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Abstract 

In this study, we consider certain classes of surfaces in the pseudo-Galilean space, the 

translation and factorable surfaces. We obtain these surfaces that satisfy the equation 𝐻 = 𝑣!, 

where H is the mean curvature and 𝑣! is the normal component of an isotropic vector 𝑣. 

Keywords: Translating soliton; Manifolds with density; Mean curvature; Pseudo-Galilean 

space. 

Yarı-Galileo Uzayında Belli Bir Ortalama Eğriliğe Sahip Yüzeyler Üzerine  

 

Öz 

Bu çalışmada; yarı-Galileo uzayında, öteleme ve ayrışabilir yüzeyler denilen iki belirgin 

sınıf ele alınmıştır. 𝑣!, bir 𝑣 izotropik vektörün normal bileşeni olmak üzere bu yüzeylerden 

ortalama eğriliği 𝐻 = 𝑣! denklemini sağlayanlar elde edilmiştir. 

Anahtar Kelimeler: Ötelenen soliton; Yoğunluklu manifoldlar; Ortalama eğrilik; Yarı-

Galileo uzayı. 
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1. Introduction 

We are interested in the pseudo-Galilean geometry which is one of the real Cayley-Klein 

geometries. Let 𝐺"# denote the pseudo-Galilean 3-space, 𝑆 ⊂ 𝐺"# an admissible surface, 𝐻 and 𝑁 
are the mean curvature and unit normal vector field on	𝑆, respectively. Moreover, let (𝐿$, ⟨⋅,⋅⟩%) 

denote the Lorentzian 2-space. We consider the following: 

𝐻 = v!,                     (1) 

where v! is the normal component of a unit isotropic vector v ∈ 𝐺"# . Note that 𝑣! = ⟨𝑁, 𝑣⟩% is 

the Lorentzian angle function of 𝑆 between 𝑁 and 𝑣. Up to the abolute figure of 𝐺"#, since 𝑁 is 

completely isotropic and orthogonal to all non-isotropic vectors, some minimal surface obeys to 

Eqn. (1) if 𝑣 is non-isotropic. This is the justification why we take 𝑣 as isotropic in Eqn. (1). 

The importance of Eqn. (1) is due to the theories of manifolds with density and mean 

curvature flow. A surface whose mean curvature holds Eqn. (1) is called translating soliton of the 

mean curvature flow [1-5]. In the Euclidean setting, besides straight lines, one-dimensional 

solution to Eqn. (1) is the curve 𝑠 ↦ − 𝑙𝑜𝑔𝑐𝑜𝑠 𝑠, which is called grim reaper and known for 

moving upwards with constant speed under the flow, see [6, 7]. The hyperbolic versions of those 

functions are the so-called Lorentzian grim reapers, 𝑠 ↦ 𝑙𝑜𝑔𝑠𝑖𝑛ℎ 𝑠 and 𝑠 ↦ 𝑙𝑜𝑔𝑐𝑜𝑠ℎ 𝑠 [8]. In the 

Galilean setting, the situation is different. More explicitly, let 𝜅 be the curvature of a smooth curve 

𝛾 in the Galilean plane 𝐺$ and ⟨⋅,⋅⟩&  the Galilean scalar product in 𝐺$. Then, Eqn. (1) writes 𝜅 =

⟨(0,1), 𝑣⟩& , admitting solutions as straight lines (𝜅 = 0) and parabolic circles (𝜅 = 1). 

Let  (𝑥, 𝑦, 𝑧)  denote the affine coordinates in 𝐺"# and 𝜑(𝑥, 𝑦, 𝑧) = 𝑘𝑥 + 𝑝𝑦 + 𝑞𝑧,𝑘, 𝑝, 𝑞 ∈

R.  From theory of manifolds with density, a surface satisfying Eqn. (1) is indeed a minimal 

surface with density 𝑒' [3, 9, 10]. Meanwhile, since 𝑣 = 𝑔𝑟𝑎𝑑 𝜑 = 𝑘𝑒# + 𝑝𝑒$ + 𝑞𝑒"  is isotropic 

for standard basis vectors {𝑒#, 𝑒$, 𝑒"} of 𝐺"#, 𝑘 must vanish in our case. More generally, a 𝜑 −mean 

curvature (or weighted mean curvature) 𝐻' with density 𝑒' is given by  2𝐻' = 2𝐻 − (𝑑𝜑/𝑑𝑁).  

One of the basic classes of surfaces in differential geometry is the translation surfaces 

generated by translating two curves up to isometry of ambient space. Let  𝑆 ⊂ 𝐺"#  be a translation 

surface and 𝑠 ↦ 𝛼(𝑠) and 𝑡 ↦ 𝛽(𝑡) two parametric curves, 𝑠 ∈ 𝐼 ⊂ R, 𝑡 ∈ 𝐽 ⊂ R. Then, 𝑆  is 

locally given by  

𝑥(𝑠, 𝑡) = 𝛼(𝑠) + 𝛽(𝑡),                 (2) 

where 𝛼  : = 𝛼(𝑠) and 𝛽  : = 𝛽(𝑡) are called generating curves. The other class of the surfaces 

in which we are interested is the one associated with the product of two single variable functions, 
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namely the factorable (or homothetical) surfaces. Up to the absolute figure a factorable surface 

is given by one of the explicit forms 

𝑥 = 𝑓(𝑠)𝑔(𝑡)		and		𝑧 = 𝑓(𝑠)𝑔(𝑡),                (3) 

 

for smooth functions 𝑓(𝑠) and 𝑔(𝑡). Those surfaces in Galilean and pseudo-Galilean geometries 

have been considered in several research articles from different geometrical point of views. For 

example, the results on these surfaces in terms of Gaussian and mean curvatures can be found in 

[11-19], while the ones in terms of the Laplacian associated with the fundamental forms are in 

[20-23]. Some surfaces satisfying Eqn. (1) in 𝐺"# were already considered from the manifolds with 

density point of view, [24-27]. 

In some sense, solving Eqn. (1) is a problem of finding prescribed mean curvature surfaces, 

which is our main interest. In this paper, we firstly study translation surfaces Eqn. (2) in 𝐺"#, whose 

mean curvature satisfies Eqn. (1). When both 𝛼 and 𝛽 are planar, the problem was already solved 

in [26] and for this reason, we deal with the only case that one of 𝛼 or 𝛽 is planar and the other 

spatial. Under this condition, we solve Eqn. (1) completely. In Section 4, we also classify the 

surfaces given by Eqn. (3) which satisfy Eqn. (1). 

2. Preliminaries 

In this section, we recall some basics on the curves and surfaces in the pseudo-Galilean 

geometry from [18, 28-33]. We also refer to [34, 35] for the Lorentzian arguments. 

Let 𝑃"(𝑅) denote a real projective 3-space and (𝑢(  :  𝑢#  :  𝑢$  :  𝑢") the homogeneous 

coordinates. The pseudo-Galilean 3-space 𝐺"# is a Cayley-Klein space 𝑃"(𝑅) with the absolute 

figure {𝜔, 𝑓, 𝐼}, where 𝜔 is the absolute plane 𝑢( = 0, 𝑓 the absolute line 𝑢( = 𝑢# = 0 and 𝐼 the 

fixed hyperbolic involution of points of 𝑓. The hyperbolic involution is (0  :   0  :  𝑢$  :  𝑢") ↦

(0  :   0  :  𝑢"  :  𝑢$)  and then 𝑢$$ − 𝑢"$ = 0 is the absolute conic.  

Let us introduce the affine coordinates (𝑢(  :  𝑢#  :  𝑢$  :  𝑢") = (1  :   𝑥  :   𝑦  :   𝑧). 

Up to the absolute figure, the pseudo-Galilean distance between the points 𝑝 = (𝑝#, 𝑝$, 𝑝") and 

𝑞 = (𝑞#, 𝑞$, 𝑞") is 

𝑑(𝑝, 𝑞) = a
|𝑞# − 𝑝#|, if	𝑝# ≠ 𝑞#

f|(𝑞$ − 𝑝$)$ − (𝑞" − 𝑝")$|, if	𝑝# = 𝑞#.
 

The six-parameter group of motions of 𝐺"# leaves invariant the absolute figure and the 

pseudo-Galilean distance, given in terms of affine coordinates as follows: 
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𝑥 = 𝑎# + 𝑥	
𝑦 = 𝑎$ + 𝑎"𝑥 + 𝑦 𝑐𝑜𝑠ℎ𝜙 + 𝑧 𝑠𝑖𝑛ℎ𝜙	
𝑧 = 𝑎) + 𝑎*𝑥 + 𝑦 𝑠𝑖𝑛ℎ𝜙 + 𝑧 𝑐𝑜𝑠ℎ𝜙, 

where 𝑎#, . . , 𝑎*, 𝜙 are some constants. 

There are two sorts of lines and planes in 𝐺"#. We call a line isotropic when its intersection 

with the absolute line 𝑓 is non-empty and non-isotropic otherwise. A plane is said to be isotropic 

if it does not involve 𝑓, otherwise it is said to be non-isotropic. The non-isotropic planes are so-

called Lorentzian since its induced geometry is Lorentzian. In the affine model of 𝐺"#, the 

Lorentzian planes are in the form 𝑥 = 𝑐𝑜𝑛𝑠𝑡.  

A vector 𝑣 = (𝑣#, 𝑣$, 𝑣") is said to be isotropic (non-isotropic) if 𝑣# = 0 (≠ 0). Let 𝑤 =

(𝑤#, 𝑤$, 𝑤")  and ⟨⋅,⋅⟩&  denote the pseudo-Galilean dot product. Then, ⟨𝑣, 𝑤⟩&  is the Lorentzian 

scalar product if both  𝑣  and  𝑤  are isotropic. Otherwise,  𝑣#$ +𝑤#$ ≠ 0,  it is defined by  

⟨𝑣, 𝑤⟩& = 𝑣#𝑤# . The pseudo-Galilean angle between  𝑣  and  𝑤  is defined as the Lorentzian 

angle if 𝑣 and 𝑤  are isotropic. Otherwise, it is given by the pseudo-Galilean distance. We call 𝑣 

and 𝑤 orthogonal if ⟨𝑣, 𝑤⟩& = 0.  

An isotropic vector 𝑣 is called spacelike if ⟨𝑣, 𝑣⟩% > 0;  timelike if ⟨𝑣, 𝑣⟩% < 0 and lightlike 

if  ⟨𝑣, 𝑣⟩% = 0. We call the spacelike and timelike vectors non-degenerate. Let {𝑒#, 𝑒$, 𝑒"} be 

standard basis vectors and 𝑣 and 𝑤 no both isotropic vectors. Then, the pseudo-Galilean cross-

product is 

𝑣 ×& 𝑤 = m
0 −𝑒$ 𝑒"
𝑣# 𝑣$ 𝑣"
𝑤# 𝑤$ 𝑤"

m. 

Therefore we have ⟨𝑣 ×& 𝑤, 𝑧⟩& = −𝑑𝑒𝑡(𝑣, 𝑤, 𝑧̃), where 𝑧̃ is the projection of 𝑧 onto the    

𝑦𝑧 −plane. Note that the vector 𝑣 ×& 𝑤 is orthogonal to both 𝑣 and 𝑤.  

Let 𝐶 be a curve given in the parametric form  

𝑠 ↦ 𝑟(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)), 𝑠 ∈ 𝐼 ⊂ 𝑅. 

 The curve 𝐶 is said to be admissible if the following conditions hold: for each 𝑠 ∈ 𝐼,  

1) 𝑟′ = +,
+-

  is non-isotropic; 

2) no where 𝐶 has no inflection points, i.e. 𝑟. and 𝑟′′ = +!,
+-!

 are linearly independent; 

3) 𝑟̃. and  𝑟̃′′ are non-degenerate. 
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Then an admissible curve 𝐶 is said to be parameterized by arc-length if the function 𝑥 is the 

identity, up to a translation of 𝐺"#. Let 𝐶 be such a curve. Then we call 𝑡 = 𝑟. unit tangent to𝐶 and 

𝜅 = f⟨𝑟.., 𝑟..⟩% curvature of 𝐶. The normal and binormal to 𝐶 are defined by 

𝑛 = #
/(-)

p0, 𝑦″, 𝑧″q	and	b = #
/(-)

p0, 𝑧″, 𝑦″q. 

The torsion of 𝐶 is introduced by 

𝜏 = +234,′,,′′,,′′′6
/!

. 

We call the admissible curve 𝐶 spatial provided 𝜏 ≠ 0 for each 𝑠 ∈ 𝐼. We call an admissible 

curve isotropic planar if it fully lies in an isotropic plane and in such case 𝜏 vanishes identically. 

We also call a curve Lorentzian planar if it fully lies in a Lorentzian plane. For a Lorentzian 

planar curve the Frenet apparatus are well known. 

Let  𝑆  be a surface in  𝐺"#  locally given by a regular map 

(𝑢#, 𝑢$) ↦ 𝑥(𝑢#, 𝑢$) = p𝑥(𝑢#, 𝑢$), 𝑦(𝑢#, 𝑢$), 𝑧(𝑢#, 𝑢$)q, (𝑢#, 𝑢$) ∈ 𝐷 ⊂ 𝑅$. 

Let 𝑥,7 =
89
8:"

 and 𝑥,7; =
8!9

8:"8:#
 and etc., 1 ≤ 𝑖, 𝑗 ≤ 2. Then, 𝑆 is said to be admissible if 

𝑥,7 ≠ 0,  for some 𝑖 = 1,2. For such an admissible surface 𝑆, the first fundamental form is 

⟨𝑑𝑥, 𝑑𝑥⟩& = 𝐸𝑑𝑢#$ + 2𝐹𝑑𝑢#𝑑𝑢$ + 𝐺𝑑𝑢$$, 

where 𝐸 = p𝑥,#q
$, 𝐹 = 𝑥,#𝑥,$, 𝐺 = p𝑥,$q

$. Since nowhere an admissible surface has Lorentzian 

tangent plane, up to the absolute figure, the isotropic vector 𝑥,# ×& 𝑥,$ is normal to 𝑆. Let  

𝑊 = z𝑥,# ×& 𝑥,$, 𝑥,# ×& 𝑥,${% . 

Then the surface 𝑆 is called spacelike if 𝑊 < 0;  timelike if 𝑊 > 0; and lightlike if 𝑊 = 0.  The 

spacelike and timelike surfaces are so-called non-degenerate and then, the unit normal vector to 

the non-degenerate surface 𝑆 is 

𝑁 = 9,%×&9,!
=|?|

. 

Let 𝜀 = ⟨𝑁,𝑁⟩% = ±1 and  

𝐿7; = 𝜀 #
9,%
~𝑥,#𝑥�,7; − p𝑥,7q,;𝑥�,#, 𝑁�%

= 𝜀 #
9,!
~𝑥,$𝑥�,7; − p𝑥,7q,;𝑥�,$, 𝑁�%

, 

where one of 𝑥,# and 𝑥,$ is always nonzero due to the admissibility. Then the second fundamental 

form of 𝑆 is 
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𝐼𝐼 = 𝐿𝑑𝑢#$ + 2𝑀𝑑𝑢#𝑑𝑢$ +𝑁𝑑𝑢$$, 

where 𝐿 = 𝐿##, 𝑀 = 𝐿#$, 𝑁 = 𝐿$$. Thereby, the Gaussian and  mean curvatures are defined as  

𝐾 = −𝜀 %@AB
!

|?| 	and	𝐻 = −𝜀 &%A$CBDE@
$|?| . 

We call a surface minimal if 𝐻 vanishes identically. Throughout this study, we deal with 

only non-degenerate admissible surfaces. 

3. Translation Surfaces 

Let 𝑆 ⊂ 𝐺"# a translation surface whose one generating curve lies in a Lorentzian plane and 

the other admissible. Then, it locally parameterizes 

𝑥(𝑠, 𝑡) = 𝛼(𝑠) + 𝛽(𝑡), 

in which we may assume 𝛽(𝑣) fully lies in the Lorentzian 𝑦𝑧 −plane. Then the unit normal vector 

field and mean curvature are 

𝑁 = 𝑛F 		and		𝐻 = #
$
𝑘F , 

where 𝑛F and 𝑘F the principal normal and Frenet curvature of 𝛽. Then, for the surface 𝑆, Eqn. (1) 

is now 

𝑘F = 2𝜀z𝑛F , 𝑣{% , 

which means that 𝛽 is one dimensional solution in 𝐿$ to translating soliton Eqn. (1). As can be 

seen the generating curve 𝛼 does not play a role. Therefore, we may state that 

 Proposition 1.  Let 𝑆 be a translation surface in 𝐺"# given by 𝑥(𝑠, 𝑡) = 𝛼(𝑠) + 𝛽(𝑡), where 

𝛼 is some admissible curve and 𝛽 is Lorentzian planar. Then, 𝑆 holds Eqn. (1) if and only if 𝛽 is 

one dimensional solution in 𝐿$ to Eqn. (1). 

We next consider the translation surface 𝑆 whose one generating curve is isotropic planar, 

say 𝛽, and the other spatial. Let  

𝑠 ↦ 𝛼(𝑠) = p𝑠, 𝑓(𝑠), ℎ(𝑠)q		and		𝑡 ↦ β(𝑡) = p𝑡, 0, 𝑔(𝑡)q, 

where (𝑠, 𝑡) ∈ 𝐼 × 𝐽 ⊂ 𝑅$. Then, 𝑆 is locally given by 

𝑥(𝑠, 𝑡) = (𝑠 + 𝑡, 𝑓(𝑠), ℎ(𝑠) + 𝑔(𝑡)).               (4) 

Denote a prime the derivative with respect to the related variable. Since 𝛼 is assumed to be 

spatial, the following holds 

𝑓″ℎ‴ − 𝑓‴ℎ″ ≠ 0,                (5) 
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implying that 𝑓G and 𝑔″ must be linearly independent. The unit normal vector field and mean 

curvature are 

𝑁 = #

HI4J′Aℎ′6
!
AK′!I

p0, 𝑔′ − ℎ′, −𝑓 ′q 

and  

𝐻 = − K″4J′Aℎ′6DK′4ℎ″DJ″6

$I4J′Aℎ′6
!
AK′!I

'/! . 

Let 𝑣 = (0, 𝑝, 𝑞). Then, Eqn. (1) is now 

𝑓″p𝑔′ − ℎ′q + 𝑓 ′pℎ″ + 𝑔″q = 2𝜀p𝑝pℎ′ − 𝑔′q − 𝑞𝑓 ′q �𝑓 ′$ − p𝑔′ − ℎ′q
$
�.              (6) 

The successive derivatives of Eqn. (6) with respect to 𝑠 and 𝑡 yield 

𝑓‴𝑔″ + 𝑓″𝑔‴ = 4𝜀𝑔″ �−𝑝𝑓 ′𝑓″ − 3p𝑔′ − ℎ′qℎ″ + 𝑞 �𝑓″𝑔′ − p𝑓 ′ℎ′q
′
��.              (7) 

Assume that 𝑔G ≠ 0 in Eqn. (7), for each 𝑡 ∈ 𝐽. Dividing Eqn. (7) with 𝑔G and then taking 

derivative with respect to 𝑡 gives 

𝑓″ �J
‴

J″
�
′
= 4𝜀𝑔″p−3ℎ″ + 𝑞𝑓″q,                           (8) 

in which the right-hand side of Eqn. (8) is non-vanishing due to Eqn. (5). Then, there exists a 

nonzero constant 𝑐 such that  

�J
‴

J″
�
′
= 4𝜀𝑐𝑔″.                              (9) 

Hence, Eqn. (8) reduces to (𝑞 − 𝑐)𝑓G = 3ℎG, which contradicts with Eqn. (5). This 

discussion allows our assumption to be false, namely there exists 𝑡( ∈ 𝐽 such that 𝑔G = 0 in a 

neighborhood of 𝑡(  in 𝐽. In such a case the generating curve 𝛽(𝑡) is a non-isotropic straight line 

parallel to (1,0, 𝑔(), where 𝑔′ = 𝑔( ∈ 𝑅, namely the surface given by Eqn. (4) is a cylinder with 

non-isotropic rulings.  

Therefore, we have proved 

Theorem 1.  The cylinders with non-isotropic rulings are the only translating solitons of 

translation type whose one generating curve is isotropic planar and the other is spatial. 

There is a class of translation solitons of translation type that we do not consider: both 𝛼 

and 𝛽 are spatial, which remains an open problem. 
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4. Factorable Surfaces 

Let 𝑠 ↦ 𝑓(𝑠) and 𝑡 ↦ 𝑔(𝑡), 𝑠 ∈ 𝐼, 𝑡 ∈ 𝐽, be smooth functions and 𝑆 ⊂ 𝐺"# locally the graph 

of the product of 𝑓  : = 𝑓(𝑠) and 𝑔  : = 𝑔(𝑡). Assume that 𝑓 and 𝑔 are non-vanishing on 𝐼 × 𝐽. 

Up to the absolute figure, the geometric properties of 𝑆 depend on if it is the graph on an isotropic 

or Lorentzian planes. Thereby, we consider the surfaces 𝑧 = 𝑓(𝑠)𝑔(𝑡) (or equivalently                

𝑦 = 𝑓(𝑠)𝑔(𝑡)) and 𝑥 = 𝑓(𝑠)𝑔(𝑡), separately. 

Let 𝑆 be locally the surface 𝑧 = 𝑓(𝑠)𝑔(𝑡) which is parameterized by 

(𝑠, 𝑡) ↦ 𝑥(𝑠, 𝑡) = p𝑠, 𝑡, 𝑓(𝑠)𝑔(𝑡)q. 

The unit normal and mean curvature are given by 

𝑁 = #

HL(KJ′)!A#L
p0, 𝑓𝑔′, 1q 

and  

𝐻 = KJ″

$L(KJ′)!A#L'/!
. 

Let 𝑣 = (0, 𝑝, 𝑞) and then Eqn. (1) is 

𝑓𝑔″ = 2𝜀p𝑝𝑓𝑔′ − 𝑞q �p𝑓𝑔′q$ − 1�.              (10) 

Assume that 𝑓 is a non-constant function. Then, (10) turns to a polynomial of degree 2 in 𝑓  

−2𝜀𝑞 + p2𝜀𝑝𝑔′ + 𝑔″q𝑓 + 2𝜀𝑔′$𝑓$ − 2𝜀𝑝𝑔′$𝑓" = 0, 

in which the coefficients must vanish, giving 𝑞 = 0 and 𝑔. = 0. We then deduce that  𝑣 = (0,1,0)  

and 

𝑥(𝑠, 𝑡) = p𝑠, 0, 𝑔(𝑓(𝑠)q + 𝑡(0,1,0),             (11) 

where 𝑔. = 𝑔( ∈ 𝑅 − {0}. Eqn. (11) is a parameterization of a cylinder with isotropic rulings. If 

𝑓 = 𝑓( ∈ 𝑅 − {0}, then  

𝑥(𝑠, 𝑡) = 𝑠(1,0,0) + p0, 𝑡, 𝑓(𝑔(𝑡)q, 

which is a parameterization of a cylinder with non-isotropic rulings.  

Therefore, we have proved 

  Theorem 2.  The cylinders are the only translating solitons of the form 𝑧 = 𝑓(𝑠)𝑔(𝑡).  

We next take the surface 𝑥 = 𝑓(𝑠)𝑔(𝑡), parameterized by 
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(𝑠, 𝑡) ↦ 𝑥(𝑠, 𝑡) = (𝑓(𝑠)𝑔(𝑡), 𝑠, 𝑡).                     (12) 

The unit normal and mean curvature are given by 

𝑁 = #

HL(K′J)!A(KJ′)!L
p0, 𝑓 ′𝑔,−𝑓𝑔′q 

and  

𝐻 = 4K′J6
!
KJ″A$KJ4K′J′6

!
D4KJ′6

!
K″J

$L(K′J)!A(KJ′)!L'/!
. 

Then Eqn. (1) with 𝑣 = (0, 𝑝, 𝑞) writes 

𝑓𝑔�𝑓 ′$p𝑔𝑔″ − 𝑔′$q + 𝑔′$p𝑓𝑓″ − 𝑓 ′$q� = 2𝜀p𝑝𝑓 ′𝑔 + 𝑞𝑓𝑔′q �p𝑓 ′𝑔q$ − p𝑓𝑔′q$�. (13) 

The functions 𝑓 and 𝑔 play symmetric roles in Eqn. (13) and we only concentrate for 𝑓.  

Case (a).  𝑓 = 𝑓( ∈ 𝑅 − {0}. Then Eqn. (13) implies 𝑣 = (0,1,0) and  

𝑥(𝑠, 𝑡) = 𝑠(0,1,0) + (𝑓(𝑔(𝑡), 0, 𝑡), 

which is a cylinder with isotropic rulings. 

Case (b).  𝑓 and 𝑔 are both non-constant functions. We divide Eqn. (13) with 𝑓𝑔p𝑓 ′𝑔′q$ 

and write 

�K
′

K
�
′
+ �J

′

J
�
′
= 2𝜀 �𝑝 K

′

K
+ 𝑞 J

′

J
� ��JJ′�

$
− �K

K′
�
$
�.                        (14) 

After successive derivatives of Eqn. (14) with respect to 𝑠 and 𝑡 we may deduce 

𝑝 �K
′

K
�
′
�J
J′
� �J

J′
�
′
− 𝑞 �J

′

J
�
′
�K
K′
� �K

K′
�
′
= 0.                         (15) 

Assume that 𝑓 and 𝑓. are linearly independent and, by symmetry, so are 𝑔 and 𝑔′. Then Eqn. (15) 

reduces to 

𝑝 �K
′

K
�
"
− 𝑞 �J

′

J
�
"
= 0, 

which implies 𝑝 = 𝑞 = 0. This is a contradiction. Therefore, 𝑓 and 𝑓. must be linearly dependent 

and put 𝑓. = 𝑏#𝑓, namely 𝑓(𝑠) = 𝑏$𝑒M%- for nonzero constants 𝑏# and 𝑏$. Therefore, the surface 

becomes 𝑥 = 𝑏$𝑒M%-𝑔(𝑡) or, up to a translation, Eqn. (12) turns to 

(𝑥, 𝑡) ↦ �𝑥, #
M%
𝑙𝑜𝑔 � 9

J(3)
� , 𝑡�,             (16) 

which is a translation surface. Its generating curves are  
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𝑥 ↦ 𝛼(𝑥)  : = �𝑥, #
M%
𝑙𝑜𝑔|𝑥| , 0� ,		and		𝑡 ↦ 𝛽(𝑡)  : = �0,− #

M%
𝑙𝑜𝑔|𝑔(𝑡)| , 𝑡�. 

Then, a surface 𝑥 = 𝑓(𝑠)𝑔(𝑡) satisfying Eqn.(1) has to be of form Eqn. (16) if it is non-

cylindrical. Since  𝛽(𝑡) is fully in the Lorentzian 𝑦𝑧 −plane, it has to be one dimensional solution 

to Eqn. (1) in 𝐿$ due to Proposition 1. 

To sum up, we have proved 

Theorem 3.  A surface 𝑥 = 𝑓(𝑠)𝑔(𝑡)  satisfying Eqn. (1) is either a cylinder with isotropic 

rulings or a translation surface of the form Eqn. (16), where one generating curve is one 

dimensional solution to Eqn. (1) in 𝐿$.  

Example 1.  Let 𝑎$ − 𝑏$ = ±1, 𝑎, 𝑏 ∈ 𝑅 − {0}. Consider the surface 𝑥 = 𝑒N-DM3 and take 

𝑣 = (0, 𝑏, −𝑎). This surface is indeed minimal and its normal is 𝑁 = (0, 𝑎, −𝑏) such that Eqn. 

(1) holds obviously. Notice that it is also given by 

(𝑥, 𝑡) ↦ �𝑥, #
N
𝑙𝑜𝑔|𝑥| − M

N
𝑡, 𝑡�. 
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