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Abstract
Newton’s iteration method is widely used in numerical methods, but its convergence is
low. Though a higher order iteration algorithm leads to a fast convergence, it is always
complex. An optimal iteration formulation is much needed for both fast convergence and
simple calculation. Here, we develop a two-step optimal fourth-order iterative method
based on linear combination of two iterative schemes for nonlinear equations, and we
explore the convergence criteria of the proposed method and also demonstrate its validity
and efficiency by considering some test problems. We present both numerical as well
as graphical comparisons. Further, the dynamical behavior of the proposed method is
revealed.
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Keywords. iterative method, nonlinear equation, order of convergence, linear
combination

1. Introduction
Solving nonlinear equations is one of the most significant problems in the fields of

science and engineering. There is a vast literature available for finding the solution of
nonlinear equations and almost all analytical and numerical methods depend upon the
iteration efficiency [2,3,30,37,42]. Though some one-step methods for nonlinear equations
are much attractive [19, 21, 22, 31, 36, 52], an iteration process is still needed to find an
even accurate solution. Iteration methods become a hot topic in both mathematics and
engineering applications [1,12–14,16,17,28,38,40,45,53,54,56,58], and an optimal iteration
algorithm leads to both simple calculations and efficient results.

The homotopy perturbation method [4–11,15,24–27,43,44,47,55] constructs an effective
iteration algorithm by guaranteeing its iteration path from the initial guess to the exact
solution. The variational iteration method [29, 32, 35, 51] adopts the variational theory
[33, 34] to find an optimal iteration formulation for differential equations. Taylor’s series
method [20, 23] is simple, but only an infinite series solution is useful for analysis of
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a complex nonlinear problem. The ancient Chinese algorithm and its modification are
effective, but two initial guesses are needed [18].

One of the most powerful and well-known ancient techniques for finding the solution of
nonlinear equations is the Newton’s method which converges quadratically [47]:

xn+1 = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ... . (1.1)

Porta and Ptak [48] modified the Newton’s method and proposed the following cubically
convergent method which needs three evaluations per iteration.

xn+1 = xn − f(xn) + f(yn)
f ′(xn)

, (1.2)

where

yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ... .

Noor and Gupta [46] modified Householder iterative method and developed the following
fourth-order method which requires four evaluations per iteration.

xn+1 = yn − f(yn)
f ′(yn)

− 1
2

[
f(yn)
f ′(yn)

]2 [
f/(xn)
f(xn)

] [
f ′(xn) + f ′(yn)

f ′(yn)

]
, (1.3)

where

yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ... .

According to Kung and Turab [41] conjecture, if an iterative method has convergence
order 2n and requires (n + 1) functional evaluations per iteration, then it is known to be
an optimal method. In 2015, Sherma and Behl [49] introduced an optimal fourth order
method:

xn+1 = xn −
[
−1

2
+ 9f ′(xn)

8f ′(yn)
+ 3f ′(yn)

8f ′(xn)

]
f(xn)
f ′(xn)

, (1.4)

where

yn = xn − 2f(xn)
3f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ... .

Recently, a second derivative free optimal fourth-order method has been developed by Li
[50]:

xn+1 = xn − [f(xn) − f(yn)] f(xn)
[f(xn) − 2f(yn)]f ′(xn)

, (1.5)

where

yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ... .

Turkyilmazoglu also suggested a modified high-order Newton iteration algorithm [57]. In
this paper, having motivation from the study of optimal iterative methods, we present
an efficient and rapid convergent optimal fourth-order iterative method. Numerical as
well as graphical comparisons with some existing methods of the same class are presented
in order to demonstrate the effectiveness of the proposed method. We also discuss the
dynamical behavior of newly constructed method for visualization of the roots of complex
polynomials.
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2. Construction of iterative method
Consider the nonlinear equation

f(x) = 0. (2.1)
Using Taylor’s formula, equation (2.1) can be written in the form of the following coupled
system:

f(x) ≈ f(γ) + (x − γ)f ′(γ) + g(x) = 0, (2.2)

g(x) = λf(x)
f ′(γ)

− f(γ) − (x − γ)f ′(γ), (2.3)

where γ is the initial guess and λ an auxiliary parameter.
From equation (2.2) , we get

x = γ − f(γ)
f ′(γ) − g(x)

f ′(γ) , (2.4)

= c + N(x), (2.5)
where

c = γ − f(γ)
f ′(γ) , (2.6)

and
N(x) = − g(x)

f ′(γ) . (2.7)
Here N(x) is a nonlinear operator and can be approximated by using Taylor’s series
expansion about x0 as follows:

N(x) = N(x0) +
∞∑

k=1

(xi − x0)k

k!
N (k)(x0). (2.8)

Our aim is to find the series solution of equation (2.1):

x =
∞∑

i=0
xi., (2.9)

which can alternatively be expressed as
x = lim

p→∞
Xp, where Xp = x0 + x1 + . . . + xp. (2.10)

From equations (2.5), (2.8) and (2.9), we get

x =
∞∑

i=0
xi = c + N(x0) +

∞∑
k=1

(xi − x0)k

k!
N (k)(x0)), which implies

x ≈ c + N(x0) +
∞∑

k=1

(
k∑

i=0
xi − x0)k

k!
N (k)(x0). (2.11)

Thus from the last relation, we have the following scheme:

x0 = c,
x1 = N(x0),
x2 = (x0 + x1 − x0)N ′(x0),
x3 = (x0+x1+x2−x0)2

2! N
′′(x0),

...
xm+1 = (x0+x1+...+xm−x0)m

m! N (m)(x0), m = 1, 2, . . . .


(2.12)

Thus
x1 + x2 + . . . + xm+1 = N(x0) + (x0 + x1 − x0)N ′(x0) + ...

+ (x0 + x1 + . . . + xm − x0)m

m!
N (m)(x0), m = 1, 2, ... . (2.13)
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From equation (2.6) and the first equation of (2.12), we have

x0 = c = γ − f(γ)
f ′(γ) . (2.14)

Using equation (2.10) with p = 0 and equation (2.14) , we have

x ≈ X0 = x0 = γ − f(γ)
f ′(γ) . (2.15)

This formulation allows us to propose the following iterative method for solving nonlinear
equation (2.1).
Algorithm 2.1. For a given x0, compute the approximate solution xn+1 by the following
iterative scheme:

xn+1 = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, ..., (2.16)

which is obviously the well-known Newton’s method.
Using equation (2.7) and second equation of (2.12), we get

x1 = N(x0) = −g(x0)
f ′(γ) . (2.17)

From equation (2.3),we have

g(x0) = λf(x0)
f ′(γ)

− f(γ) − (x0 − γ)f ′(γ). (2.18)

Using equations (2.14), (2.17) and (2.18), we get

x1 = N(x0) = − λf(x0)
(f ′(γ))2 = −

λf(γ − f(γ)
f ′(γ))

(f ′(γ))2 . (2.19)

Truncating equation (2.10) after two terms and using equations (2.14) and (2.18), we get
x ≈ X1 = x0 + x1

= γ − f(γ)
f ′(γ) −

λf(γ − f(γ)
f ′(γ))

(f ′(γ))2 . (2.20)

This formulation allows us to propose the following iterative method for solving nonlinear
equation (2.1).
Algorithm 2.2. For a given x0, compute the approximate solution xn+1 by the following
iterative scheme:

xn+1 = yn − λf(yn)
(f ′(xn))2 , (2.21)

where
yn = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, .... .

The last algorithm has convergence order 3 corresponding to λ = 1.
On the basis of the methods given in equations (1.2) and (2.21), we suggest the following

new optimal fourth-order iterative scheme using linear combination of these two:

xn+1 = xn + (µ − 1)f(xn) + f(yn)
f ′(xn)

− µ

(
f(xn)
f ′(xn)

+ λf(yn)
(f ′(xn))2

)
, (2.22)

where µ ∈ R is the adjusting parameter. Obviously, for µ = 0, the method proposed above
reduces to the method given in (1.2) and for µ = 1, it gives the method defined in equation
(2.21). It is noticeable that the methods given in equations (1.2) and (2.21) are cubically
convergent and require function evaluations 3 each. The above, newly suggested method
also needs 3 function evaluations but its performance depends upon a suitable choice of
µ.
Thus for µ = −1 and λ = 1, the above formulation allows us to suggest the following
optimal fourth-order iterative method:
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Algorithm 2.3. For a given x0, compute the approximate solution xn+1 by the following
iterative scheme:

xn+1 = xn − f ′(xn) (f(xn) + 2f(yn)) − f(yn)
(f ′(xn))2 , (2.23)

where
yn = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, ... .

To the best of our knowledge, algorithms 2.2 and 2.3 are new for solving nonlinear equation
(2.1).

3. Convergence analysis
The convergence criteria for the newly proposed iterative method is described in the

following theorem.

Theorem 3.1. Assume that the function f : I ⊂ R → R ( where I is an open interval)
has a simple root α ∈ I. Let f(x) be sufficiently differentiable in the neighborhood of α,
then the method given in algorithm 2.3 has convergence order at least 4.

Proof of Theorem 3.1. Let α ∈ I be a simple zero of equation (2.1). Since f is suffi-
ciently differentiable, therefore, the Taylor series expansions of f(xn) and f ′(xn) about α
are given by

f(xn) = f ′(α){en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + O
(
e6

n

)
}, (3.1)

and
f ′(xn) = f ′(α){1 + 2c2en + 3c3e2

n + 4c4e3
4 + 5c5e4

n + 6c6e5
n + O

(
e6

n

)
}, (3.2)

where

en = xn − α and cj = 1
j!

f (j) (α)
f ′(α)

, j = 2, 3, ... .

From equations (3.1) and (3.2), we get
f(xn)
f ′(xn) = en − c2e2

n + 2(c2
2 − c3)e3

n + (−4c3
2 + 7c2c3 − 3c4)e4

n+

(8c4
2 − 20c2

2c3 + 10c2c4 + 6c2
3 − 4c5)e5

n + O
(
e6

n

)
. (3.3)

Using equation (3.3), we can find

yn = xn − f(xn)
f ′(xn)

= α + c2e2
n − 2(c2

2 − c3)e3
n + (4c3

2 − 7c2c3 + 3c4)e4
n+

(−8c4
2 + 20c2

2c3 − 10c2c4 − 6c2
3 + 4c5)e5

n + O
(
e6

n

)
. (3.4)

Using equation (3.4), the Taylor’s series of f(yn) is given by
f(yn) = c2e2

n − 2(c2
2 − c3)e3

n + (5c3
2 − 7c2c3 + 3c4)e4

n+

(−12c4
2 + 24c2

2c3 − 10c2c4 − 6c2
3 + 4c5)e5

n + O
(
e6

n

)
. (3.5)

Using equations (3.1), (3.2) and (3.5), we get
f ′(xn) (f(xn) + 2f(yn)) = en + 5c2e2

n + (2c2
2 + 8c3)e3

n + (2c3
2 + 5c2c3 + 11c4)e4

n+
(−4c4

2 + 8c2
2c3 + 6c2c4 + 3c2

3 + 14c5)e5
n + O(e6

n) . (3.6)
Using equations (3.2), (3.5) and (3.6), the error term for algorithm 2.3 is given as:

en+1 = −3c3
2e4

n + (20c4
2 − 16c2

2c3)e5
n + O(e6

n) . (3.7)
This completes the proof. �
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4. Numerical examples
In this section, we explore the validity and efficiency of newly proposed optimal fourth-

order iterative method (algorithm 2.3) (AM1) by considering some standard nonlinear
equations. We compare AM1 with the standard Newton’s method (NM), Sharma and
Behl method (equation 1.4) (SB), Noor and Gupta method (equation 1.3) (NG) and re-
cently developed method by Li (equation 1.5) (LI). The numerical comparison is presented
in the following table, whereas the graphical behavior is reflected in Fig. 01 to Fig. 08.
We use Maple-18 and Matlab softwares for numerical and graphical comparisons, respec-
tively, taking (|xn+1 − xn| + |f(xn)|) < ϵ as stopping criteria, where ϵ = 10−15 represents
tolerance. Both comparative studies clearly indicate that the newly developed method
performs better.
In the following table, NFE denotes the total number of functional evaluations required
to reach the desired result.

Table.
f(x) x◦ Method n x [k] f(xn) (|xn+1 − xn|) NF E

x3 − x − 8 −1.55

NM
SB
NG
LI
AM1

13
10
12
6
4

2.1663127473977890
2.1663127473977890
2.1663127473977890
2.1663127473977890
2.1663127473977891

2.906126e−16

2.906126e−16

2.906126e−16

2.906126e−16

1.598486e−15

3.602407e−11

7.131811e−13

6.118864e−11
3.189469e−14

2.511896e−09

26
30
48
18
12

x3 − e−sinx − 2 −1.03

NM
SB
NG
LI
AM1

9
8
6
9
4

1.3348032769765693
1.3348032769765693
1.3348032769765693
1.3348032769765693
1.3348032769765693

6.102066e−17

6.102066e−17

6.102066e−17

6.102066e−17

6.102066e−17

2.694072e−12

5.114977e−10

6.466281e−08

8.452116e−05

1.131499e−10

18
24
24
27
12

ln(xex + 1) 0.9

NM
SB
NG
LI
AM1

5
7
3
3
3

0.0000000000000000
0.0000000000000000
0.0000000000000004
0.0000000000000000
0.0000000000000000

5.268150e−22

1.281677e−22

1.059893e−21

1.133586e−34

3.115512e−39

3.245967e−11

2.264224e−11

1.618480e−07

4.829742e−09

3.019079e−10

10
21
12
9
9

sin−1(x − 1) 0.4

NM
SB
NG
LI
AM1

4
3
3
3
2

1.0000000000000000
1.0000000000000000
1.0000000000000000
1.0000000000000000
1.0000000000000000

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

2.945940e−12

3.248117e−07

1.009696e−10

1.467463e−12

3.308688e−03

8
9
12
9
6

tan−1x 0.4

NM
SB
NG
LI
AM1

4
3
3
3
2

0.0000000000000000
0.0000000000000000
0.0000000000000068
0.0000000000000000
0.0000000000000000

2.316939e−40

2.984464e−24

5.306719e−64

6.666854e−15

1.161341e−21

7.030754e−14

3.296218e−08

2.602566e−13

1.974363e−03

1.082520e−03

8
9
12
6
6

ln(x2 + eX ) 0.7

NM
SB
NG
LI
AM1

4
3
3
3
2

0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000022
0.0000000000000000

9.221142e−30

1.073600e−18

1.367087e−48

5.898270e−55

8.293687e−15

3.024373e−10

2.953597e−06

4.149614e−10

2.542140e−11

1.388499e−02

8
9
12
9
6

x3 + x2 + x − 2 −1.32

NM
SB
NG
LI
AM1

9
8
6
6
4

0.8105357137661368
0.8105357137661368
0.8105357137661368
0.8105357137661368
0.8105357137661368

1.846549e−17

1.846549e−17

1.846549e−17

1.846549e−17

1.846549e−17

3.715524e−10

9.630194e−14

2.895097e−08

1.345698e−13

4.484225e−11

18
24
24
18
12

ln(x2 + ex) 2.2

NM
SB
NG
LI
AM1

6
4
4
5
3

0.7145563847430097
0.0000000000000042
0.7145563847430097
0.7145563847430097
0.0000000000000000

1.504888e−18

4.227211e−15

1.504888e−18

1.504888e−18

0.000000e+00

4.415567e−10

9.194793e−08

5.987244e−12

8.504755e−10

1.022619e+03

12
12
16
15
9

It is obvious from the above results that, generally, each method converges for the
considered test problems. It is notable that the number of functional evaluations per iter-
ation required for the methods NM, SB, NG, LI, and AM1 are 2, 3, 4, 3 and 3 respectively,
which clearly indicates that the computational cost of the proposed method is least as it
converges in least number of iterations.
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Figure 1. f(x) = x3 − x − 8

Figure 2. f(x) = x3 − e−sinx − 2
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Figure 3. f(x) = ln(xex + 1)

Figure 4. f(x) = sin−1(x − 1)
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Figure 5. f(x) = tan−1x

Figure 6. f(x) = ln(x2 + ex)
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Figure 7. f(x) = x3 + x2 + x − 2

Figure 8. f(x) = ln(x2 + eX)
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5. Dynamical study
Kalantary [39], is the pioneer in the study of polynomiography, which is the art and

science of visualization of the roots of complex polynomials. Polynomiography has diverse
applications in science, arts, engineering and industries, especially in textile industry.
In this section, Fig. 09 to Fig. 16 represent the polynomiographs of certain complex
polynomials in the context of newly developed optimal fourth-order iterative method.

Figure 9. Polynomiograph of z2+1

Figure 10. Polynomiograph of z2-1
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Figure 11. Polynomiograph of z3+1

Figure 12. Polynomiograph of z3+8
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Figure 13. Polynomiograph of z4+ z3+8z+8

Figure 14. Polynomiograph of z4+z3+z-1
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Figure 15. Polynomiograph of z4-1

Figure 16. Polynomiograph of z4+16
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6. Conclusion
A new two-step optimal fourth-order iterative method, for simple roots of nonlinear

equations, based on the technique of linear combination has been introduced in this article.
The efficiency of the newly developed method has been demonstrated both numerically
and graphically by comparing the same with standard Newton’s method and various other
methods of same domain. The visualization process has been exhibited by exploring the
polynomiographs in the context of some complex polynomials. The study in the previous
section reveals the novelty of the proposed method in the sense that it has better basins
of attraction in certain cases.

Acknowledgment. The authors are extremely grateful to the reviewers for their valu-
able remarks and suggestions, which certainly have improved the quality of the paper.
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