. Average PEMs of diagnosis processes: HyFV vs. feature combination, achieved when RF classifier is used. 

 
 
5. CONCLUSION 

 

The chance of decrement in breast cancer-caused mortality rate due to the increment in early diagnosis 

is concluded in a great importance of CAD systems designed for breast cancer diagnosis. The diagnostic 

performance of a CAD system is known to be most directly related to the feature extraction stage. 

Although several feature extraction strategies are evaluated for breast cancer diagnosis in the literature, 

it is more feasible and consistent to use ROI-specific features. Radiologists state that any ROI is 

evaluated in terms of its brightness, density, shape, and contour structure during the examination.  The 

density-related information may be revealed through textural definitions while shape and contour 

structure of a ROI may be defined geometrically. Accordingly, Haralick features extracted from GLCMs 

are utilized for textural feature vector construction. A new adaptive convex hull approach is introduced 

and applied for geometrical feature vector creation. Besides, the geometrical and textural feature vectors 

are concatenated, so that a hybrid feature vector is constituted to analyse the combined effect of these 

features as well as the individual feature performances on diagnosis. The RF, SVM, LOGLC, and ANN 

classifiers are accomplished using a 5-fold cross-validation technique for ROI diagnosis using textural, 

geometrical, and hybrid features. The experimental studies indicate that textural features are a bit more 

successful for diagnosing ROIs including malignancy. One can easily infer from the PEM scores that 

the proposed hybrid features, which are the concatenation of textural and geometrical features, are more 

fruitful on classifying both healthy and benign ROIs. Additionally, a feature combination of these three 

types of features via majority voting combination technique is proposed for diagnosis. The benign and 

malignant ROI cases are more successfully identified with this proposed feature combination and a little 

bit increment is achieved on the average PEMs of whole diagnosis process. A combination of 

geometrical features and notional textural features for breast tissue type may be planned to examine for 

future studies for more accurate breast cancer diagnosis. 
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