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Abstract

This article is concerned with a forward problem for the following sub-diffusion equation driven by standard
Brownian motion

(Cof + A)u(t) = f(t) + BOW(t), teJ:=(0,T),

where C@;y is the conformable derivative, v € (%, 1]. Under some flexible assumptions on f, B and the initial

data, we investigate the existence, regularity, continuity of the solution on two spaces L"(J; L%(, H 7)) and
C*(J; L*(Q, H)) separately.
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1. Introduction

The normal diffusion processes are characterized by a linear growth in a time of the mean squared
displacement (variance increases linearly in time). Besides, there is also a concept of anomalous diffusion
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regimes. They are characterized by a variance growing slower (sub-diffusion) or faster than normal (super-
diffusion). Many different underlying processes can lead to anomalous diffusion, with qualitative differences
between mechanisms producing sub-diffusion and mechanisms resulting in super-diffusion.

Recent decades have witnessed the escalating popularity of fractional calculus, which replaces the clas-
sical time derivative in a partial differential equation with a fractional derivative. Because of containing
information of the considered function at the previous time, fractional derivatives in time (for instance, Ca-
puto, Riemann-Liouville, and Conformable) reflect memory, history, and non-local spatial effects, which are
paramount crucial in better modeling and understanding of the complex and dynamic system behavior. We
can list here some successful applications of fractional calculus to specific problems of dynamics [18], 38 [43].
Some applications of Conformable derivative in modeling neuronal dynamics, dynamic cobweb, dynamics of
a Particle in a viscoelastic medium, and fractional-order chaotic system can be found in [15] 16, 24], 32] [53].
One of the efficient and widely used approaches to modeling sub-diffusion is based on the theory of fractional
derivatives. Such equations were widely used to model many phenomena in nature. For example: Population
dynamics of water confined in soft environments [33]; Transport phenomena of proteins in cellular environ-
ments [10], 27, [35] 45]; Ion movement in dendritic spines [28, [50], and RNA molecules within cells [31]. Some
interesting works can be found in [2] 3, [4, [5, [6] [7, 8], @, 63, 64, [65].

Let T be a positive constant, v € (%7 1] and J := (0,T). Let D be a bounded subset of R%, with d > 1,
and possess a smooth boundary when d > 1. Let H := L?(D) and A = —A be the negative Laplacian.
Without loss of generality, the operator A is assumed to possess eigenpairs (\g, ex) satisfying 0 < A\, 7 00
and Aej, = M\peg, for every k > 1.

Let {W(t)},c7 be a standard Brownian motion (sBm) taking value in H (see Section [2|for more details).
This article is concerned with the following problem for a stochastic conformable diffusion equation (SCDE)
perturbed by sBm

(Co] + A)u(t) = f(t) + BO)W(t), teJ, 0
u(t)|aD =0, u(0)=y¢, teJ,

where W (t) = dW (t)/dt describes a white noise, ¢ : @ — H is known as the initial value, f : J x Q — H
is called the source function, and B is an operator coming from J to L(Q] defined in Section [2l The notation
€0}, with v € (3, 1], stands for the conformable derivative [36] defined as

t+ett=7) — g(t
Cagg(t)::limg(+5 )=9®) o

e—0 e

which was invented by Khalil in [36] (refer to [, 12} 29] 59] for some other works). Noting that if v =1
and there is no the appearance of the stochastic term B(t)W (t), then the SCDE in () becomes the normal
deterministic diffusion equation, which was considered in [20] 21].

With the appearance of the conformable derivative, an alternative expression of the diffusion equation
(called conformable diffusion equation) is proposed to improve the modeling of anomalous diffusion (see [59]).
This new fractional derivative has been found to possess many successful applications of in many fields of
science [11, 23] [32), 42| 44] [53], 54]. In recent time, the number of articles concerning with the deterministic
conformable diffusion equation has increased significantly [I], (13} 14}, 29, 39, 54, 56]. For some recent studies
on diffusion equations with random noise, the readers can refer to [51] 52} [62].

Stochastic partial differential equations (SPDEs) are crucial issues modeling the phenomena in a lot of
fields of science [19], [34], [46] [48]. Additionally, it is effective to use fractional differential equations (FDEs)
to model some anomalous diffusion phenomena in physics, chemistry, engineering, etc. [22], 37, 47, 49|, 57,
58]. The area of SFDEs is interesting to mathematicians since it contains various hard open problems
[30L, 401 [4T), [6T]. It is a fact that our considered equation in this paper is included in the topic of SFDEs.
Notwithstanding the importance, as we know, there is no result concerning the initial value problem (or called
forward problem) for SCDE (1. This motivated us to contribute the existence, regularity, and continuity
results for Problem ([]).
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We now mention the organization of this paper. Section introduces notations, functional spaces, and
the definition of the mild solution. Section [3|is divided into two subsections. Subsection [3.1] gives some prior
estimates for the terms appearing in the representation of the solution. In Subsection the existence,
regularity, and continuity results are stated.

2. Preliminaries
For ¢ > 0, we define by H¢ the following space
- 9% 9 1/2
S = {h € H:||h]| = (ZAk \(h, ex)] ) < oo},
k>1
and denote by H~¢ its dual space. We define by A? : H/?2 — H~</2 [17,26] the following operator

Ao = Z)\Z(’U,ek)ek, for v e HY/2.
k>1

Let @ be a covariance operator [25} [60] on H with finite trace, i.e. Tr(Q) = > ;- xx < 00, and satisfy Qey, =

Xkek, where {xx}r>1 is the spectrum of ). Assume that {W(t)}tej be an H-valued Wiener process defined
on a complete probability space (Q,F,P,{F;}+>0), with covariance operator () and posses the following
representation (see [25], 60])

W(t) = Z Q7 eplil(t)= Z X% exér(t),

k>1 k>1

where & (t) are independent one-dimensional Brownian motions. Let L?(€, H ¢) be the Bochner space defined
by

E| ol := /Q lo(@)|2 dP(w) < 00, w € Q.

Let L£(H, H¢) be the space of bounded linear operators T coming from H to HS. Let HS(H, H¢) be the

. 1/2 .
space of all operators T € L(H, H®) such that ||T||HS(HH<) = (Zk21 ||Tek\|§~lg> < oo. By Li(H, H*)
we denote the space of T € HS(H, H®) such that

1
1Tl 2 ey = ITQ2 s, ey < 00

In the case ¢ = 0, it is obvious that H° = H. For short, we denote £(H) := L(H, H), L} := L3(H, H).
Given a Hilbert space K. For p > 1, we define the following space

1

T 1
(T K) = {0 T = KWl = ( / le(®)lf dt)” < oo}
Let C(J; K) be space of continuous functions ¢ : J — K such that

llloqae = sup lb(®)llx < oo.
teJ

For a > 0, we recall the following subspace of C(J; K)

(T JY <. L [(t) — (s)ll
C (T K) = {u) € C(T;K) : [vllgogiy = L P K oo}.
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Now, we aim find an expression for u(t) in the form u(t) = "5, (u(t), ex)ex. From the SCDE in (), we
immediately obtain

1
€O (u(t), ex) = Ae(u(t),ex) = (f(1), ex) + B(E)x} &k (t)-
By using the method in Theorem 5 of [29] and Theorem 3.3 of [39], we arrive at

tY X 2V =t PAES2BPY
k k k

(ut), ex) = e~ " (u(0), ex) + /0 1SR (f(2), en)dz + XE /0 1T B(2)déy(2).

Using u(0) = ¢, we obtain the following equation

A t (Y -t)A t (z7-t7)A
u(t) =e 7 gO-l-/ Dl f(z)dz—i—/ 27l B(2)dW (). (2)
0 0

Basing the above expression for u(t), we define mild solution.

Definition 2.1. An H-valued process {u(t)},.7 is said to be a mild solution of if for almost all ¢ € J,
it satisfies the equation almost surely.

Let o be a non-negative constant satisfying o < % The following assumptions are needed to establish
our results.

(H1) ¢ € L*(Q, H),
(H2) f € LP(J; L*(Q, H)), for some p > 2y~ 1,

(H3) B € Li(J; L*(Q, L3)), for some ¢ > max(%%l, ﬁ),

(H1) ¢ € L*(Q, H*), for some u € (0,1],
(H2) f e LP(J; L*(Q, H)), for some v € (%, 1], p> 2771,

(H3") B e LI(J; L*(Q, L3(H, H?))), for some s € (3,1], ¢ > max(%%l, 77 )-

3. Main results

3.1. Some prior estimates

This subsection is aimed to give some prior estimates which will be used throughout this paper. From
now on, we employ the notation a; < as to describe a1 < Cag, where C' is a positive constant.

Lemma 3.1. i) If f satisfies|(H2), then there holds

t (=7 —¢t7)A

/ D7 7 f(2)dz
0

i) If f satisfies[(H2'), then there holds

t+6 | ET=@raMa t | ET=)a
/ 27 e v f(2)d= —/ 277 e f(z)dz
0 0

where § > 0 is small enough.

2
E

., Sz )

2 1
5 52(’7*;

7|
H

ARy, (4
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2 (Tt Ak

Proof. 1) By applying the inequality e™¥ <y~ with y = , we have

(7t 2NN 7%
—k < [(z)k} < )\220@7 _ z”’)_%. (5)

€ vy
Y

Now, we aim to show the following estimate holds for every k > 1

t (27 =ty t
/ AT (f () en)dz| <AL / IR (£(2), ex)|2d. (6)
0 0

The Holder inequality associated with the property allow that

t (27 —tV)A t (7 —tT)N\g
gk<t><< [ e dz> (/ a1 E|<f<z>,ek>|2dz)
0 0
t t (27 —t7)Ag
s ([otwe - as) ([ 27 T B0 G k)
0 0

Y t (z’y—t’y)kk
—oo ([ - o) ([T B G e )
0 0

t
SN (1= 20) 717020 [ (1(a), )P,
0

2
E(t) :=E

where it should be noted that 1 — 20 > 0 since o € (0, %)
Next, we will use the property @ to prove that holds. Indeed, we have

¢ | ET=ta
/ 277 f(2)dz
0

In addition, by using the Holder inequality again, we obtain

[ e ae s ([ 220 0a:) - ([ (o) «)’

- 2
ST ([ 1 a=) Q

Combining , , we now obtain the desired estimate (3.
ii) Firstly, for § > 0, we can see that

t+6 | G =@raMa t L, =
/ 27 e 7 f(z)dz — / 277 f(2)dz
0 0

t v ¥ R t+4 v ¥
(Y —(t46)7)A (7 —tHA (Y —(t46)7)A
:/ 2t (e g —e )f(z)dz+/ 21 le g f(2)dz
0 t

= Z1(t,0) + Z1(t,0). (9)

2 t
E =Y a0 S [ TR @

He >

The first term can be estimated by using the inequality ’e_“ — e‘b‘ < (a—0b)e®, for 0 < b < a, as follows

t (t+68)7 X YA 2V A
/z7_1<6_ T e Wk)e “/k(f(z),ek)dz
0
t 1 (ZW*WV‘I@
A e a CONOE
0

¢ GVt 2
/ AT (f(2), en)d
0

2

E|2(t.0)[% =Y E
k>1
t T — 72
<y g
k>1 v

S NE
k>1

2
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. . . GVt 1 —(1-v)
By the Holder inequality and noting that e~ < (87— 27)~( _”)Ak , we have
t Y —=t)AL 2
ME| [ 271 (), en)ds
0
t 227 —t7)Ag t
<7 (/ e dz> (/ z'y_lE\(f(Z)a(fk)PdZ)
0 0
t t
< ( JERGE z7>2<“>dz> ( / z“Ai"m(f(z),ek)sz) . (11)
0 0
Combining , , we obtain
t t
E||Z,(t,8)2 < 6> (/ A1 —27)2(1”)dz> (/ ATE £, dz>
0 0
£ ¢ B2 N
< o ( / (- 2)2(1”)dz> ( / 270 Ddz) < / (EI)I%.)" dz)
0 0 0
2
2y y(1=2(1—v)) 7~ 2 P
< 647 t </ Ilf (= HL?QHV)dZ>
21/—7
S 52VT’Y( ”fHLP(J;LQ(QJ:[V)) : (12)
Next, we continue to estimate Z(t,d). We first see that
t+6 (Y =(+8) )N 2
B2 0)h =3 B| [ 27l () a)ds (13)
k>1 Ut
EY=(t+8) )Ny
In addition, the Hélder inequality and e v < 1 yield
t+9 (27 —(t+8) V)N 2
E / 2 le v (f(2),ex)dz
t
t+48 2T AL —(t+8)Y A t+0 2V A —(t4+8)7 X
< </ Al kdz) (/ P kE\(f(z),%)sz)
t t
t46 t+6
<([ o) ([ o EGe k). (19
t t

From and and noting that ZkzlE](f(z),ek)\Q <\ > k1 AVE|(f(2),en)* S EHf(z)H?{Z,, we

deduce that

) )
Blzol < ( [ N o) ( T AR ) i)

S ((E+6)7 —t7) (/tw DR f(2)|5 dz> :

Using (¢t + )7 — 7 <67 and a similar estimate as in (8], we arrive at

t+6 % t P %
Bl <o ([ 20e) " ([ (E1rOI5.)" )
t 0

LSAIN]

<or (k400 —77) (/j”uf( D )

5 52(7_;) ||f||ip(J;L2(Q7HV))) .

Now, combining @, , , we conclude that the estimate holds.
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Lemma 3.2. i) If B satisfies Assumption [(H3), then there holds
ooy r=a ’ Yertea—1) 2
B| [ T Beaw )| s BBy (16)
Ho
where ¢ :=c1(q,y) =1 — 7(1;’29;2) and co == ca(q,0) =1 — 20(1%
i) If B satisfies Assumption |(H3’), then there holds
t+96 1 t+6) YA t 1 (z7 -t A 2
H / g B(z)dW (z) —/ 27 B(z)dW(z)
0 H
) _M
S0 ! HBHLQ(J ;L2(Q,L2(H,H?))) (17)
where § > 0 is small enough.
(27 —tTV)A
Proof. i) By a similar way as in (), we also have e 7 : SAL7(8Y = 27)77, which follows that
(z7—-tM)A
HA"e 7 ST =277
L(H)
This together with the definition of the norm in L2 yields
(27— t'V)A (27— t'Y)A 2
Blare ™= )|y = X Efare TS pe@da, 5 07 - ) EIBG
E>1 ’
By the It6 isometry and the above estimate, it is obvious that
t 1 (z7—t7)A 2 9 (z7— t'Y)A 2
E ’ / 277 e v B(z)dW(z) / (-1 IEHA" B(z)’ dz
0 e Jo L3
t
5/ 22(7*1)(157 —z'y)*%IEHB(z)Higdz.
0 0
The Holder inequality allows that
t
/ 220 — z”)*z"EHB(z)Hide
0 0
‘ . C N\NT [ SN
< (/ 2003t (4 _Zv)—%q—?dz) (/ (EHB(z)HL2> dz)
0 0
t at
— (/ 1,0 )Q(t'Y_z’Y)—QO'QEde> (/ |B(= HL2 0,12) > (18)
0
By using the substituting method to calculate the first integral, we arrive at
t
/ 20Dy — zv)_QUIEHB(z)Higdz
0
g-2 -+ 0 =
s ([ T 0 0] " 1Bwea)
0 e
_a=2 —1)a=2
_ eI g |;BH§Q(J;L2(QL3)) , (19)

2 2

where (., .) is the beta function. It should be noted that c1, ¢z > 0, since ¢ > max(z=, 15,). Now, from

three later estimates, we obtain as desired.
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ii) Let us turn our attention to estimate two terms defined as follows
1+0 GG t | Y=
/ 27 e v B(z)dW (z) — / 27 v B(z)dW(z)
0 0
t WRGECDLY (7 —t7)A t+0 | E=@raMa
:/ 27" (e g —e 7 )B(z)dW(z) + / 2 e v B(z)dW (z)
0 t
= ZIl(t,(S) +Ig(t,5). (20)
We begin to estimate the first term 7, (¢, ) by using the It6 isometry as
t (27 —(t4+8)7)A (z7—t)A 2
2 —
E||Zy(t,8)% = /O 20 1>E) (e T e o )B(z) 20 (21)
Counsider the expectation under the integral sign, we can see
(27 —(t+8)7)A (=7 —t7)A 2 (27 —(t+8)7)A (z7—t7)A 2
IEH(e 2 —e 7 )B(z)‘ 2 = ZIEH(@ v —e )B(Z)Q%Gk . (22)
E>1
The inequality ‘e_“ — e‘b‘ < (a—b)e™® for 0 < b < a, allows that
(7= (t+8)T)XA (27—t PPN —(t+8)7 A —tT X\ (27 —tT)A
‘e T e T =e e 7 e A <y7le k((t—i—(S)V—tv))\k.
. Gt 1 —(1-s) :
Sincee v < (17— 270N and (t +0)Y —t7 < §7, we obtain
Y bl Y
By using the above property, we can deduce that
He(ﬂ_“ﬁm L <o — )9,
L(H*,H)
which leads to
(27 —(t+8)7)A (z7—t7)A 2 2
IEH (e &l —e 7 )B(Z)Q%ekHH <0t — ZW)Q(PS)EHB(Z)Q%%HH . (23)
Combining and , we obtain
(27 —(t+5)MN)A (27—t A 2 2
EH (e g —e )B(z)‘ < 6P — z7)720=) ZIEHB(Z)Q%ekH .
L k>1 e
—2(1— 2
<P — 2)T2E HB(Z)HL%(H,HS)' (24)
From and (24), we deduce that
t
2 - —2(1— 2
EIT (D) 8% [ 20700 = )20 | B 3y e 0
By the same way as in (I8)-(19)), one can check that
2 -2 tez—1)22 2
E | Zi(t,8)]|% < 62y @ 7T 50y eq) 1B a2 (0,02 (a1,17%)))
+ez—1)L=2 2
< sypletes—1)4g HB”Lq( (25)

J;L2(Q,LE(H,H*#))) >
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where ¢; =1 — %, cg=1-2(1—- s)%2 In the above estimate, it should be noted that c¢1,c3 > 0

and ¢; + ¢z — 1 > 0, since ¢ > max(z’yQ - 1)
Next, we continue to estimate the second term Zy(¢,d) by using the It isometry as

2

2dz.
LO

GV =(t+8)M)A

9 t+6
BRI = [ 20V B0

) (7 (46N
Since e 2 < 1, one can check that

(7 —(t+5)MN)A 2
IEHeiw B(z)‘

L SE[BG)L < AE[BG);
0

HLg(H,Hs)'

This together with the Holder inequality gives us

t+6
_ 2
BN S [ 207 VB] B0

q—2 2
46 42y-2) Tq t+6 9 g q
< (/t z a2 dz) (/t (EHB(Z)HLg(H,HS)) dz>

q—2

2
5 2
14 2Cv=2) +q(2w 2) q t+ q

S ((75+5) -t ; 1B(=)]|7 @2 i)

S0 WiiHBHLq J;L2(Q,L2(H,H?)))’ (26)
Now, from , and , we obtain as desired. O

Now, we are ready to state our main results.

3.2. The existence, reqularity and continuity

Firstly, let us state the following theorem which shows an existence, uniqueness, regularity result on
L (J; L*(Q, H)).

Theorem 3.1. Let 0 > 0 and ¢, f, B satisfy Assumptions [(H1), |(H2), |(H3)| respectively. Let r > 1 and
satisfy the following conditions

2
oyr <1l and ~r(ci+c—1)> _7q2 (27)
where c1,co are defined in Lemma . Then, Problem has a unique solution in L"(J; LQ(Q,HU)) salis-
fying

ull e gsr20,m0)) S 1elze@my + I loreo@my) T 1Bl LasL2@,L2)) - (28)

Corollary 3.1 (The case of 0 = 0). Let ¢ € L*(), H), f € LP(J;L*(Q, H)), for some p > 2y~L, and
B € L4(J; L*(Q, L)), for some q > % Then, for any r > 1, u € L"(J; L?(Q, H)) and satisfies

lull e g2 e,my) S Nellp2,my + 1 o2y T 1Bl Loz .02 -

2PN

_t Ak _trA
Proof of Theorem [3.1. Since e” v < A 7t777, for every k > 1, we can see He 2] HE(H7H0) <t Tt

~

VA
follows that He_T(pHiZ(Q o) < 2o ||[70||%2(Q,H) This allows us to obtain

_t7A T

T
—yor 1—~or
sty S el [ TS T Il (20)

LT‘
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T

Applying part i) of Lemma , we can estimate the second term as
dt

t G -ma ' as e
/27—16 T f(2)dz . :/ /27_16 T f(z)dz .
. Lr(ezmaeyy  Jo o 11Jo L2(Q,H?)
ST e ir2,m)) - (30)

The last term can be estimated by applying part i) of Lemma as

t (7 —t7)A r T t (z7—t")A r
‘ / 27 le AT B(2)dW(2) = / / 2 le AT B(2)dW(2) dt
0 L7 (J;L2(Q,H)) 0 0 L2(Q,H7)
r ’yr(cﬁrCQfl)E
S HBHLq (J;L2(Q, L2))/ t 20 dt
r(c1+c2—1 1 T
STt VS B ez - (31)
From and —, we deduce that
lull o g p20,i0y) S NllL2,my + 1 o2y T 1Bl Loz ,L2) -
We now complete the proof. O

Proof of Corollary[3.1 This result can be proved easily by applying Theorem Here, it should be noted
that, in the case of ¢ = 0, the conditions in always hold. O

Next, we state another main result considered in the space C%(J; L(Q, H)).

Theorem 3.2. Let ¢, f, B satisfy Assumptions |(H1'), |(H2'), |(H3’) respectively. Then, Problem has
a unique solution in C*(J; L*(Q, H)), with o = min ('yu,'y — %}z). Furthermore, the following regularity
property holds

||uHca (T;L2(QLH)) ~ ”SOHL? Q,Hn) + ||f”Lp JiL2(Q,HY)) + ”BHLq (J;L2(Q,L2(H,H#))) * (32)
Proof. To show the regularity property (32) holds, we bound the first term in (2)) firstly. Using [e™¢ — e ™| <

b* — at, for 0 < b < a, we can see

(t+8) 7N Y,

e 7 —e 7 SAM(E+ ) —tH) < N,

which leads to

|57 =)ol S Bl = 7 0l 0y (3)
L2(Q,H) H~ L2(Q,H*~)

Part ii) of Lemma and Part ii) of Lemma (3.2 imply that

t+9 1 (27 —(t+8)7)A t ) (z7—17)A
/ 27 e 2 f(2)dz / 277 e v f(z)dz
0 0

|

Now, combining , —, we conclude

Ju(t +6) —u(®)ll 20 m) S 0 <||80HL2(Q,HH) + 1Al o2y + HBHLQ(J;L2(Q7L(2)(H’HS)))) ;

< 57_5
L2(Q,H)

I Eerp2@,meyy > (34)

and

t+6 | E=8)N)A ¢ | =)
/ 27 e v B(z)dW (z) / 277 v B(z)dW(z)
0 0

< 5V—W

L2(Q,H)

HBHLq(J SL2(Q,L2(H,H*)))" (35)

which follows the regularity property . O
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Remark 3.1 (The continuity with respect to the initial function). If uy,us are the solutions to Problem
with respect to 1, py € L2(Q, H*) with pu € (0,1] then

[Jur — u2||C(7;L2(Q,H)) < Jler = 502HL2(Q,H»L)' (36)

Proof. 1t is clear to see that

tTA

Hul(t> - UQ(t)H%Q(Q,H) = He_ 7 (p1 — SDQ)Hiﬁ(Q’H) < HA_MAM(‘PI - @2)“12(971{)'

. _ -2 -2 -2
Using the fact that [|A HIOH%?(QJ—I) = Zkzl Ak #|(p7€k)|2 < A HZsz(Paek”Q =N u‘|pH%2(Q7H)7 for
p € L?(Q, H), one obtains

s (8) = wa(®) 22y < AT A% (01 = 02) |32y = M o1 = @21

which leads to the continuity results O

4. Conclusion

In the present article, a forward problem (or called initial value problem) for a sub-diffusion equation
perturbed by standard Brownian motion is investigated. With the support of stochastic analysis, we obtain
some sufficient conditions ensuring the existence, regularity and continuity of the mild solution of such
problem.
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