UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.909885

Some Abelian, Tauberian and Core Theorems Related to the (V, λ) -Summability

Merve Temizer Ersoy¹

¹Department of Mathematics, Faculty of Science and Arts, Kahramanmaraş Sütcü İmam University, Kahramanmaraş, Turkey

Article Info

Abstract

Keywords: A-statistically convergence, core theorems, matrix transformations. (Please, alphabetical order and at lease one keyword) 2010 AMS: 46A45, 40C05, 40J05. (Must be at least one and sequential) Received: 5 April 2021 Accepted: 4 June 2021 Available online: 30 June 2021 For a non-decreasing sequence of the positive integers tending to infinity $\lambda = (\lambda_m)$ such that $\lambda_{m+1} - \lambda_m \leq 1$, $\lambda_1 = 1$; (V, λ) -summability defined as the limit of the generalized de la Valée-Pousin of a sequence, [10]. In the present research, we establish some *Tauberian*, *Abelian* and *Core* theorems related to the (V, λ) -summability.

1. Preliminaries

Let \mathbb{R} be the set of the reel numbers and \mathbb{C} be the set of the complex numbers. Let *c* and ℓ_{∞} be the space of all complex valued convergent and bounded sequences, one by one. Let $\lambda = (\lambda_m)$ be a non-decreasing sequence of the positive integers tending to ∞ such that $\lambda_1 = 1$, $\lambda_{m+1} \leq \lambda_m + 1$. A real number sequence $x = (x_n)$ is said to be (V, λ) -summable to the value *l* if

$$\lim t_m(x) = l$$

exists, where

$$t_m(x) = \frac{1}{\lambda_m} \sum_{n \in I_m} x_n, \ I_m = [m - \lambda_m + 1, m].$$

By (V, λ) , we mean the set of all (V, λ) -summable sequences, i.e.,

$$(V,\lambda) = \left\{ x = (x_n) : \lim_m t_m(x) = l \text{ for some } l \in \mathbb{R} \right\}.$$

Also, by $(V,\lambda)_0$ we denote the space of all sequences which (V,λ) -summable to zero. It is clear that in the case $\lambda_m = m$ for all m, (V,λ) -summability reduces to the Cesáro summability, [11]. If $x \in (V,\lambda)$ and $\lim_m t_m(x) = l$, then we have $(V,\lambda) - \lim_n x = l$. Let E be a subset of \mathbb{N} (the set of natural numbers). Natural density δ of E given by the following equality:

$$\delta(E) = \lim_{n} \frac{1}{n} |\{k \le n : k \in E\}|.$$

The number sequence $x = (x_k)$ is said to be statistically convergent to the number *l* if for every $\varepsilon > 0$, $\delta(\{k : |x_k - l| \ge \varepsilon\}) = 0$, [7]. In this case, we write: $st - \lim x = l$, where st and st_0 are the sets of all statistically convergent and statistically null sequences, respectively. For a given non-negative regular matrix *A*, the number

 $\delta_A(K) = \lim_n \sum_{k \in K} a_{nk}$

Email address and ORCID number: mervetemizer@hotmail.com, 0000-0003-4364-9144, (M. Temizer Ersoy)

is said to be the *A*-density of $K \subseteq \mathbb{N}$, [8]. A sequence $x = (x_k)$ is said to be *A*-statistically convergent to the number *s* if for every $\varepsilon > 0$, the set $\{k : |x_k - s| \ge \varepsilon\}$ has *A*-density zero, [2]. Thus, the following equation is valid: $st_A - \lim x = s$. By st(A) and $st(A)_0$, we respectively show the set of all *A*-statistically convergent and *A*-statistically null sequences.

For example, if we choose $E \subset \mathbb{N}$ such as $E = \{n^2 : n = 1, 2, 3 \cdots\}$ then it is easy to see that $\delta(E) = 0$. A real number sequence $x = (x_k)$ is said to be statistically convergence to the number *l* if for every $\varepsilon > 0$, $\delta\{k : |x_k - l|\} = 0$, [7]. For example, let

$$x_k = \begin{cases} k & , \quad k = n^2 \text{ for all } n = 1, 2, 3, \cdots \\ \frac{1}{k} & , \quad \text{otherwise.} \end{cases}$$

Then it obvious that $\lim x_k$ does not exist. But since $\delta(E) = \delta(\{n^2 : n = 1, 2, 3 \cdots\}) = 0$, we write $st - \lim x_k = \lim_k \frac{1}{k} = 0$. If (x_k) is statistically convergence to a number l, then we write $st - \lim x = l$. By st and st_0 , we denote the set of all statistically convergent and statistically convergent to l, then we can write $st_A - \lim x = l$.

Let $x = (x_k)$ be a sequence in \mathbb{C} and R_k be the least convex closed region of complex plane containing $x_k, x_{k+1}, x_{k+2}, \dots$ The Knopp Core (or \mathscr{K} -core) of x is defined by the intersection of all R_k (k=1,2,...), [1, pp.137]. In [12], it is indicate that

$$\mathscr{K} - core(x) = \bigcap_{z \in \mathbb{C}} B_x(z)$$

for any bounded sequence *x*, where $B_x(z) = \{ w \in \mathbb{C} : |w - z| \le \limsup_k |x_k - z| \}.$

In [6], the notion of the statistical core of a complex number sequence introduced by Fridy and Orhan [9] has been extended to the A-statistical core (or st_A -core) and it is shown that for a A-statistically bounded sequence x

$$st_A - core(x) = \bigcap_{z \in \mathbb{C}} C_x(z)$$

where $C_x(z) = \{w \in \mathbb{C} : |w - z| \le st_A - \limsup |x_k - z|\}$. The inclusion theorems related to the \mathscr{K} -core and st_A -core has been worked by many authors [3–5].

Let *D* be an infinite matrix of complex entries d_{nk} and $x = (x_k)$ be a complex valued sequence. Then $Dx = \{(Dx)_n\}$ is called the transformed sequence of *x*, if $(Dx)_n = \sum_k d_{nk}x_k$ converges for each *n*. For two sequence spaces *M* and *N* we say that $D \in (M,N)$ if $Dx \in N$ for each $x \in M$. If *M* and *N* are equipped with the limits M – lim and N – lim, respectively, $D \in (M,N)$ and $N - \lim_n (Dx)_n = M - \lim_k x_k$ for all $x \in M$, then we say *D* regularly transforms *M* into *N* and write $D \in (M,N)_{reg}$.

Recently, similar works studied by some authors, see [13–17]. In the present paper, we have proved some *Abelian*, *Tauberian* and *Core* theorems related to the (V, λ) -summability.

2. Tauberian and Abelian Theorems

For any sequence spaces *X* and *Y*, an *Abelian* theorem is a theorem such that states the inclusion $X \subset Y$. The *Tauberian* theorem is a one of the form $X \cap Z \subset Y$, where *Z* is also a sequence space and $Y \subset X$. Our first result for (V, λ) is an *Abelian* theorem.

Theorem 2.1. $c_{(C,1)} \subset (V,\lambda)$ if and only if

$$\liminf_m \frac{m}{\lambda_m} = 1$$

where $c_{(C,1)}$ is the space of all Cesáro summable sequences.

Proof. Let $x \in c_{(C,1)}$ and

$$\lim_m \frac{1}{m} \sum_{n=1}^m x_n = l.$$

Then, for any given $\varepsilon > 0$ and enough large *m*,

$$\left|\frac{1}{m}\sum_{n=1}^m x_n - l\right| < \varepsilon.$$

Now, one can write that

$$\begin{aligned} \left| \frac{1}{\lambda_m} \sum_{n \in I_m} (x_n - l) \right| &= \left| \frac{1}{\lambda_m} \sum_{n=1}^m (x_n - l) - \frac{1}{\lambda_m} \sum_{n=1}^{m-\lambda_m} (x_n - l) \right| \\ &\leq \frac{m}{\lambda_m} \left| \frac{1}{m} \sum_{n=1}^m (x_n - l) \right| + \frac{m - \lambda_m}{\lambda_m} \left| \frac{1}{m - \lambda_m} \sum_{n=1}^{m-\lambda_m} (x_n - l) \right| \\ &\leq \frac{m}{\lambda_m} \varepsilon + \frac{m - \lambda_m}{\lambda_m} \varepsilon \\ &\leq \varepsilon \left(2 \frac{m}{\lambda_m} - 1 \right). \end{aligned}$$

Therefore, it is clear that $\lim_{m \to \infty} t_m(x) = l$ if and only if (2.1) holds. This completes the theorem.

(2.1)

71

Since $c \subset c_{(C,1)}$, the following result is obvious.

Corollary 2.2. If (2.1) holds then $c \subset (V, \lambda)$.

Theorem 2.3. $(V,\lambda)_0 \cap c_0 \subset (c_0)_{(C,1)}$, where $(c_0)_{(C,1)}$ is the space of all Cesáro summable to zero sequences.

Proof. Let $x \in (V, \lambda)_0 \cap c_0$. Thus, for any $\varepsilon > 0$ and enough large $m, n, |t_m(x)| \le \varepsilon/2$ and $|x_n| \le \varepsilon/2$. Hence, we have

$$\left|\frac{1}{m}\sum_{n=1}^{m}x_{n}\right| = \left|\frac{1}{m}\sum_{n=1}^{m-\lambda_{m}}x_{n} + t_{m}(x)\right|$$
$$\leq \frac{1}{m}\sum_{n=1}^{m-\lambda_{m}}|x_{n}| + \frac{\varepsilon}{2}$$
$$\leq \frac{\varepsilon}{2}\left(1 - \frac{\lambda_{m}}{m} + \frac{2}{m}\right).$$

Also, since λ_m/m is bounded by 1, the following inequality is true:

$$\left|\frac{1}{m}\sum_{n=1}^m x_n\right| \le \frac{\varepsilon}{m}$$

which gives the result.

Since $(t_m(x) - l) \in (V, \lambda)_0$ and $(x_n - l) \in c_0$, we have the following outcome which is a *Tauberian* theorem.

Theorem 2.4. $(V, \lambda) \cap c \subset c_{(C,1)}$.

3. Core Theorems

Definition 3.1. Let R_m be the least closed convex hull containing $t_m, t_{m+1}, t_{m+2}, \ldots$ Then, \mathscr{K}_{λ} -core of x is the intersection of all R_m , i.e.,

$$\mathscr{K}_{\lambda} - core(x) = \bigcap_{m=1}^{\infty} R_m.$$

In fact, we define \mathscr{K}_{λ} -core of *x* by the \mathscr{K} -core of the sequence (t_m) . Thus, one may state the following theorem which is an parallel of \mathscr{K} -core.

One can prove the following theorem by replacing (t_m) in place of (x_k) , which is analogues of theorem given in [12] for Knopp core.

Theorem 3.2. *Let, for any* $z \in \mathbb{C}$ *,*

$$G_x(z) = \left\{ w \in \mathbb{C} : |w - z| \le \limsup_m |t_m(x) - z| \right\}.$$

So, for any $x \in \ell_{\infty}$,

$$\mathscr{K}_{\lambda} - core(x) = \bigcap_{z \in \mathbb{C}} G_x(z).$$

At present, we are in a position to construct the inclusion theorems. First of all, we prove several lemmas which will be helpful to the proof of the next theorems.

Lemma 3.3. Let X be any sequence space. Then, $B \in (X, (V, \lambda))$ if and only if $D \in (X, c)$, where $D = (d_{nk})$ is defined by

$$d_{nk} = \left\{ \frac{1}{\lambda_n} \sum_{j \in I_n} b_{jk}, \ (n \in \mathbb{N}) \right\}.$$
(3.1)

Proof. Let $x \in X$ and take into consideration the equality

$$\frac{1}{\lambda_m}\sum_{j\in I_m}\sum_{k=0}^n b_{jk}x_k = \sum_{k=0}^n \frac{1}{\lambda_m}\sum_{j\in I_m}b_{jk}x_k; \ (m,n\in\mathbb{N})$$

which yields as $n \longrightarrow \infty$ that

$$\frac{1}{\lambda_m}\sum_{j\in I_m}(Bx)_j=(Dx)_m;\ (m\in\mathbb{N}),$$

where $D = (d_{nk})$ is defined by (3.1). Thus, it is obvious that $B \in (X, (V, \lambda))$ if and only if $D \in (X, c)$. As a result, the proof is complete.

For the special cases of the sequence space X, one can state the following lemmas.

Lemma 3.4. $B \in (c, (V, \lambda))_{reg}$ if and only if

$$\begin{split} \sup_{m} \sum_{k} \left| \frac{1}{\lambda_{m}} \sum_{n \in I_{m}} b_{nk} \right| &< \infty, \\ \lim_{m} \frac{1}{\lambda_{m}} \sum_{n \in I_{m}} b_{nk} &= 0, \forall k, \\ \lim_{m} \sum_{k} \frac{1}{\lambda_{m}} \sum_{n \in I_{m}} b_{nk} &= 1. \end{split}$$

Following lemma is an analogues of Theorem 3.2 in [4]. One can prove it by same technique. So, we omit the proof.

Lemma 3.5. $B \in (st(A) \cap \ell_{\infty}, (V, \lambda))_{reg}$ if and only if $B \in (c, (V, \lambda))_{reg}$ and

$$\lim_{m} \sum_{k \in E} \frac{1}{\lambda_m} \Big| \sum_{n \in I_m} b_{nk} \Big| = 0$$
(3.2)

for every $E \subset \mathbb{N}$ with $\delta_A(E) = 0$.

By choosing A as Cesáro matrix

$$a_{nk} = \begin{cases} 1/n & , \quad n \ge k \\ 0 & , \quad \text{others} \end{cases}$$

we get following lemma.

Lemma 3.6. $B \in (S \cap \ell_{\infty}, (V, \lambda))_{reg}$ if and only if $B \in (c, (V, \lambda))_{reg}$ and

$$\lim_{m}\sum_{k\in E}\frac{1}{\lambda_{m}}\Big|\sum_{n\in I_{m}}b_{nk}\Big|=0$$

for every $E \subset \mathbb{N}$ with $\delta(E) = 0$.

Now, we can give the following theorem.

Theorem 3.7. Let $||B|| = \sup_n \sum_k |b_{nk}| < \infty$. Then, \mathscr{K}_{λ} -core $(Bx) \subseteq \mathscr{K}$ -core(x) for all $x \in \ell_{\infty}$ if and only if $B \in (c, (V, \lambda))_{reg}$ and

$$\lim_{m} \sum_{k} \frac{1}{\lambda_m} \Big| \sum_{n \in I_m} b_{nk} \Big| = 1.$$
(3.3)

Proof. (*Necessity*). Let $x \in c$ with $\lim x = l$. Then, \mathscr{K} -core $(x) = \{l\}$ which implies that \mathscr{K}_{λ} -core $(Bx) \subseteq \{l\}$. Since the assumption $||B|| < \infty$ implies the boundedness of Bx, \mathscr{K}_{λ} -core $(Bx) = \{l\}$ and therefore $(V, \lambda) - \lim Bx = l$. This implies that $B \in (c, (V, \lambda))_{reg}$. Let's assume that the condition(3.3) is not satisfy. Then we have,

$$\lim_{m}\sum_{k}\frac{1}{\lambda_{m}}\Big|\sum_{n\in I_{m}}b_{nk}\Big|>1.$$

The conditions of the Lemma 3.4 give us to choose two strictly increasing sequences $\{k(n_i)\}$ and $\{n_i\}$ (i = 1, 2, ...) of positive integers such that

$$\sum_{k=0}^{k(n_i-1)} \frac{1}{\lambda_m} \Big| \sum_{n \in I_m} b_{n_i,k} \Big| < \frac{1}{4}, \quad \sum_{k=k(n_{i-1})+1}^{k(n_i)} \frac{1}{\lambda_m} \Big| \sum_{n \in I_m} b_{n_i,k} \Big| > 1 + \frac{1}{2}$$

and

$$\sum_{k=k(n_i)+1}^{\infty} \frac{1}{\lambda_m} \Big| \sum_{n \in I_m} b_{n_i,k} \Big| < \frac{1}{4}.$$

At present, let's define a sequence $x = (x_k)$ by

$$x_k = sgn\left(\frac{1}{\lambda_m}\sum_{n \in I_m} b_{n_i,k}\right), \ k(n_{i-1}) + 1 \le k < k(n_i),$$

where *m* is an integer as defined in the choosing $\lambda = \lambda_m$. Then, it is clear that \mathscr{K} -core $(x) \subseteq B_x(0)$. Also,

$$\left|\sum_{k}\frac{1}{\lambda_{m}}\sum_{n\in I_{m}}b_{n,k}x_{k}\right| \geq \sum_{k=k(n_{i-1})+1}^{k(n_{i})}\frac{1}{\lambda_{m}}\left|\sum_{n\in I_{m}}b_{n,k}\right| - \sum_{k=0}^{k(n_{i}-1)}\frac{1}{\lambda_{m}}\left|\sum_{n\in I_{m}}b_{n,k}\right| - \sum_{k=k(n_{i})+1}^{\infty}\frac{1}{\lambda_{m}}\left|\sum_{n\in I_{m}}b_{n,k}\right| > 1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{4} = 1.$$

Since $B \in (c, (V, \lambda))_{reg}$, it follows that (Bx) has a subsequence whose (V, λ) -limit can not be in $B_x(0)$. This is a contradiction with that \mathscr{K}_{λ} -core $(Bx) \subseteq \mathscr{K}$ -core(x). Hence, the condition (3.3) have to be satisfy.

(3.4)

(*Sufficiency*). Let $w \in \mathscr{K}_{\lambda}$ -core(Bx). So, for any given $z \in \mathbb{C}$, one get

$$w-z| \leq \limsup_{m} |t_{m}(Bx) - z|$$

$$= \limsup_{m} |z - \sum_{k} c_{mk} x_{k}|$$

$$\leq \limsup_{m} |\sum_{k} c_{mk}(z - x_{k})| + \limsup_{m} |z| |1 - \sum_{k} c_{mk}$$

$$= \limsup_{m} |\sum_{k} c_{mk}(z - x_{k})|$$

where

$$c_{mk} = \frac{1}{\lambda_m} \sum_{n \in I_m} b_{nk}$$

Now, let $\limsup_k |x_k - z| = l$. Subsequently, for any $\varepsilon > 0$, $|x_k - z| \le l + \varepsilon$ whenever $k \ge k_0$. Thus, the following inequality applies:

$$\left|\sum_{k} c_{mk}(z - x_{k})\right| = \left|\sum_{k < k_{0}} c_{mk}(z - x_{k}) + \sum_{k \ge k_{0}} c_{mk}(z - x_{k})\right|$$

$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |c_{mk}| + (l + \varepsilon) \sum_{k \ge k_{0}} |c_{mk}|$$

$$\leq \sup_{k} |z - x_{k}| \sum_{k < k_{0}} |c_{mk}| + (l + \varepsilon) \sum_{k} |c_{mk}|.$$
(3.5)

Therefore, applying \limsup_{m} and combining (3.4) with (3.5), we have

$$|w-z| \leq \limsup_{m} \left| \sum_{k} c_{mk}(z-x_k) \right| \leq l$$

which shows that $w \in \mathcal{K}$ -core(x). The proof is completed.

Theorem 3.8. Let $||B|| = \sup_n \sum_k |b_{nk}| < \infty$. Then, \mathscr{K}_{λ} -core $(Bx) \subseteq st_A$ -core(x) for all $x \in \ell_{\infty}$ if and only if $B \in (st(A) \cap \ell_{\infty}, (V, \lambda))$ reg and the condition (3.3) are satisfy.

Proof. (*Necessity*). By choosing $x \in st(A) \cap \ell_{\infty}$, as in Theorem 3.7, we immediately have that $B \in (st(A) \cap \ell_{\infty}, (V, \lambda))_{reg}$. On the other hand, since st_A -core $(x) \subseteq \mathscr{K}$ -core(x) for any sequence x [6], the necessity of the condition (3.3) follows from Theorem 3.7. (*Sufficiency*). Let we take $w \in \mathscr{K}_{\lambda}$ -core(Bx). So, we have again the condition (3.4). At present, if $st_A - \limsup |x_k - z| = s$, then for any $\varepsilon > 0$, the set E defined by $E = \{k : |x_k - z| > s + \varepsilon\}$ has zero A-density. At present, we get

$$\begin{split} \left|\sum_{k} c_{mk}(z-x_{k})\right| &= \left|\sum_{k \in E} c_{mk}(z-x_{k}) + \sum_{k \notin E} c_{mk}(z-x_{k})\right| \\ &\leq \sup_{k} |z-x_{k}| \sum_{k \in E} |c_{mk}| + (s+\varepsilon) \sum_{k \notin E} |c_{mk}| \\ &\leq \sup_{k} |z-x_{k}| \sum_{k \in E} |c_{mk}| + (s+\varepsilon) \sum_{k} |c_{mk}|. \end{split}$$

Hence, applying the operator \limsup_{m} and using the condition (3.3) with (3.2), we can write that

$$\limsup_{m} \left| \sum_{k} c_{mk}(z - x_k) \right| \le s + \varepsilon.$$
(3.6)

Finally, combining (3.4) with (3.6), we get

$$|w-z| \le st_A - \limsup_k |x_k - z|$$

which shows that $w \in st_A$ -core(x).

As a consequence of Theorem 3.8, we get

Corollary 3.9. Let $||B|| = \sup_n \sum_k |b_{nk}| < \infty$. Then, \mathscr{K}_{λ} -core $(Bx) \subseteq$ st-core(x) for all $x \in \ell_{\infty}$ if and only if $B \in (st \cap \ell_{\infty}, (V, \lambda))_{reg}$ and (3.3) holds.

4. Conclusion

In this paper, we obtained new some *Tauberian*, Abelian and Core theorems related to the (V, λ) -summability.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan, New York, 1950.
- [2] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bul. 32(1989), 194-198.

- [3] H. Çoşkun, C. Çakan, Infinite matrices and σ-core, Demonstratio Math., 34(2001), 825-830.
 [4] H. Çoşkun, C. Çakan, On some new inequalities related to the F_#-convergence, Tamsui Oxford J. Math. Sci., 19(2)(2003), 131-140.
 [5] H. Çoşkun, C. Çakan, A class of matrices mapping σ-core into A-statistical core, Tamsui Oxford Journal of Math. Sci., 20(1) (2004) 17-25.
- [6] K. Demirci, A-statistical core of a sequence, Demonstratio Math., 160(2000), 43-51.
 [7] H. Fast, Sur la convergence statisque, Colloq. Math., 2(1951), 241-244.

- [8] A. R. Freedman, J. J. Sember, *Densities and summability*, Pasific J. Math., 95(1981), 293-305.
 [9] J. A. Fridy, C. Orhan, *Statistical core theorems*, J. Math., Anal. Appl. 208(1997), 520-527.
- [10] L. Leindler, Uber die de la Vallée-Pousinsche Sumierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16(1965), 375-387.
 [11] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge 1970.
- [12] A. A. Shcherbakov, Kernels of sequences of complex numbers and their regular transformations, Math. Notes, 22(1977), 948-953.
- [13] U. Ulusu, E. Dündar, Asymptotically I-Cesaro equivalence of sequences of sets, Universal Journal of Mathematics and Applications, 1(2) (2018), 101-105. [14] R. Kama, Spaces of vector sequence defined by the f-statistical convergence and some characterizations of normed spaces, Revista de la Real Academia
- de Ciencias Exactas, **4(2)** (2020), 1-9.
- [15] C. Unal, Ergodic Theorem in Grand Variable Exponent Lebesgue Spaces, Mathematical Science and Applications E-notes, 8(2) (2020), 130-134.
- [16] O. Talo, E. Yavuz, H. Çoşkun, Tauberian Theorems for Statistical Logarithmic Summability of Strongly Measurable Fuzzy Valued Functions, Communications in Advanced Mathematical Sciences, 2 (2020), 91-100.
- [17] V. Renukadevi, S. Vadakasi, On Various g-Topology in Statistical Metric Spaces, Universal Journal of Mathematics and Applications, 2(3) (2019), 107-115.