
Universal Journal of Mathematics and Applications, 4 (2) (2021) 70-75
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.909885

Some Abelian, Tauberian and Core Theorems Related to the
(V,λ )-Summability

Merve Temizer Ersoy1

1Department of Mathematics, Faculty of Science and Arts, Kahramanmaraş Sütcü İmam University, Kahramanmaraş, Turkey
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Abstract

For a non-decreasing sequence of the positive integers tending to infinity λ = (λm) such
that λm+1−λm ≤ 1, λ1 = 1; (V,λ )-summability defined as the limit of the generalized de
la Valée-Pousin of a sequence, [10]. In the present research, we establish some Tauberian,
Abelian and Core theorems related to the (V,λ )-summability.

1. Preliminaries

Let R be the set of the reel numbers and C be the set of the complex numbers. Let c and `∞ be the space of all complex valued
convergent and bounded sequences, one by one. Let λ = (λm) be a non-decreasing sequence of the positive integers tending to ∞ such that
λ1 = 1, λm+1 ≤ λm +1. A real number sequence x = (xn) is said to be (V,λ )-summable to the value l if

lim
m

tm(x) = l

exists, where

tm(x) =
1

λm
∑

n∈Im

xn, Im = [m−λm +1,m].

By (V,λ ), we mean the set of all (V,λ )-summable sequences, i.e.,

(V,λ ) =
{

x = (xn) : lim
m

tm(x) = l for some l ∈ R
}
.

Also, by (V,λ )0 we denote the space of all sequences which (V,λ )-summable to zero. It is clear that in the case λm = m for all m,
(V,λ )-summability reduces to the Cesáro summability, [11]. If x ∈ (V,λ ) and limm tm(x) = l, then we have (V,λ )− limx = l.
Let E be a subset of N (the set of natural numbers). Natural density δ of E given by the following equality:

δ (E) = lim
n

1
n
|{k ≤ n : k ∈ E}|.

The number sequence x = (xk) is said to be statistically convergent to the number l if for every ε > 0, δ ({k : |xk− l| ≥ ε}) = 0, [7]. In this
case, we write: st− limx = l, where st and st0 are the sets of all statistically convergent and statistically null sequences, respectively.
For a given non-negative regular matrix A, the number

δA(K) = lim
n ∑

k∈K
ank
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is said to be the A-density of K ⊆ N, [8]. A sequence x = (xk) is said to be A-statistically convergent to the number s if for every ε > 0, the
set {k : |xk− s| ≥ ε} has A-density zero, [2]. Thus, the following equation is valid: stA− limx = s. By st(A) and st(A)0, we respectively
show the set of all A-statistically convergent and A-statistically null sequences.
For example, if we choose E ⊂ N such as E = {n2 : n = 1,2,3 · · ·} then it is easy to see that δ (E) = 0. A real number sequence x = (xk) is
said to be statistically convergence to the number l if for every ε > 0, δ{k : |xk− l|}= 0, [7]. For example, let

xk =

{
k , k = n2 for all n = 1,2,3, · · ·
1
k , otherwise.

Then it obvious that limxk does not exist. But since δ (E) = δ ({n2 : n = 1,2,3 · · ·}) = 0, we write st − limxk = limk
1
k = 0. If (xk) is

statistically convergence to a number l, then we write st− limx = l. By st and st0, we denote the set of all statistically convergent and
statistically null sequence, respectively. If a sequence is A-statistically convergent to l, then we can write stA− limx = l.
Let x = (xk) be a sequence in C and Rk be the least convex closed region of complex plane containing xk,xk+1,xk+2, . . .. The Knopp Core
(or K -core) of x is defined by the intersection of all Rk (k=1,2,. . . ), [1, pp.137]. In [12], it is indicate that

K − core(x) =
⋂
z∈C

Bx(z)

for any bounded sequence x, where Bx(z) =
{

w ∈ C : |w− z| ≤ limsupk |xk− z|
}

.
In [6], the notion of the statistical core of a complex number sequence introduced by Fridy and Orhan [9] has been extended to the A-statistical
core (or stA-core) and it is shown that for a A-statistically bounded seqeunce x

stA− core(x) =
⋂
z∈C

Cx(z)

where Cx(z) =
{

w ∈ C : |w− z| ≤ stA− limsup |xk− z|
}

. The inclusion theorems related to the K -core and stA-core has been worked by
many authors [3–5].
Let D be an infinite matrix of complex entries dnk and x = (xk) be a complex valued sequence. Then Dx = {(Dx)n} is called the transformed
sequence of x, if (Dx)n = ∑k dnkxk converges for each n. For two sequence spaces M and N we say that D ∈ (M,N) if Dx ∈ N for each
x ∈M. If M and N are equipped with the limits M− lim and N− lim, respectively, D ∈ (M,N) and N− limn(Dx)n = M− limk xk for all
x ∈M, then we say D regularly transforms M into N and write D ∈ (M,N)reg.
Recently, similar works studied by some authors, see [13–17]. In the present paper, we have proved some Abelian, Tauberian and Core
theorems related to the (V,λ )-summability.

2. Tauberian and Abelian Theorems

For any sequence spaces X and Y , an Abelian theorem is a theorem such that states the inclusion X ⊂ Y . The Tauberian theorem is a one of
the form X ∩Z ⊂ Y , where Z is also a sequence space and Y ⊂ X .
Our first result for (V,λ ) is an Abelian theorem.

Theorem 2.1. c(C,1) ⊂ (V,λ ) if and only if

liminf
m

m
λm

= 1, (2.1)

where c(C,1) is the space of all Cesáro summable sequences.

Proof. Let x ∈ c(C,1) and

lim
m

1
m

m

∑
n=1

xn = l.

Then, for any given ε > 0 and enough large m,∣∣∣∣∣ 1
m

m

∑
n=1

xn− l

∣∣∣∣∣< ε.

Now, one can write that∣∣∣∣∣ 1
λm

∑
n∈Im

(xn− l)

∣∣∣∣∣=
∣∣∣∣∣ 1
λm

m

∑
n=1

(xn− l)− 1
λm

m−λm

∑
n=1

(xn− l)

∣∣∣∣∣
≤ m

λm

∣∣∣∣∣ 1
m

m

∑
n=1

(xn− l)

∣∣∣∣∣+ m−λm

λm

∣∣∣∣∣ 1
m−λm

m−λm

∑
n=1

(xn− l)

∣∣∣∣∣
≤ m

λm
ε +

m−λm

λm
ε

≤ ε

(
2

m
λm
−1
)
.

Therefore, it is clear that limm tm(x) = l if and only if (2.1) holds. This completes the theorem.
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Since c⊂ c(C,1), the following result is obvious.

Corollary 2.2. If (2.1) holds then c⊂ (V,λ ) .

Theorem 2.3. (V,λ )0∩ c0 ⊂ (c0)(C,1), where (c0)(C,1) is the space of all Cesáro summable to zero sequences.

Proof. Let x ∈ (V,λ )0∩ c0. Thus, for any ε > 0 and enough large m,n, |tm(x)| ≤ ε/2 and |xn| ≤ ε/2. Hence, we have∣∣∣∣∣ 1
m

m

∑
n=1

xn

∣∣∣∣∣=
∣∣∣∣∣ 1
m

m−λm

∑
n=1

xn + tm(x)

∣∣∣∣∣
≤ 1

m

m−λm

∑
n=1
|xn|+

ε

2

≤ ε

2

(
1− λm

m
+

2
m

)
.

Also, since λm/m is bounded by 1, the following inequality is true:∣∣∣∣∣ 1
m

m

∑
n=1

xn

∣∣∣∣∣≤ ε

m

which gives the result.

Since (tm(x)− l) ∈ (V,λ )0 and (xn− l) ∈ c0, we have the following outcome which is a Tauberian theorem.

Theorem 2.4. (V,λ )∩ c⊂ c(C,1).

3. Core Theorems

Definition 3.1. Let Rm be the least closed convex hull containing tm, tm+1, tm+2, . . .. Then, Kλ -core of x is the intersection of all Rm, i.e.,

Kλ − core(x) =
∞⋂

m=1
Rm.

In fact, we define Kλ -core of x by the K -core of the sequence (tm). Thus, one may state the following theorem which is an parallel of
K -core.
One can prove the following theorem by replacing (tm) in place of (xk), which is analogues of theorem given in [12] for Knopp core.

Theorem 3.2. Let, for any z ∈ C,

Gx(z) =
{

w ∈ C : |w− z| ≤ limsup
m
|tm(x)− z|

}
.

So, for any x ∈ `∞,

Kλ − core(x) =
⋂
z∈C

Gx(z).

At present, we are in a position to construct the inclusion theorems. First of all, we prove several lemmas which will be helpful to the proof
of the next theorems.

Lemma 3.3. Let X be any sequence space. Then, B ∈ (X ,(V,λ )) if and only if D ∈ (X ,c), where D = (dnk) is defined by

dnk =

{
1
λn

∑
j∈In

b jk, (n ∈ N)

}
. (3.1)

Proof. Let x ∈ X and take into consideration the equality

1
λm

∑
j∈Im

n

∑
k=0

b jkxk =
n

∑
k=0

1
λm

∑
j∈Im

b jkxk; (m,n ∈ N)

which yields as n−→ ∞ that

1
λm

∑
j∈Im

(Bx) j = (Dx)m; (m ∈ N),

where D = (dnk) is defined by (3.1).
Thus, it is obvious that B ∈ (X ,(V,λ )) if and only if D ∈ (X ,c). As a result, the proof is complete.

For the special cases of the sequence space X , one can state the following lemmas.
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Lemma 3.4. B ∈ (c, (V,λ ))reg if and only if

sup
m

∑
k

∣∣∣∣∣ 1
λm

∑
n∈Im

bnk

∣∣∣∣∣< ∞,

lim
m

1
λm

∑
n∈Im

bnk = 0,∀k,

lim
m ∑

k

1
λm

∑
n∈Im

bnk = 1.

Following lemma is an analogues of Theorem 3.2 in [4]. One can prove it by same technique. So, we omit the proof.

Lemma 3.5. B ∈ (st(A)∩ `∞,(V,λ ))reg if and only if B ∈ (c,(V,λ ))reg and

lim
m ∑

k∈E

1
λm

∣∣∣ ∑
n∈Im

bnk

∣∣∣= 0 (3.2)

for every E ⊂ N with δA(E) = 0.

By choosing A as Cesáro matrix

ank =

{
1/n , n≥ k

0 , others.

we get following lemma.

Lemma 3.6. B ∈ (S∩ `∞,(V,λ ))reg if and only if B ∈ (c,(V,λ ))reg and

lim
m ∑

k∈E

1
λm

∣∣∣ ∑
n∈Im

bnk

∣∣∣= 0

for every E ⊂ N with δ (E) = 0.

Now, we can give the following theorem.

Theorem 3.7. Let ‖B‖= supn ∑k |bnk|< ∞. Then, Kλ -core(Bx)⊆K -core(x) for all x ∈ `∞ if and only if B ∈ (c,(V,λ ))reg and

lim
m ∑

k

1
λm

∣∣∣ ∑
n∈Im

bnk

∣∣∣= 1. (3.3)

Proof. (Necessity). Let x ∈ c with limx = l. Then, K -core(x) = {l} which implies that Kλ -core(Bx)⊆ {l}. Since the assumption ‖B‖< ∞

implies the boundedness of Bx, Kλ -core(Bx) = {l} and therefore (V,λ )− limBx = l. This implies that B ∈ (c,(V,λ ))reg.
Let’s assume that the condition(3.3) is not satisfy. Then we have,

lim
m ∑

k

1
λm

∣∣∣ ∑
n∈Im

bnk

∣∣∣> 1.

The conditions of the Lemma 3.4 give us to choose two strictly increasing sequences {k(ni)} and {ni} (i = 1,2, . . .) of positive integers such
that

k(ni−1)

∑
k=0

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣< 1
4
,

k(ni)

∑
k=k(ni−1)+1

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣> 1+
1
2

and
∞

∑
k=k(ni)+1

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣< 1
4
.

At present, let’s define a sequence x = (xk) by

xk = sgn
( 1

λm
∑

n∈Im

bni,k

)
, k(ni−1)+1≤ k < k(ni),

where m is an integer as defined in the choosing λ = λm. Then, it is clear that K -core(x)⊆ Bx(0). Also,

∣∣∣∑
k

1
λm

∑
n∈Im

bni,kxk

∣∣∣≥ k(ni)

∑
k=k(ni−1)+1

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣− k(ni−1)

∑
k=0

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣− ∞

∑
k=k(ni)+1

1
λm

∣∣∣ ∑
n∈Im

bni,k

∣∣∣> 1+
1
2
− 1

4
− 1

4
= 1.

Since B ∈ (c,(V,λ ))reg, it follows that (Bx) has a subsequence whose (V,λ )-limit can not be in Bx(0). This is a contradiction with that
Kλ -core(Bx)⊆K -core(x). Hence, the condition (3.3) have to be satisfy.
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(Sufficiency). Let w ∈Kλ -core(Bx). So, for any given z ∈ C, one get

|w− z| ≤ limsup
m

∣∣tm(Bx)− z
∣∣ (3.4)

= limsup
m

∣∣∣z−∑
k

cmkxk

∣∣∣
≤ limsup

m

∣∣∣∑
k

cmk(z− xk)
∣∣∣+ limsup

m
|z|
∣∣∣1−∑

k
cmk

∣∣∣
= limsup

m

∣∣∣∑
k

cmk(z− xk)
∣∣∣

where

cmk =
1

λm
∑

n∈Im

bnk.

Now, let limsupk |xk− z|= l. Subsequently, for any ε > 0, |xk− z| ≤ l + ε whenever k ≥ k0. Thus, the following inequality applies:∣∣∣∑
k

cmk(z− xk)
∣∣∣= ∣∣∣ ∑

k<k0

cmk(z− xk)+ ∑
k≥k0

cmk(z− xk)
∣∣∣ (3.5)

≤ sup
k
|z− xk| ∑

k<k0

|cmk|+(l + ε) ∑
k≥k0

|cmk|

≤ sup
k
|z− xk| ∑

k<k0

|cmk|+(l + ε)∑
k
|cmk|.

Therefore, applying limsupm and combining (3.4) with (3.5), we have

|w− z| ≤ limsup
m

∣∣∣∑
k

cmk(z− xk)
∣∣∣≤ l

which shows that w ∈K -core(x). The proof is completed.

Theorem 3.8. Let ‖B‖= supn ∑k |bnk|< ∞. Then, Kλ -core(Bx)⊆ stA-core(x) for all x ∈ `∞ if and only if B ∈ (st(A)∩ `∞,(V,λ ))reg and
the condition (3.3) are satisfy.

Proof. (Necessity). By choosing x ∈ st(A)∩ `∞, as in Theorem 3.7, we immediately have that B ∈ (st(A)∩ `∞,(V,λ ))reg.
On the other hand, since stA-core(x)⊆K -core(x) for any sequence x [6], the necessity of the condition (3.3) follows from Theorem 3.7.
(Sufficiency). Let we take w ∈Kλ -core(Bx). So, we have again the condition (3.4). At present, if stA− limsup |xk− z| = s, then for any
ε > 0, the set E defined by E = {k : |xk− z|> s+ ε} has zero A-density. At present, we get∣∣∣∑

k
cmk(z− xk)

∣∣∣= ∣∣∣ ∑
k∈E

cmk(z− xk)+ ∑
k/∈E

cmk(z− xk)
∣∣∣

≤ sup
k
|z− xk|∑

k∈E
|cmk|+(s+ ε) ∑

k/∈E
|cmk|

≤ sup
k
|z− xk|∑

k∈E
|cmk|+(s+ ε)∑

k
|cmk|.

Hence, applying the operator limsupm and using the condition (3.3) with (3.2), we can write that

limsup
m

∣∣∣∑
k

cmk(z− xk)
∣∣∣≤ s+ ε. (3.6)

Finally, combining (3.4) with (3.6), we get

|w− z| ≤ stA− limsup
k
|xk− z|

which shows that w ∈ stA-core(x).

As a consequence of Theorem 3.8, we get

Corollary 3.9. Let ‖B‖= supn ∑k |bnk|< ∞. Then, Kλ -core(Bx)⊆ st-core(x) for all x ∈ `∞ if and only if B ∈ (st ∩ `∞,(V,λ ))reg and (3.3)
holds.

4. Conclusion

In this paper, we obtained new some Tauberian, Abelian and Core theorems related to the (V,λ )-summability.
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