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Highlights 

• This paper focuses on estimate the parameter functions of the exponentiated lifetime distribution. 

• The stress-strength parameter has been estimate using two methods. 

• The validity of our work has been conducted with the simulation study under the special sub model. 
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Abstract 

The paper aims are to extend the theory to estimate the parameters of the exponentiated lifetime 

distribution. For it, in this paper, we derived the probability density function, cumulative density, 

reliability function and the stress-strength parameter of the distribution.  To estimate the 

parameters of such distribution, we considered the maximum likelihood and uniformly minimum 

variance unbiased methods. The validity of the proposed work has been conducted over the 

simulation study of both estimation methods under the special sub model as exponentiated inverse 

Gompertz distribution. Finally, some real data has been taken to conduct an analysis and to 

discuss the effectiveness and advantages of the established work by comparing with other 

methods.  
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1. INTRODUCTION 

 

One of the most significant features of statistical investigation in applied sciences is the modeling and 

examining lifetime data. In the literature, numerous lifetime distributions such as the exponential, Weibull, 

Gamma, or their generalizations have been included. In reliability analysis, exponentiated distribution is a 

class of distribution that affords a more manageable model and widespread family of exponentiated 

distributions that holds the most common distributions in a lifetime. Mudholkar and Srivastava [1] proposed 

exponentiated Weibull where Mudholkar et al. [2] prolonged the applications of the exponentiated Weibull 

distribution in reliability and survival studies. Nadarajah and Kotz [3] acquainted four exponentiated type 

distributions namely the exponentiated gamma, exponentiated Weibull, exponentiated Gumbel, and the 

exponentiated  Frechet distributions. Delgarm and Zadkarami [4] extend the three-parameter modified 

Weibull (MW) distribution to intend a four-parameter distribution named as the modified Weibull Poisson 

distribution, including such sub-models as Exponential Poisson, Weibull Poisson, and Rayleigh Poisson. 

Pourreza et al. [5] investigated some sub-models of the Gamma-X family of distributions.     

 

Probability distributions are frequently employed in survival analysis that prepares intuition of numerous 

parameters and functions, especially the failure rate or hazard function, which manifests the necessity of 

estimation of the probability density function (PDF) and the cumulative distribution function (CDF). In the 

direction of estimating such PDF and CDF for some distribution, several researchers have put forwards 
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different kinds of methods from the last decades. Among distributions, we refer to read the articles on the 

Pareto by Dixit and Jabbari Nooghabi [6]; Weibull extension by Bagheri et al. [7]; the exponential Gumbel 

by Bagheri et al. [8]; the exponentiated Weibull by Alizadeh et al. [9]; generalized exponential by Alizadeh 

et al. [10]; the Lindley by Maiti and Mukherjee [11] and the generalized inverted Weibull by Ghasemi 

Cherati et al. [12]. In the field of probability theory, the concept of the reliability analysis is one of the most 

emerging areas. The reliability function R(t) depicts the probability of the survival of the component until 

time t under the prescribed conditions which depends on the components failure rate. In these days, a 

concept of the reliability has been widely applied in many fields such as quality control, genetics, physics, 

biostatistics, psychology, technology, medicine and economics. The estimation of reliability measures to 

show system efficiency plays a crucial role in the reliability analysis.  

 

To estimate the different parameters associated with the probabilities and reliability theory, Bekker and 

Roux [13] represented the maximum likelihood, Bayes and empirical Bayes estimators of the reliability 

measures of the Maxwell distribution. Krishna and Kumar [14] discussed Lindley reliability model and the 

reliability measures estimation by maximum likelihood and Bayesian approach for an incomplete set of 

data using various loss functions. They also, obtained interval estimation and coverage probability for the 

parameters. Rastogi and Tripathi [15] considered the exponentiated half-logistic distribution and obtained 

the reliability and hazard rate function estimators under progressive type II censoring. Abouei Ardakan et 

al. [16] investigated the reliability of components as a function of time since reliability is time dependent. 

The redundancy allocation problem in reliability optimization is adjusted by a new criterion as mission 

design life. Amirzadi et al. [17] represented the Bayes estimator of the reliability function of inverse 

generalized Weibull distribution under new loss function. 

  

Recently, Dmitriev and Koshkin [18] designed a reliability estimator under the condition of nonparametric 

prior using auxiliary information and illustrated the asymptotic distribution of the optimal mean-square 

error estimators and adaptive optimal estimators. Sankaran and Kumar [19] proposed a new lifetime 

distribution as proportional hazards relevated Weibull and centered on the reliability properties of a 

proportional hazards relevation transform. Roy and Gupta [20] considered the renewal of a coherent system 

that may fail either on the failure of its first or second component and achieve the reliability function of the 

considered coherent system which is implemented with two cold standby components. A reliability model 

of a system with multiple correlated failure modes where Copula function is applied modeling the 

correlation among failure modes was introduced by Gu et al. [21].  Zhang et al. [22] acquainted a relative 

dispersion factor to modeling the failure dependence of components and a series system reliability 

allocation model contains three types of failure modes. They divided the factors influencing system 

reliability allocation into direct and indirect categories.  

 

The stress-strength reliability of a system specifies the probability that the system will appropriately operate 

until the strength exceeds stress. In this case, the system fails if and only if, at any time, the applied stress 

is greater than its strength. The estimation of stress-strength reliability has been widely studied in many 

related fields such as Chaturvedi and Tomer [23], Kundu and Gupta [24], Turkkan and Pham-Gia [25]. 

Rezaei et al. [26] discussed the classical inference of reliability function, when strength and stress both are 

three-parameter generalized. Al-Mutairi et al. [27] investigated the estimation of the stress-strength 

parameter with Lindley random variables with different shape parameters. Nadar et al. [28] obtained the 

classical and Bayesian estimation of reliability measures for Kumaraswamy’s distribution. Alghamdi and 

Percy [29] study survival equivalence factors and mean equivalence factors of a system of exponentiated 

Weibull components, which has subsystems. They improved the reliability of the system by reduction 

method and several duplication methods. Kizilaslan and Nadar [30] consider k strength components system, 

where each component is constructed by a pair of dependent bivariate Kumaraswamy elements and each 

element is exposed to a random Kumaraswamy stress variable. Rezaei et al. [31] obtained the maximum 

likelihood (ML) and uniformly minimum variance unbiased (UMVU) estimation of the stress-strength 

parameter, where the variables have generalized Lindley distribution type 5 Gamma distribution and the 

Bayes estimators derived under informative and noninformative prior.  

 

Keeping in mind all the above discussion, the main aim of this study is to achieve the ML and UMVU 

estimators of the PDF, CDF, and reliability functions for exponentiated distributions class. Further, the 
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performance of the ML and UMVU estimators is compared based on the mean square error (MSE). 

Accordingly, the primary objectives of the work are listed below 

 

1) to obtain ML and UMVU estimators of PDF and their MSEs,  

2) to obtain ML and UMVU estimators of CDF and their MSEs,  

3) to obtain ML and UMVU estimators of reliability function and their MSEs,  

4) to obtain ML and UMVU estimators of stress-strength parameter and their MSEs,  

5) to compare the results by both Monte Carlo simulation and real data. 

 

The rest of the paper is designed as follows: Section 2 describes the model of exponentiated distributions 

and obtains the PDF, CDF, and reliability function. In Section 3, ML estimators of the PDF, the CDF, and 

reliability function are calculated with their MSEs. In Section 4, UMVU estimators and MSE of the PDF, 

CDF, and reliability function are determined. In Section 5, ML and UMVU estimators and MSE of the 

stress-strength parameter are measured. A Monte Carlo simulation study and comparison of the ML and 

UMVU estimation methods are presented in Section 6. Two real data sets are investigated in Section 7. 

Finally, a concrete conclusion is given in Section 8.  

 

2. THE MODEL 

 

A method for generating new families of continuous distribution are introduced by Alzaatreh et al. [32], 

which a random transformer variable 𝑋 is used to transform another random transformed variable 𝑇. A 

special case of the T-X family of distributions is shown as 

 

𝐺(𝑥) = ∫ 𝑧(𝑡)𝑑𝑡 = 𝑍(− ln(1 − F(𝑥)))
−ln(1−F(𝑥))

0
, 

 

where 𝐹(𝑥), 𝑧(𝑡) and 𝑍(𝑡) are the CDF of 𝑋, PDF of 𝑇 on 𝑡, 0 < 𝑡 < ∞ and CDF of 𝑡, respectively. If 

the random variable T follows exponential distribution with parameter 𝛼 with PDF 

 

𝑧(𝑡) = 𝛼𝑒−𝛼𝑡  ,   𝑡 > 0  , 𝛼 > 0, 

 

then CDF and PDF of exponential-X distribution with shape parameter 𝛼, named as exponentiated 

distribution, are given by  

 

𝐺(𝑥) = 1 − (1 − 𝐹(𝑥))
𝛼

,        𝑥 > 0 , 𝛼 > 0     ,      𝑔(𝑥) = 𝛼𝑓(𝑥)(1 − 𝐹(𝑥))𝛼−1, 

 

where F(𝑥) depend on the known parameter 𝜃. The corresponding reliability function and the hazard 

function are shown respectively, as 

 

𝑅(𝑥) = (1 − 𝐹(𝑥))𝛼 = 𝑅𝐹(𝑥)
𝛼,   

ℎ(𝑥) =
𝛼𝑓(𝑥)

1−𝐹(𝑥)
= 𝛼ℎ𝐹(𝑥). 

 

Note that RF(𝑥) < R(𝑥) and h(x) < ℎF(𝑥) for 0 < α < 1 and R(𝑥) <  𝑅F(𝑥)  and ℎF(𝑥) <  h(𝑥) 
for α > 1 in 𝑥.  

 

Remark 1. The cumulative hazard function of 𝑋, can be expressed as 𝐻(𝑥) = − ln(1 − F(𝑥)), so PDF 

and CDF of the exponential-X distribution can be rewritten as 

 

𝐺(𝑥) = 𝑍(𝐻(x)),     𝑔(𝑥) = αf(𝑥)(1 − F(𝑥))
𝛼−1

= ℎF(𝑥)𝑅𝐹(𝑥)
𝛼. 

 

Therefore, the exponential-X distribution can be considered as a family of distributions arising from a 

weighted hazard function. Let 𝑋1, 𝑋2 , … , 𝑋𝑛 be a random sample from the proposed exponentiated 

distributions, the joint PDF of 𝑋1, 𝑋2 , … , 𝑋𝑛 is 
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 𝑔(𝑥1, 𝑥2 , … , 𝑥𝑛, 𝛼) = ∏ 𝛼𝑓(𝑥𝑖)(1 − 𝐹(𝑥𝑖))
𝛼−1𝑛

𝑖=1 , 

 

which can be rewritten as 

 

𝑔(𝑥1, 𝑥2 , … , 𝑥𝑛, 𝛼) = 𝛼
𝑛𝑒𝛼∑ ln(1−F(𝑥𝑖))

𝑛
𝑖=1 ∏

𝑓(𝑥𝑖)

1−F(𝑥𝑖)
𝑛
𝑖=1  . 

 

Proposition 1. The UMVU estimator of the parameter 𝛼 is represented as α̃ =
n−1

S
, where 𝑆 =

−∑ ln(1 − 𝐹(𝑋𝑖))
𝑛
𝑖=1  and 𝑀𝑆𝐸(α̃) =

𝛼2

(𝑛−2)
 . 

 

Proof. By Neyman factorization theorem, S = −∑ ln(1 − F(Xi))
n
i=1  is the sufficient complete statistic for 

the family of exponentiated distributions. The statistic 𝑆 is minimal and gamma random variable with 

parameters (n,
1

α
) as 𝑞(𝑠) =

𝛼𝑛

Γ(𝑛)
𝑠𝑛−1𝑒−𝛼𝑠  , 𝑠 > 0 , 𝛼 > 0. According to Lehmann-Scheffe theorem, the 

UMVU estimator of 𝛼 is given by 𝛼̃ =
𝑛−1

𝑆
 with 𝑀𝑆𝐸(α̃) =

𝛼2

(𝑛−2)
  , 𝑛 > 2. Since 𝑀𝑆𝐸(α̃)

n→∞
→   0, then 

UMVU of 𝛼 is consistent. 

 

3. THE ML ESTIMATORS OF PROBABILITY DENSITY, CUMULATIVE DENSITY AND 

RELIABILTY FUNCTION 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of life time from an exponentiated distribution. So, the log-likelihood 

function is  

 

𝑙𝑛 𝐿(𝛼, 𝑥) = 𝑛 𝑙𝑛 𝛼 +∑𝑙𝑛(𝑓(𝑥𝑖)) + (𝛼 − 1)∑𝑙𝑛(1 − 𝐹(𝑥𝑖))

𝑛

𝑖=1

𝑛

𝑖=1

. 

 

Evidently, the ML estimator of 𝛼, denoted by α̂ is obtained as 𝛼̂ =
𝑛

−∑ 𝑙𝑛(1−𝐹(𝑥𝑖))
𝑛
𝑖=1

=
𝑛

𝑆
 . 

 

Corollary 1. The PDF of the ML estimator of 𝛼 has inverse gamma distribution with the parameters (𝑛, 𝑛𝛼) 

and the PDF is represented at given point 𝑤 as  

 

𝑓𝛼(𝑤) =
(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤  ,          𝑤 > 0 , 𝛼 > 0. 

 

Proof. Since S has gamma distribution with (𝑛,
1

𝛼
), then PDF of 𝛼̂ can be easily obtained. 

 

Corollary 2. The ML estimator of 𝛼 is biased and the MSE of 𝛼̂ is represented as 

 

𝑀𝑆𝐸(𝛼̂) =
(𝑛+2)𝛼2

(𝑛−1)(𝑛−2)
  ,            𝑛 > 2. 

 

Proof. The r-th moment of 𝛼̂ is obtained as 

 

𝐸(𝛼̂𝑟) = ∫
𝑤𝑟(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤 𝑑𝑤
∞

0
= ∫

𝑦𝑛−𝑟−1(𝑛𝛼)𝑛

Γ(𝑛)
𝑒−𝑛𝛼𝑦𝑑𝑦

∞

0
=

Γ(𝑛−𝑟)(𝑛𝛼)𝑟

Γ(𝑛)
 ,      𝑛 > 𝑟. 

 

Let 𝑟 = 1, then 𝛼̂ is biased with 𝐸(𝛼̂) − 𝛼̂ = 
𝛼

n−1
 . The MSE of 𝛼̂ is obtained as 
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𝑀𝑆𝐸(𝛼̂) =
(𝑛𝛼)2

(𝑛 − 1)(𝑛 − 2)
−
2𝑛𝛼2

(𝑛 − 1)
+ 𝛼2 =

(𝑛 + 2)𝛼2

(𝑛 − 1)(𝑛 − 2)
,       𝑛 > 2. 

 

It is clear that 𝛼̂ is a consistent estimator, since 𝑀𝑆𝐸(𝛼̂)
n→∞
→   0. Based on the invariance property of ML 

estimators, the ML estimators of the PDF, CDF and reliability function at a specified point x are obtained 

as 

 

𝑔(𝑥) = α̂𝑓(𝑥)(1 − F(𝑥))α̂−1,      𝐺(𝑥) = 1 − (1 − F(𝑥))
α̂
  ,       𝑅̂(𝑥) = (1 − F(𝑥))α̂,        𝑥 > 0, 

 

respectively. Since 𝑔(𝑥), 𝐺(𝑥) and 𝑅̂(𝑥) are continuous functions of consistent estimator 𝛼̂, so, they are 

also consistent. The bias and MSE of the 𝑔(𝑥), 𝐺(𝑥) and R̂(x) are discussed in the next Theorems. 

 

Theorem 1. The ML estimators 𝑔(𝑥), 𝐺(𝑥) and 𝑅̂(𝑥) are biased and 

 

(i) 𝐸(𝑔(𝑥)𝑟) =
2(𝑛𝛼)𝑛

Γ(𝑛)
ℎ𝐹(𝑥)

𝑟𝜓𝑟(𝑥)𝐾𝑟−𝑛(2√−𝑛𝛼𝑟 ln(1 − F(𝑥))), 

 

where  𝜓𝑟(𝑥) = [
𝑛𝛼

−𝑟 ln(1−F(𝑥))
]
𝑟−𝑛

2 , Ψ𝑖(𝑥) = 2(
𝑛𝛼

−𝑖 ln(1−F(𝑥))
)−

𝑛

2, and Kν(. ) denotes the modified Bassel 

function of the second kind of order ν that is defined as 𝐾𝜈(2√𝛽𝜑) = 0.5(
𝜑

𝛽
)
𝜈

2 ∫ 𝑥𝜈−1
∞

0
𝑒−

𝛽

𝑥𝑒−𝜑𝑥𝑑𝑥, 

 

(ii) 𝐸(𝐺(𝑥)𝑟) = 1 + ∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=1
(𝑛𝛼)𝑛

Γ(𝑛)
Ψ𝑖(𝑥)𝐾−𝑛(2√−𝑛𝛼𝑖 ln(1 − F(𝑥))), 

 

(iii)  𝐸(𝑅̂(𝑥)𝑟) =
(𝑛𝛼)𝑛

Γ(𝑛)
Ψ𝑟(𝑥)𝐾−𝑛(2√−𝑛𝛼𝑟 ln(1 − F(𝑥))). 

 

Proof. (i) Using PDF of ML 𝛼̂ at point 𝑤, The r-th moment of 𝑔(𝑥) is obtained as 

 

𝐸(𝑔(𝑥)𝑟) = ∫ [𝑤𝑓(𝑥)(1 − F(𝑥))𝑤−1]𝑟
(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤 𝑑𝑤
∞

0
, 

                 =
(𝑛𝛼)𝑛

Γ(𝑛)
(𝑓(𝑥))𝑟(1 − F(𝑥))−𝑟 ∫ 𝑤𝑟−𝑛−1

∞

0
(1 − F(𝑥))𝑟𝑤𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =
(𝑛𝛼)𝑛

Γ(𝑛)
ℎF(𝑥)

𝑟 ∫ 𝑤𝑟−𝑛−1𝑒𝑟𝑤 ln(1−F(𝑥))
∞

0
𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =
2(𝑛𝛼)𝑛

Γ(𝑛)
ℎF(𝑥)

𝑟[
𝑛𝛼

−𝑟 ln(1−F(𝑥))
]
𝑟−𝑛

2 𝐾𝑟−𝑛(2√−𝑛𝛼𝑟 ln(1 − F(𝑥))). 

 

By substituting 𝑟 = 1, we obtain 𝐸(𝑔(𝑥)) ≠ 𝑔(𝑥). So, 𝑔(𝑥) is a biased estimator of 𝑔(𝑥). 

 

(ii) The r-th moment of 𝐺(𝑥) is obtained as 

 

𝐸(𝐺(𝑥)𝑟) = ∫ [1 − (1 − F(𝑥))𝑤]𝑟
∞

0

(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =∫ ∑ (−1)𝑖 (
𝑟
𝑖
)𝑟

𝑖=0
∞

0
[1 − F(𝑥)]𝑖𝑤

(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=0
(𝑛𝛼)𝑛

Γ(𝑛)
∫ 𝑤−𝑛−1
∞

0
(1 − F(𝑥))𝑖𝑤𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=0
(𝑛𝛼)𝑛

Γ(𝑛)
∫ 𝑤−𝑛−1
∞

0
𝑒𝑖𝑤 ln(1−F(𝑥))𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 =1 + ∑ (
𝑟
𝑖
) (−1)𝑖𝑟

𝑖=1
(𝑛𝛼)𝑛

Γ(𝑛)
[2(

𝑛𝛼

−𝑖 ln(1−F(𝑥))
)−

𝑛

2]𝐾−𝑛(2√−𝑛𝛼𝑖 ln(1 − F(𝑥))). 
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By substituting 𝑟 = 1, then 𝐸 (𝐺(𝑥)) ≠ 𝐺(𝑥). So, 𝐺(𝑥) is a biased estimator of 𝐺(𝑥). 

 

(iii) The r-th moment of 𝑅̂(𝑥) is calculated as 

 

𝐸(𝑅̂(𝑥)𝑟) = ∫ (1 − 𝐹(𝑥))𝑟𝑤
∞

0

(𝑛𝛼)𝑛

𝑤𝑛+1Γ(𝑛)
𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 = 
(𝑛𝛼)𝑛

Γ(𝑛)
∫ 𝑤−𝑛−1
∞

0
𝑒𝑟𝑤 ln(1−F(𝑥))𝑒−

𝑛𝛼

𝑤 𝑑𝑤, 

                 = 
(𝑛𝛼)𝑛

Γ(𝑛)
[2(

𝑛𝛼

−𝑟 ln(1−F(𝑥))
)−

𝑛

2]𝐾−𝑛(2√−𝑛𝛼𝑟 ln(1 − F(𝑥))). 

 

By substituting 𝑟 = 1, then 𝐸 (𝑅̂(𝑥)) ≠ 𝑅(𝑥). So, 𝑅̂(𝑥) is a biased estimator of 𝑅(𝑥) and the proof is 

completed. 
 

Theorem 2. The MSEs of 𝑔(𝑥),𝐺(𝑥) and 𝑅̂(𝑥) are given by 

 

𝑀𝑆𝐸(𝑔(𝑥)) =
2(𝑛𝛼)𝑛

Γ(𝑛)
ℎ𝐹(𝑥)

2𝜓2(𝑥)𝐾2−𝑛(2√−2𝑛𝛼 ln(1 − F(𝑥)))  

                        −
4(𝑛𝛼)𝑛

Γ(𝑛)
ℎ𝐹(𝑥)𝜓1(𝑥)𝐾1−𝑛(2√−𝑛𝛼 ln(1 − F(𝑥)))(𝛼𝑓(𝑥)(1 − F(𝑥))

𝛼−1) 

                        +(𝛼𝑓(𝑥)(1 − F(𝑥))𝛼−1)2, 

𝑀𝑆𝐸 (𝐺̂(𝑥)) =∑(
2
𝑖
) (−1)𝑖

2

𝑖=1

(𝑛𝛼)𝑛

Γ(𝑛)
[2 (

𝑛𝛼

−𝑖 ln(1 − F(𝑥))
)
−
𝑛

2
]𝐾−𝑛(2√−𝑛𝛼𝑖 ln(1 − F(𝑥))) 

                       +
4(𝑛𝛼)𝑛

Γ(𝑛)
(

𝑛𝛼

− ln(1−F(𝑥))
)−

𝑛

2𝐾−𝑛(2√−𝑛𝛼 ln(1 − F(𝑥)))(1 − (1 − F(𝑥))
𝛼) 

                       +(1 − (1 − F(𝑥))𝛼)2, 

 

and 

  

𝑀𝑆𝐸 (𝑅̂(𝑥)) =
(𝑛𝛼)𝑛

Γ(𝑛)
Ψ2(𝑥)𝐾−𝑛(2√−2𝑛𝛼 ln(1 − F(𝑥))) 

−
2(𝑛𝛼)𝑛

Γ(𝑛)
Ψ1(𝑥)𝐾−𝑛 (2√−𝑛𝛼 ln(1 − F(𝑥))) (1 − F(𝑥))

𝛼
+ (1 − F(𝑥))

2𝛼
. 

 

Proof. By using Theorem 1, the proof can be obtained easily. 

 

4. THE UMVU ESTIMATORS OF PROBABILITY DENSITY, CUMULATIVE DENSITY AND 

RELIABILTY FUNCTION 

 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the family of exponentiated distributions. The UMVU 

estimators of the PDF, CDF and reliability function are discussed in the following. 

 

Theorem 3. At a specified point x, 

(i) The UMVU estimator of 𝑔(𝑥) is given by  

 

𝑔̃(𝑥) = {
(𝑛−1)ℎ𝐹(𝑥)

𝑠
(1 + 𝑠−1 𝑙𝑛 (1 − 𝐹(𝑥)))𝑛−2,         𝑠 > −𝑙𝑛 (1 − 𝐹(𝑥)) 

0,                                                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
, 

 

(ii) The UMVU estimator of G(𝑥) is given by 
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𝐺̃(𝑥) = {
1 − (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑥)))𝑛−1,                               𝑠 > − 𝑙𝑛(1 − 𝐹(𝑥)) 
0,                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

, 

 

(iii)  The UMVU estimator of 𝑅(𝑥) is given by 

 

𝑅̃(x) = {
(1 + s−1 ln(1 − F(𝑥)))𝑛−1,                                       s > −ln(1 − F(𝑥)) 
0,                                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

. 

 

Proof. (i) Consider complete and sufficient statistic 𝑆, function 𝐾(S) will be the UMVUE of 𝑔(𝑥), 

if 𝐾(S) be unbiased, i.e. E(𝐾(S)) = 𝑔(𝑥). So, 

 
𝛼𝑛

𝛤(𝑛)
∫ 𝐾(𝑠)𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠 = 𝛼𝑓(𝑥)(1 − 𝐹(𝑥))𝛼−1
∞

0
, 

 

consequently 

 
𝛼𝑛−1

Γ(𝑛)
∫ 𝐾(𝑠)𝑠𝑛−1𝑒−𝛼(𝑠+ln (1−F(𝑥)))ds = 𝑓(𝑥)(1 − F(x))−1
∞

0
, 

 

where the equality holds if consider 𝐾(𝑠) as   

 

𝑔̃(𝑥) = 𝐾(𝑠) = {

(𝑛 − 1)𝑓(𝑥)

𝑠(1 − 𝐹(𝑥))
(1 + 𝑠−1 𝑙𝑛 (1 − 𝐹(𝑥)))𝑛−2,          𝑠 > −𝑙𝑛 (1 − 𝐹(𝑥)) 

0,                                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

. 

 

Hence this part is completed. 

 

(ii) The unbiased estimator of 𝐺(𝑥) at a specified point x is given by 

 

𝐺̃(𝑥) = ∫ 𝑔̃(𝑡)𝑑𝑡
𝑥

0
, 

 

and by part (i), it follows that if s ≤ − ln(1 − F(𝑥)) then G̃(x) = 0, otherwise we have 

 

𝐺̃(𝑥) = ∫ 𝑔̃(𝑡)
𝑥

0
𝑑𝑡, 

         = ∫
(𝑛−1)𝑓(𝑡)(1−𝐹(𝑡))−1

𝑠
(1 + 𝑠−1 𝑙𝑛 (1 − 𝐹(𝑡)))𝑛−2

𝑥

0
𝑑𝑡, 

         = ∫ (𝑛 − 1)(1 − 𝑢)𝑛−2
−𝑠−1 𝑙𝑛 (1−𝐹(𝑥))

0
𝑑𝑢, 

         = 1 − (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑥)))𝑛−1,             𝑠 > − 𝑙𝑛(1 − 𝐹(𝑥)). 
 

which complete this part. 

 

(iii) The unbiased estimator of R(t) is 𝑅̃(𝑥) = ∫ g̃(𝑡)𝑑𝑡
∞

x
, since 

 

𝐸 (𝑅̃(𝑥)) = ∫ 𝑅̃(𝑥)𝑞(𝑠)𝑑𝑠
∞

0
, 

                 = ∫ (∫ 𝑔̃(𝑡)𝑑𝑡)𝑞(𝑠)𝑑𝑠
∞

x

∞

0
, 

                 = ∫ ∫ 𝑔̃(𝑡)𝑞(𝑠)𝑑𝑠 𝑑𝑡
∞

0

∞

𝑥
, 

                 = ∫ 𝐸(𝑔̃(𝑡))𝑑𝑡
∞

𝑥
, 
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                 = ∫ 𝑔(𝑡)𝑑𝑡 = 𝑅(𝑥)
∞

𝑥
. 

 

Note that, the conditions of Fubini’s theorem are satisfied for the change of order of integration.  

By part (i), for S ≤ −ln(1 − F(𝑥)), we have 𝑅̃(x) = 0, otherwise  

 

𝑅̃(x) = ∫ 𝑔̃(𝑡)
∞

𝑥
𝑑𝑡, 

         = ∫
(𝑛−1)𝑓(𝑡)(1−𝐹(𝑡))−1

𝑠
(1 + 𝑠−1 𝑙𝑛 (1 − 𝐹(𝑡)))𝑛−2

∞

𝑥
𝑑𝑡, 

          = ∫ (𝑛 − 1)(1 − 𝑢)𝑛−2
1

−𝑠−1 𝑙𝑛(1−𝐹(𝑥))
𝑑𝑢, 

          = (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑥)))𝑛−1,         s > −ln(1 − F(𝑥)). 
 

The moments and MSEs of the UMVU estimator of the PDF, CDF and reliability function are investigated 

in the following. 

 

Theorem 4. The moment of the UMVU estimators are listed as 

(i) The r-th moment of the UMVU estimator of the PDF is represented as 

 

𝐸(g̃(x)𝑟) = [(𝑛 − 1)ℎ𝐹(𝑥)]
𝑟 ∑ (

𝑟(𝑛 − 2)
𝑗

)𝑟(𝑛−2)
𝑗=0 (ln (1 − 𝐹(𝑥)))𝑗𝛼𝑟+𝑗𝜑𝑗(𝑟), 

 

where 𝜑𝑗(𝑟) =
Γ(𝑛−𝑟−𝑗,−𝛼ln (1−F(𝑥))

Γ(𝑛)
. 

 

(ii) The second moment of the UMVU estimator of the CDF is given by 

 

𝐸(G̃(x)2) = φ0(0) −
2

Γ(n)
∑(

n − 1
j
) (α ln(1 − F(x)))jφj(0)

n−1

j=0

 

                          +∑ (
2n − 2
j

)2n−2
j=0 (α ln(1 − F(x)))jφj(0). 

 

(iii)  The r-th moment of the UMVU estimator of the reliability function is shown as 

 

𝐸(R̃(x)𝑟) = ∑ (
𝑟(𝑛 − 1)

𝑗
)𝑟(𝑛−1)

𝑗=0 (αln (1 − F(𝑥)))𝑗𝜑𝑗(0). 

 

Proof. (i) By the PDF of 𝑆, we have 

 

𝐸(𝑔̃(𝑥)𝑟) = ∫ [
(𝑛−1)ℎ𝐹(𝑥)

𝑠
(1 + 𝑠−1 𝑙𝑛 (1 − 𝐹(𝑥)))𝑛−2]

𝑟∞

−𝑙𝑛 (1−𝐹(𝑥))

𝛼𝑛

𝛤(𝑛)
𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠, 

                =
𝛼𝑛[(𝑛−1)ℎ𝐹(𝑥)]

𝑟

𝛤(𝑛)
∫ (1 +

𝑙𝑛 (1−𝐹(𝑥))

𝑠
)
𝑟(𝑛−2)

𝑠𝑛−𝑟−1
∞

−𝑙𝑛 (1−𝐹(𝑥))
𝑒−𝛼𝑠𝑑𝑠, 

                =
𝛼𝑛[(𝑛−1)ℎ𝐹(𝑥)]

𝑟

𝛤(𝑛)
∫ ∑ (

𝑟(𝑛 − 2)
𝑗

)𝑟(𝑛−2)
𝑗=0

∞

−𝑙𝑛 (1−𝐹(𝑥))
(
𝑙𝑛 (1−𝐹(𝑥))

𝑠
)
𝑗
𝑠𝑛−𝑟−1𝑒−𝛼𝑠𝑑𝑠, 

                =
𝛼𝑛[(𝑛−1)ℎ𝐹(𝑥)]

𝑟

𝛤(𝑛)
∑ (

𝑟(𝑛 − 2)
𝑗

)𝑟(𝑛−2)
𝑗=0 (𝑙𝑛 (1 − 𝐹(𝑥)))𝑗 ∫ 𝑠𝑛−𝑟−𝑗−1𝑒−𝛼𝑠𝑑𝑠

∞

−𝑙𝑛 (1−𝐹(𝑥))
, 

                = [(𝑛 − 1)ℎ𝐹(𝑥)]
𝑟 ∑ (

𝑟(𝑛 − 2)
𝑗

)𝑟(𝑛−2)
𝑗=0 (𝑙𝑛 (1 − 𝐹(𝑥)))𝑗𝛼𝑟+𝑗

𝛤(𝑛−𝑟−𝑗,−𝛼𝑙𝑛 (1−𝐹(𝑥))

𝛤(𝑛)
. 
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(ii) The second moment of 𝐺̃(𝑥) is obtained as 

 

𝐸(𝐺̃(𝑥)2) = ∫ [1 − (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑥)))𝑛−1]2
∞

−𝑙𝑛(1−𝐹(𝑥))

𝛼𝑛

𝛤(𝑛)
𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠, 

                   = ∫
𝛼𝑛𝑠𝑛−1𝑒−𝛼𝑠

𝛤(𝑛)

∞

−𝑙𝑛(1−𝐹(𝑥))
𝑑𝑠 − 2∫ (1 +

𝑙𝑛(1−𝐹(𝑥))

𝑠
)
𝑛−1

∞

−𝑙𝑛(1−𝐹(𝑥))

𝛼𝑛𝑠𝑛−1𝑒−𝛼𝑠

𝛤(𝑛)
𝑑𝑠, 

                       +∫ (1 +
𝑙𝑛(1−𝐹(𝑥))

𝑠
)
2𝑛−2

𝛼𝑛𝑠𝑛−1𝑒−𝛼𝑠

𝛤(𝑛)
𝑑𝑠

∞

−𝑙𝑛(1−𝐹(𝑥))
, 

                   =
𝛤(𝑛,−𝛼𝑙𝑛(1−𝐹(𝑥)))

𝛤(𝑛)
+ 𝐼 + 𝐼𝐼, 

 

where 

 

𝐼 = −2
𝛼𝑛

𝛤(𝑛)
∫ (1 +

𝑙𝑛(1−𝐹(𝑥))

𝑠
)
𝑛−1

𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠
∞

−𝑙𝑛(1−𝐹(𝑥))
, 

   = −2
𝛼𝑛

Γ(𝑛)
∫ ∑ (

𝑛 − 1
𝑗
) (

ln(1−F(𝑥))

𝑠
)
𝑗

𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠𝑛−1
𝑗=0

∞

−ln(1−F(𝑥))
, 

   = −2
𝛼𝑛

Γ(𝑛)
∑ (

𝑛 − 1
𝑗
) (ln(1 − F(𝑥)))

𝑗
∫ 𝑠𝑛−𝑗−1𝑒−𝛼𝑠𝑑𝑠
∞

− ln(1−F(𝑥))
𝑛−1
𝑗=0 , 

   =
−2

𝛤(𝑛)
∑ (

𝑛 − 1
𝑗
) (𝛼 𝑙𝑛(1 − 𝐹(𝑥)))

𝑗 𝛤(𝑛−𝑗,−𝛼𝑙𝑛(1−𝐹(𝑥)))

𝛤(𝑛)
𝑛−1
𝑗=0 . 

 

and 

 

𝐼𝐼 =
𝛼𝑛

Γ(𝑛)
∫ ∑ (

2𝑛 − 2
𝑗

)2𝑛−2
𝑗=0

∞

−ln(1−F(𝑥))
(
ln(1−F(𝑥))

𝑠
)
𝑗
𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠, 

    =
𝛼𝑛

𝛤(𝑛)
∑ (

2𝑛 − 2
𝑗

) (2𝑛−2
𝑗=0 𝑙𝑛(1 − 𝐹(𝑥))𝑗 ∫ 𝑠𝑛−𝑗−1𝑒−𝛼𝑠𝑑𝑠

∞

− 𝑙𝑛(1−𝐹(𝑥))
, 

    = ∑ (
2𝑛 − 2
𝑗

)2𝑛−2
𝑗=0 (𝛼𝑙𝑛(1 − 𝐹(𝑥)))𝑗

𝛤(𝑛−𝑗,−𝛼𝑙𝑛(1−𝐹(𝑥)))

𝛤(𝑛)
. 

 

(iii) Eventually, the r-th moment of the 𝑅̃(𝑥) is computed as following 

 

𝐸(𝑅̃(𝑥)𝑟) = ∫ (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑥)))𝑟(𝑛−1)
∞

−𝑙𝑛 (1−𝐹(𝑥))

𝛼𝑛

𝛤(𝑛)
𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠, 

                   =
𝛼𝑛

𝛤(𝑛)
∫ (1 +

𝑙𝑛 (1−𝐹(𝑥))

𝑠
)
𝑟(𝑛−1)

𝑠𝑛−1
∞

−𝑙𝑛 (1−𝐹(𝑥))
𝑒−𝛼𝑠𝑑𝑠, 

                   =
𝛼𝑛

𝛤(𝑛)
∫ ∑ (

𝑟(𝑛 − 1)
𝑗

)𝑟(𝑛−1)
𝑗=0

∞

−𝑙𝑛 (1−𝐹(𝑥))
(
𝑙𝑛 (1−𝐹(𝑥))

𝑠
)
𝑗
𝑠𝑛−1𝑒−𝛼𝑠𝑑𝑠, 

                   =
𝛼𝑛

𝛤(𝑛)
∑ (

𝑟(𝑛 − 1)
𝑗

)𝑟(𝑛−1)
𝑗=0 (𝑙𝑛 (1 − 𝐹(𝑥)))𝑗 ∫ 𝑠𝑛−𝑗−1𝑒−𝛼𝑠𝑑𝑠

∞

−𝑙𝑛 (1−𝐹(𝑥))
, 

                   = ∑ (
𝑟(𝑛 − 1)

𝑗
)𝑟(𝑛−1)

𝑗=0 (𝛼𝑙𝑛 (1 − 𝐹(𝑥)))𝑗
𝛤(𝑛−𝑗,−𝛼𝑙𝑛 (1−𝐹(𝑥)))

𝛤(𝑛)
. 

 

which complete the proof. 

 

Theorem 5. The MSEs of  𝑔̃(𝑥), G̃(𝑥) and 𝑅̃(𝑥) are given respectively as 

 

𝑀𝑆𝐸(𝑔̃(𝑥)) = [(𝑛 − 1)ℎ𝐹(𝑥)]
2∑ (

2(𝑛 − 2)
𝑗

)2(𝑛−2)
𝑗=0 (𝑙𝑛 (1 − 𝐹(𝑥)))𝑗𝛼2+𝑗𝜑𝑗(2), 

                             −(𝛼𝑓(𝑥)(1 − 𝐹(𝑥))𝛼−1)2, 
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𝑀𝑆𝐸 (𝐺̃(𝑥)) =
𝛤(𝑛,−𝛼𝑙𝑛(1 − 𝐹(𝑥)))

𝛤(𝑛)
−

2

𝛤(𝑛)
∑(

𝑛 − 1
𝑗
) (𝛼𝑙𝑛(1 − 𝐹(𝑥)))

𝑗
𝜑𝑗(0)

𝑛−1

𝑗=0

 

                             +∑ (
2𝑛 − 2
𝑗

)2𝑛−2
𝑗=0 (−𝛼𝑙𝑛(1 − 𝐹(𝑥)))𝑗𝜑𝑗(0) − ( 1 − (1 − 𝐹(𝑥))

𝛼)2, 

 

and 

 

𝑀𝑆𝐸 (𝑅̃(𝑥)) = ∑ (
2(𝑛 − 1)

𝑗
)

2(𝑛−1)
𝑗=0 (αln (1 − F(𝑥)))𝑗𝜑𝑗(0) − (1 − F(x))

2𝛼. 

 

Proof. The proof can be easily obtained. 

 

5. THE ESTIMATOR OF THE STRESS STRENGTH PARAMETER  

 

Consider 𝑌 as “stress” experienced by the component and random variable 𝑋 representing “strength” of a 

component, the stress-strength parameter can be interpreted as an assessment of reliability to dominate the 

possible stress. In the reliability analyzes, the stress strength parameter represented as 𝑃 = P(X > 𝑌). 

Suppose random strength 𝑋 and random stress 𝑌 be two independent random variables following 

exponentiated distributions with different shape parameters and PDFs are shown as 𝑔1(𝑥, α1) and 

𝑔2(𝑦, 𝛼2), respectively. Let 𝑋1, 𝑋2 , … , 𝑋𝑛 and 𝑌1, 𝑌2 , … , 𝑌𝑚 be two independent random samples, 𝑆 =

−∑ ln(1 − F(𝑋𝑖))
𝑛
𝑖=1  and 𝑉 = −∑ ln(1 − F(𝑌𝑖))

𝑚
𝑖=1 , then 

 

𝑔(𝑥1, 𝑥2 , … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑚, 𝛼1, 𝛼2) = 𝛼1
𝑛𝛼2

𝑚𝑒𝛼1∑ ln(1−F(𝑥𝑖))+𝛼2∑ ln(1−F(𝑦𝑖))
𝑚
𝑖=1

𝑛
𝑖=1  

                                                                         ×∏
𝑓(𝑥𝑖)

1−F(x𝑖)
𝑛
𝑖=1 ∏

𝑓(𝑦𝑖)

1−F(y𝑖)
𝑚
𝑖=1  . 

 

Since 𝑔(𝑥, 𝑦, α1,α2) = 𝑔1(𝑥, α1)𝑔2(𝑦, 𝛼2) belongs to full-rank exponential family, therefore (S,V) is 

sufficient and complement statistic for exponential family of 𝑔(𝑥, 𝑦, α1, α2). Also, stress-strength parameter 

is computed as 

 

P = P(X > Y) = ∫ R1(𝑦)𝑔2(𝑦)
∞

0
𝑑𝑦 = ∫ 𝛼2𝑓(𝑦)(1 − F(y))

𝛼1+𝛼2−1
∞

0
𝑑𝑦 =

𝛼2

𝛼1+𝛼2
 . 

 

The ML estimator of the stress-strength parameter is shown as P̂ =
𝛼̂2

𝛼̂1+𝛼̂2
 where 𝛼̂1 =

𝑛

𝑆
  and 𝛼̂2 =

𝑚

𝑉
 . The 

expectation and MSEs of 𝛼̂1and 𝛼̂2 are represented in the following  

 

𝐸(𝛼̂1) =
𝑛𝛼1

𝑛−1
,   𝑀𝑆𝐸(𝛼̂1) =

(𝑛+2)𝛼1
2

(𝑛−1)(𝑛−2)
  ,        𝑛 > 2, 

𝐸(𝛼̂2) =
𝑚𝛼2

𝑚−1
,   𝑀𝑆𝐸(𝛼̂2) =

(𝑚+2)𝛼2
2

(𝑚−1)(𝑚−2)
  ,     𝑚 > 2 . 

 

By the Taylor expansion up to order two, the mean squared error of 𝑃̂ can be represented as (see Nadarajah 

et al. [33]) 

 

𝑀𝑆𝐸(𝑃̂) = 𝐸(𝑃̂ − 𝑃)
2
≅ ∑ (

𝜕𝑃

𝜕𝛼𝑖
)
2

2
𝑖=1 𝐸(𝛼̂𝑖 − 𝛼𝑖)

2 + ∑ (
𝜕𝑃

𝜕𝛼𝑖
) (

𝜕𝑃

𝜕𝛼𝑗
)2

𝑖,𝑗=1
(𝑖≠𝑗)

𝐸(𝛼̂𝑖 − 𝛼𝑖)(𝛼̂𝑗 − 𝛼𝑗), 

 

Hence 
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𝑀𝑆𝐸(𝑃̂) ≅
𝛼2
2𝛼1
2

(𝛼1 + 𝛼2)
4
[

𝑛2

(𝑛 − 1)(𝑛 − 2)
−

2𝑛

(𝑛 − 1)
+ 1] 

                  +
𝛼2
2𝛼1
2

(𝛼1+𝛼2)
4 [

𝑚2

(𝑚−1)(𝑚−2)
−

2𝑚

(𝑚−1)
+ 1] 

                  +
2𝛼2

2𝛼1
2

(𝛼1+𝛼2)
4 [

𝑛𝑚

(n−1)(m−1)
−

𝑛

n−1
−

𝑚

m−1
+ 1] 

       =
𝛼2
2𝛼1
2

(𝛼1+𝛼2)
4 [

𝑛+2

(𝑛−1)(𝑛−2)
+

𝑚+2

(m−1)(m−2)
+

2

(n−1)(m−1)
]. 

 

Theorem 6. The UMVU estimator of stress-strength parameter P, is represented as 

 

P̃ = {
∑ (−1)𝑖𝑛−1
𝑖=0

(𝑚−1)!(𝑛−1)!

(𝑚+𝑖−1)!(𝑛−𝑖−1)!
(
𝑣

𝑠
)𝑖,         s > 𝑣 

∑ (−1)𝑖
(𝑚−1)!(𝑛−1)!

(𝑚−𝑖−2)!(𝑛+𝑖)!
(
𝑠

𝑣
)𝑖+1𝑚−2

𝑖=0 ,         𝑣 > 𝑠   
. 

 

Proof. The unbiased estimator of P = P(X > Y) is given by 

 

P̃ = ∫ R̃1(𝑦)g̃2(𝑦)
∞

0

𝑑𝑦 

 

 

which can be checked as follows 

 

𝐸(𝑃̃) = ∫ ∫ (∫ 𝑅̃1(𝑦)𝑔̃2(𝑦)
 

𝑦
𝑑𝑦) 𝑞1(𝑠)𝑞2(𝑣)𝑑𝑠 𝑑𝑣

 

𝑠

 

𝑣
= ∫ (∫ (∫ 𝑅̃1(𝑦)

 

𝑠
𝑞1(𝑠)𝑑𝑠)𝑔̃2(𝑦)𝑑𝑦)𝑞2(𝑣)𝑑𝑣

 

𝑦

 

𝑣
, 

 

where 𝑞1 and 𝑞2 are the PDF of 𝑆 and 𝑉, respectively. Using the unbiasedness of UMVU estimators of 𝑔̃(. ) 

and R̃(. ), we have 

 

 𝐸(𝑃̃) = ∫ (∫ 𝑅1(𝑦)𝑔̃2(𝑦)𝑑𝑦)𝑞2(𝑣)𝑑𝑣
 

𝑦

 

𝑣
= ∫ 𝑅1(𝑦)(∫ 𝑔̃2(𝑦))𝑞2(𝑣)𝑑𝑣)

 

𝑣

 

𝑦
𝑑𝑦 = ∫ 𝑅1(𝑦)𝑔2(𝑦)

 

𝑦
𝑑𝑦 = 𝑃. 

 

Since (𝑆, 𝑉) is sufficient and complement for the family of distribution 𝑔(𝑥, 𝑦, α1,α2), so P̃ is UMVUE of 

𝑃. The close form of P̃ can be computed as follows. Let e1 = F
−1(1 − e−s) and 𝑒2 = 𝐹

−1(1 − 𝑒−𝑣), then 

 

𝑃̃ = ∫ 𝑅̃1(𝑦)𝑔̃2(𝑦)
∞

0
𝑑𝑦, 

   = ∫ (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑦)))𝑛−1
(𝑚−1)𝑓(𝑦)

𝑣(1−𝐹(𝑦))
(1 + 𝑣−1 𝑙𝑛 (1 − 𝐹(𝑦)))𝑚−2

𝑚𝑖𝑛 (𝑒1,𝑒2)

0
𝑑𝑦. 

 

If 𝑒2 < 𝑒1, then 

 

 𝑃̃ = ∫ (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑦)))𝑛−1
(𝑚−1)𝑓(𝑦)

𝑣(1−𝐹(𝑦))
(1 + 𝑣−1 𝑙𝑛 (1 − 𝐹(𝑦)))𝑚−2

𝐹−1(1−𝑒−𝑣)

0
𝑑𝑦, 

    = ∫ (1 − 𝑠−1𝑢𝑣)𝑛−1(𝑚 − 1)(1 − 𝑢)𝑚−2
1

0
𝑑𝑢, 

    = ∫ (𝑚 − 1)(1 − 𝑢)𝑚−2∑ (𝑛−1
𝑖
)(−1)𝑖(

𝑣

𝑠
)𝑖𝑢𝑖𝑛−1

𝑖=0
1

0
𝑑𝑢, 

    = ∑ (𝑛−1
𝑖
)(−1)𝑖𝑛−1

𝑖=0 (
𝑣

𝑠
)
𝑖

∫ (𝑚 − 1)𝑢𝑖(1 − 𝑢)𝑚−2
1

0
𝑑𝑢, 

    = ∑ (−1)𝑖𝑛−1
𝑖=0

(𝑚−1)!(𝑛−1)!

(𝑚+𝑖−1)!(𝑛−𝑖−1)!
(
𝑣

𝑠
)𝑖, 

 
else 
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 𝑃̃ = ∫ (1 + 𝑠−1 𝑙𝑛(1 − 𝐹(𝑦)))𝑛−1
(𝑚−1)𝑓(𝑦)

𝑣(1−𝐹(𝑦))
(1 + 𝑣−1 𝑙𝑛 (1 − 𝐹(𝑦)))𝑚−2

𝐹−1(1−𝑒−𝑠)

0
𝑑𝑦, 

     = ∫
𝑠

𝑣
(1 − 𝑢)𝑛−1(𝑚 − 1)(1 − 𝑣−1 𝑠𝑢)𝑚−2

1

0
𝑑𝑢, 

     = ∫ (𝑚 − 1)(1 − 𝑢)𝑛−1∑ (𝑚−2
𝑖
)(−1)𝑖(

𝑠

𝑣
)𝑖+1𝑢𝑖𝑚−2

𝑖=0
1

0
𝑑𝑢, 

     = ∑ (𝑚−2
𝑖
)(−1)𝑖𝑚−2

𝑖=0 (
𝑠

𝑣
)
𝑖+1

∫ (𝑚 − 1)𝑢𝑖(1 − 𝑢)𝑛−1
1

0
𝑑𝑢, 

     = ∑ (−1)𝑖
(𝑚−1)!(𝑛−1)!

(𝑚−𝑖−2)!(𝑛+𝑖)!
(
𝑠

𝑣
)𝑖+1𝑚−2

𝑖=0 , 

 

which complete the proof. 

 

6. SIMULATION STUDY  

 

A simulation study is carried out to study the performance of UMVUE and MLE of PDF, CDF and 

reliability measures where baseline distribution of F(𝑥) in the proposed exponentiated distributions is 

inverse Gompertz distribution as 

 

𝐹(𝑥) = 𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥 − 1)),         𝑥 > 0 , 𝜆 > 0. 

 

The corresponding PDF and hazard function shown as  

 

𝑓(𝑥) =
𝑒
𝜆
𝑥

𝑥2
𝑒𝑥𝑝 (−

1

𝜆
(𝑒

𝜆

𝑥 − 1)),   𝑥 > 0 , 𝜆 > 0, 

ℎ𝐹(𝑥) =
𝑒
𝜆
𝑥𝑒𝑥𝑝 (−

1

𝜆
(𝑒
𝜆
𝑥−1))   

𝑥2(1−𝑒𝑥𝑝 (−
1

𝜆
(𝑒
𝜆
𝑥−1)) 

 , 

 

respectively. The CDF, PDF and reliability function of exponentiated inverse Gompertz (EIG) 

distribution are given by 

 

𝐺(𝑥) = 1 − (1 − 𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥 − 1)))𝛼,       𝑥 > 0  , 𝛼 > 0, 

𝑔(𝑥) =
𝛼𝑒

𝜆
𝑥

𝑥2
𝑒𝑥𝑝 (−

1

𝜆
(𝑒

𝜆

𝑥 − 1))(1 − 𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥 − 1)))𝛼−1,      𝑥 > 0  , 𝛼 > 0, 

𝑅(𝑥) = (1 − 𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥 − 1)))𝛼. 

 

For generate data from exponentiated inverse Gompertz distribution, first a random data is generated 𝑢𝑖 
from uniform distribution (U) for the period (0,1). Then 𝑢𝑖 are converted to exponentiated inverse Gompertz 

distribution with parameters λ and α through the adoption of cumulative distribution function by using the 

method of inverse transformation as 

 

𝑥𝑖 = 𝜆(𝑙𝑛(1 − 𝜆 𝑙𝑛(1 − (1 − 𝑢𝑖)
1

𝛼)))−1,         𝑖 = 1,2,… , 𝑛. 
 
The density plot of EIG distribution for different value of the parameter 𝛼 and 𝜆 are represented in Figure 

1. Simulation is carried out for (α , λ) = (0.5, 2), (1.5, 2) where, 𝑛 = 15, 20, 50,100 and we consider that 

𝜆 to be known. The process is repeated ℎ = 1000 times to obtain 1000 independent samples of size 𝑛. Then 

calculated the estimations of 𝜃𝑗 = 𝑅̂𝑗(𝑡), 𝑅̃𝑗(𝑡), 𝑃̂𝑗, 𝑃̃𝑗 , α̂𝑗 =
n

S𝑗
, 𝛼̃𝑗 =

n−1

S𝑗
,   𝑗 = 1,2, … ,1000 where 

 

𝑆𝑗 = −∑ 𝑙𝑛(1 − 𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥𝑖𝑗 − 1)))𝑛
𝑖=1 ,      𝑗 = 1,2,… ,1000. 
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Finally, the average estimates and mean squared error is computed to compare the estimation methods as 

 

𝜃 =
1

1000
∑ 𝜃𝑗
1000
𝑗=1 ,          𝑀𝑆𝐸(𝜃𝑗) =

1

1000
∑ (𝜃𝑗 − 𝜃)

21000
𝑗=1 . 

 

For 𝑡 = 1,2,… ,5, the reliability estimates are compared under integrated mean squared error (IMSE) which 

is an integration of the total area for 𝑡𝑖 and 𝐼𝑀𝑆𝐸 (𝑅̂(𝑡)) =
1

𝑛𝑡
∑ 𝑀𝑆𝐸 (𝑅̂(𝑡𝑖))
𝑛𝑡
𝑖=1 , where 𝑛𝑡 is the count of 

𝑡. 
 

 
Figure 1. The density plots of the EIG for different value of parameters 

 

Table 1. Estimations and mean square error of MLE and UMVUE of 𝛼 

α 0.5 1.5 

n 
α̂ α̃ α̂ α̃ 

MSE(α̂) MSE(α̃) MSE(α̂) MSE(α̃) 

15 
0.540991 

(0.025665) 

0.504924 

(0.020917) 
1.624144 

(0.221979) 

1.515867 

(0.180195) 

20 
0.518975 

(0.014193) 

0.493027 

(0.012533) 

1.564799 

(0.127537) 

1.486559 

(0.111493) 

50 
0.511422 

(0.005757) 

0.501194 

(0.005405) 

1.52797 

(0.050062) 
1.497417 

(0.047335) 

100 
0.503414 

(0.002619) 

0.498381 

(0.002558) 

1.515395 

(0.023685) 

1.500241 

(0.022981) 

 

The simulation results of estimations and MSEs are summarized in Tables 1-3 which verified the 

consistency properties of all the methods. From Table 1, for all values of n and α, the MSE of UMVUE of 

α is less than that of MLE, which confirmed the superiority of UMVU method. Also, as sample size 𝑛 

increased, the MSEs of both methods are decreased. The average estimation, MSEs and IMSEs of the 

estimators of reliability function are presented in Table 2. Based on the Table 2, the IMSE has its minimum 

for UMVU estimators that indicated preference of UMVUE. By increasing 𝑛, IMSE values decreased for 

both estimation methods. The average estimations and MSEs of the estimators of stress-strength parameter 

are presented in Table 3. Based on the MSE, the ML is more efficient than UMVU estimators. Clearly, by 

increasing 𝑛, the MSEs decreased for both MLE and UMVUE. 
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Figure 2. The comparison of density function and its estimations when 𝑛 = 20 

 

Table 2. Estimations and mean square error of MLE and UMVUE of 𝑅(𝑡) 

α 0.5 1.5 

n t R(t) 
R̂(t) R̃(t) 

R(t) 
R̂(t) R̃(t) 

MSE(R̂(t)) MSE(R̃(t)) MSE(R̂(t)) MSE(R̃(t)) 

15 

1 0.979292 
0.9775282 

(4.2467e-05) 

0.9791851 

(3.1721e-05) 
0.9391555 

0.935373 

(0.002192) 

0.939401 

(0.001825) 

2 0.759259 
0.743827 

(3.8532e-03) 

0.7601901 

(3.1817e-03) 
0.4376932 

0.424588 

(0.120004) 

0.438219 

(0.111483) 

3 0.614337 
0.595071 

(7.1681e-03) 

0.6146522 

(6.3484e-03) 
0.2318569 

0.226395 

(0.156993) 

0.231726 

(0.153671) 

4 0.526317 
0.506764 

(8.5912e-03) 

0.5277853 

(7.9530e-03) 
0.1457956 

0.145097 

(0.149737) 

0.145368 

(0.150121) 

5 0.466914 
0.4480462 

(9.1281e-03) 
0.4684436 

(8.7121e-03) 
0.1017917 

0.103581 

(0.135081) 

0.101257 

(0.137159) 

IMSE   0.005756 0.005245  0.112802 0.110852 

20 

1 0.979292 
0.978107 

(2.7494e-05) 

0.979178 

(2.3678e-05) 
0.9391555 

0.935256 

(0.000241) 

0.938281 

(0.000208) 

2 0.759259 
0.748852 

(2.5784e-03) 

0.7580967 

(2.2972e-03) 
0.4376932 

0.422439 

(0.006791) 

0.432633 

(0.006853) 

3 0.614337 
0.601326 

(4.9071e-03) 

0.612668 

(4.7111e-03) 
0.2318569 

0.223249 

(0.005231) 

0.227191 

(0.005643) 

4 0.526317 
0.513116 

(5.9662e-03) 

0.524423 

(5.8911e-03) 
0.1457956 

0.141791 

(0.003434) 

0.141921 

(0.003769) 

5 0.466914 
0.454191 

(6.4021e-03) 

0.464908 

(6.4443e-03) 
0.1017917 

0.100378 

(0.002337) 

0.098557 

(0.002557) 

IMSE   0.003976 0.003887  0.003607 0.003806 
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Figure 3. The comparison of reliability function and its estimations when 𝑛 = 20 

 

The performance of ML and UMVU estimators for PDF are checked by Figure 2, for 𝑛 = 20. As can be 

seen, the ML is closer to density plot than UMVU estimation, so MLE is more efficient. Note that for large 

value of 𝑛, the difference between two method is insignificant and we omit the plot for large sample size. 

The ML and UMVU estimations of reliability function and their MSEs are shown in Figures 3 and 4, 

respectively. Both plots, confirmed the efficiency of UMVUE method than MLE.  The MSEs of ML and 

UMVU estimations of the stress-strength parameter are depicted in Figure 5 for different value of  (𝛼1, 𝛼2). 
According to Figure 5, the MSE of the ML method is less than the UMVU estimators. 

 

Table 3. Estimations and mean square error of MLE and UMVUE of stress-strength parameter for different 

pair of  (𝛼1, 𝛼2) 

(α1, α2) (0.5,1.5) (1.5,0.5) 
P 0.75 0.25 

(n,m) 
P̂ P̃ P̂ P̃ 

MSE(P̂) MSE(P̃) MSE(P̂) MSE(P̃) 

(15,15) 
0.741734 

(0.004858) 

0.747906 

(0.004892) 

0.258106 

(0.005068) 

0.251948 

(0.005114) 

(20,20) 
0.74581 

(0.003424) 
0.750481 

(0.003458) 

0.255801 

(0.003588) 

0.251149 

(0.003611) 

(50,50) 
0.748302 

(0.001545) 
0.750168 

(0.001550) 

0.251242 

(0.001352) 

0.249368 

(0.001358) 

(100,100) 
0.748715 

(0.000691) 
0.749699 

(0.000694) 

0.250055 

(0.000704) 

0.250995 

(0.000708) 

(α1, α2) (0.5,2) (2,0.5) 

P 0.8 0.2 

(15,15) 
0.793261 

(0.003969) 
0.799636 

(0.003987) 

0.209751 

(0.003446) 

0.203308 

(0.003574) 

(20,20) 
0.795549 

(0.002702) 
0.800350 

(0.002731) 

0.206917 

(0.002643) 

0.202103 

(0.002699) 

(50,50) 
0.798229 

(0.001034) 
0.800151 

(0.001069) 

0.203291 

(0.000989) 

0.201367 

(0.000999) 

(100,100) 
0.799262 

(0.000508) 
0.799736 

(0.000509) 

0.201339 

(0.000490) 

0.200366 

(0.000492) 
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Figure 4. The comparison of ML and UMVU estimators of reliability function with respect to of IMSE 

 

 

 
Figure 5. The comparison of ML and UMVU estimators of stress-strength with respect to MSE 

 

7. REAL DATA  

 

In this section, we illustrate the exponentiated inverse Gompertz distribution to model the real data sets and 

compare the EIG distribution with some competitive models with respect to goodness of fit measures.   

 

First data set. We present the analysis of the data set represents the lifetime’s data relating to relief times 

(in minutes) of 20 patients receiving an analgesic and reported by Gross and Clark [34]. 

 

Table 4. Descriptive statistics of the real data 

Mean Median variance Skewness Kurtosis 

1.9 1.7 0.4957 1.71975 5.924108 

 

Table 4 gives some statistic measures for data, which indicate that the empirical distribution is skewed to 

the right and leptokurtic. The maximum likelihood method is applied for estimating the parameter of the 

EIG distribution, where the log likelihood function is obtained as follows 
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𝑙𝑛 𝐿(𝑋, 𝛼, 𝜆) = 𝑛 𝑙𝑛 𝛼 + ∑
𝜆

𝑥𝑖

𝑛
𝑖=1 − 2∑ 𝑙𝑛 𝑥𝑖

𝑛
𝑖=1 −

1

𝜆
∑ (𝑒

𝜆

𝑥𝑖 − 1)𝑛
𝑖=1 + (𝛼 − 1)∑ 𝑙𝑛 (1 −𝑛

𝑖=1

𝑒𝑥𝑝 (−
1

𝜆
(𝑒

𝜆

𝑥𝑖 − 1))).   

                        

The ML estimator can be easily obtained by maximizing log likelihood function numerically by statistical 

package such as R. The ML estimators and Kolmogorov-Smirnov (K-S) distances between the fitted and 

the empirical distribution function results are presented in Table 5. 

 

Table 5. Results of the real data analysis 

Data set 𝛼̂𝑀𝐿 𝜆̂𝑀𝐿 K-S distance P-value 

AC 3.3406 3.1524 0.0991 0.9849 

 

Based on the P-value of K-S test, we conclude that the EIG distributions provides good fit for the given 

data set at significance level 0.05. We compare the EIG distribution with the Gompertz, inverse Gompertz 

(Eliwa et al. [35]) and extended Gompertz (El-Gohary et al. [36]) distributions for fitting lifetime data. 

Tables 6 shows the ML estimates of the parameters and goodness of fit statistics (Akaike information 

criterion (AIC)), for the relief times data. Based on the table, the EIG distribution has the smallest value of 

AIC, which confirm that the EIG distribution works well among the other distributions to modeling the 

data set. 

 

Table 6. MLEs of the fitted models and goodness of fit measures for the relief times data 

Models ML estimations AIC 

Gompertz α̂ = 0.14531, β̂ = 0.89443 53.181 

Inverse Gompertz α̂ = 0.11034,   β̂ = 6.14541 36.783 

Extended Gompertz α̂ = 0.40073,   λ̂ = 4.80408,   θ̂ = 275.2289 37.003 

EIG α̂ = 3.34068,   λ̂ = 3.15246 34.811 

 

Now the ML and UMVU estimates of reliability function are given in Table 7 for 𝑡 = 1, 2, 3, 4, 5. 

 

Table 7. The ML and UMVU estimators of the reliability function 

 

 

Second data set. In this section, we illustrate the proposed EIG distribution and estimation of the 

parameters and stress strength reliability by real data sets. The data from Crowder [37] give the lifetimes 

of the steel specimens tested at two different stress levels. We fit EIG distribution to the two datasets 

separately. The estimated parameters, K-S and the corresponding P-values are presented in Table 8. From 

the table, the EIG distribution fits quite well at significance level 0.05 to both data.  

 

Table 8. Results of the real data analysis 

 

 

t R̂(t) R̃(t) 
1 0.9972237 0.9973621 

2 0.3094013 0.3171177 

3 0.0673259 0.0637031 

4 0.0214704 0.0173886 

5 0.0089241 0.0060161 

Data set n α̂ML λ̂ML K-S distance P-value 

1 10 0.61547 365.758 0.1886 0.8287 

2 10 0.49751  437.863 0.2936 0.2989 
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Based on the two data sets and Table 8, the stress-strength parameter by two ML and UMVU estimation 

methods are obtained as follows 𝑃̂ = 0.4470071;  𝑃̃ = 0.4788577 

 

8. CONCLUSION  

 

In this article, we investigated a new class of T-X family as exponential-X lifetime distribution. We 

considered the ML and UMVU estimations method to estimate the parameter, PDF and CDF of 

exponential-X distribution. The ML and UMVU estimations of reliability function and stress-strength 

parameters are viewed where variables are independent of the exponentiated distributions with varying 

shape parameters. As a member of this family, exponentiated inverse Gompertz distribution is considered, 

and through Monte Carlo simulation result, the performance of the ML and UMVU estimators are 

appraised. The simulation results shown that for all values of n and α, the MSE of UMVUE of α is less 

than that of MLE, which confirmed the superiority of UMVU method. Also, as sample size n increased, 

the MSEs of both methods are decreased. Also the IMSE has its minimum for UMVU estimators of 

reliability function that indicated preference of UMVUE. Based on the MSEs of the estimators of stress-

strength parameter, the ML is more efficient than UMVU estimators. All the estimators endorsed the 

asymptotic behavior and convergent to real values when the sample size rise. The proposed model has 

sufficient versatility that can be practiced quite effectively for modeling lifetime data. The goodness of fit 

measures confirm that the EIG distribution works well among the other distributions as Gompertz and 

inverse Gompertz and extended Gompertz to modeling the data set. Finally, the real data analysis has 

confirmed the presented results. 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

REFERENCES 

 

[1] Mudholkar, G. S., Srivastava, D. K., “Exponentiated Weibull family for analyzing bathtub failure-

real data”, IEEE Transaction Reliability, 42:299-302, (1993). 

 

[2] Mudholkar, G. S., Srivastava, D. K., Freimes, M., “The exponentiated Weibull family: A 

reanalysis of the bus-motor-failure data”, Technometrics, 37: 436-445, (1995). 

 
[3] Nadarajah, S., Kotz, S., “The Exponentiated Type Distributions”, Acta Applicandae 

Mathematicae, 92: 97-111, (2006). 

 
[4] 

 

 

[5] 

 

Delgarm, L., Zadkarami, M. R., “A new generalization of lifetime distributions”, Computational 

Statistics, 30: 1185-1198, (2015). 

 
Pourreza, H., Baloui Jamkhaneh, E., Deiri, E., “A family of Gamma-generated distributions: 

Statistical properties and applications”, Statistical Methods in Medical Research, 30(8): 1850-

1873, (2021).  

 
[6] 

 

 

Dixit, U. J., Jabbari Nooghabi, M., “Efficient estimation in the Pareto distribution”, Statistical 

Methodology, 7(6): 687-691, (2010). 

 
[7] Bagheri, S. F., Alizadeh, M., Nadarajah, S., Deiri, E., “Efficient estimation of the PDF and the 

CDF of the Weibull extension model”, Communications in Statistics-Simulation and 

Computation, 45(6): 2191-2207, (2014). 

 

https://www.sciencedirect.com/science/article/abs/pii/S1572312710000419#!
https://www.sciencedirect.com/science/article/abs/pii/S1572312710000419#!
https://www.sciencedirect.com/science/journal/15723127
https://www.sciencedirect.com/science/journal/15723127
https://www.sciencedirect.com/science/journal/15723127/7/6


1683  Ezzatallah BALOUI JAMKHANEH et al. / GU J Sci, 35(4): 1665-1684 (2022) 

 
 

[8] Bagheri, S. F., Alizadeh, M., Nadarajah, S., “Efficient estimation of the PDF and the CDF of the 

exponentiated Gumbel distribution”, Communications in Statistics-Simulation and Computation, 

45(1): 339-361, (2016). 

 
[9] Alizadeh, M., Bagheri, S. F., Baloui Jamkhaneh, E., Nadarajah, S., “Estimates of the PDF and the 

CDF of the exponentiated Weibull distribution”, Brazilian Journal of Probability and Statistics, 

29(3): 695-716, (2015). 

 
[10] Alizadeh, M., Razaei, S., Bagheri, S. F., Nadarajah, S., “Efficient estimation for the generalized 

exponential distribution”, Statistical Papers, 56(4): 1015-1031, (2015).  

 
[11] 

 

 

[12] 

 

Maiti, S. S., Mukherjee, I., “On estimation of the PDF and CDF of the Lindley distribution”, 

Communications in Statistics - Simulation and Computation, 47(5): 1370-1381, (2018). 

 
Ghasemi Cherati, M., Baloui Jamkhaneh, E., Deiri, E., “Some estimation procedures of the PDF 

and CDF of the generalized inverted Weibull distribution with comparison”, International Journal 

of Nonlinear Analysis and Applications, 12(1): 1017-1036, (2021). 

 
[13]  Bekker, A., Roux, J., “Reliability characteristics of the Maxwell distribution: a Bayes estimation 

study”, Communication in Statistics-Theory and Methods, 34: 2169-2178, (2005). 

 
[14] Krishna, H., Kumar, K., “Reliability estimation in Lindley distribution with progressively type II 

right censored sample”, Mathematics and Computer in Simulation, 82: 281-294, (2011). 

 
[15] Rastogi, M. K., Tripathi, Y. M., “Parameter and reliability estimation for an exponentiated half-

logistic distribution under progressive type II censoring”, Journal of Statistical Computation and 

Simulation, 84(8): 1711-1727, (2014). 

 
[16] 

 

 

 

[17] 

 

Abouei Ardakan, M., Mirzaei, Z., Hamadani, Z., Elsayed, A. E., “Reliability Optimization by 

Considering Time-Dependent Reliability for Components”, Quality and Reliability Engineering 

International, 33: 1641-1654, (2017). 

 
Amirzadi, A., Baloui Jamkhaneh, E., Deiri, E., “A comparison of estimation methods for 

reliability function of inverse generalized Weibull distribution under new loss function”, Journal 

of Statistical Computation and Simulation, 91(13): 2595-2622, (2021). 

 
[18] Dmitriev, Yu. G., Koshkin, G. M., “Nonparametric estimation of the reliability function 

characteristics using auxiliary information”, Russian Physics Journal, 61(12): 2197-2208, (2019).  

 
[19] Sankaran, P. G., Dileep Kumar, M., “Reliability properties of proportional hazards relevation 

transform”, Metrika, 82: 441-456, (2019).  

 
[20] Roy, A., Gupta, N., “Reliability of a coherent system equipped with two cold standby 

components”, Metrika, 83: 677-697, (2020). 

 
[21] Gu, Y. K., Fan, Ch. J., Liang, L. Q., Zhang, J., “Reliability calculation method based on the Copula 

function for mechanical systems with dependent failure”, Annals of Operations Research, 1-18, 

(2019). 

 
[22] Zhang, Y., Yu, T., Song, B., “A reliability allocation method of mechanism considering system 

performance reliability”, Quality and Reliability Engineering International, 35(7): 2240-2260, 

(2019). 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiZsMfDzajnAhVqD2MBHSGlBzMQFjABegQIAhAB&url=https%3A%2F%2Fimstat.org%2Fjournals-and-publications%2Fbrazilian-journal-of-probability-and-statistics%2F&usg=AOvVaw3pjyhHFGEPiYaYSQWTmCBx
https://arxiv.org/search/stat?searchtype=author&query=Maiti%2C+S+S
https://arxiv.org/search/stat?searchtype=author&query=Mukherjee%2C+I
https://www.tandfonline.com/toc/lssp20/current
https://www.tandfonline.com/gscs20
https://www.tandfonline.com/gscs20


1684  Ezzatallah BALOUI JAMKHANEH et al. / GU J Sci, 35(4): 1665-1684 (2022) 

 
 

[23] Chaturvedi, A., Tomer, S. K., “UMVU estimation of the reliability function of the generalized life 

distributions”, Statistical Papers, 44(3): 301-313, (2003).  

 
[24] Kundu, D., Gupta, R. D., “Estimation of P[Y < X] for Weibull distributions”, IEEE Transactions 

on Reliability, 55(2): 270-280, (2006). 

 
[25] Turkkan, N., Pham-Gia, T., “System stress-strength reliability: The multivariate case”, IEEE 

Transactions on Reliability, 56(1): 115-124, (2007). 

 
[26] Rezaei, A., Tahmasbi, R., Mahmoodi, M., “Estimation of P[Y <  X] for generalized Pareto 

distribution”, Journal of Statistical Planning and Inference, 140: 480-494, (2010). 

 
[27] Al-Mutairi, D. K., Ghitany, M. E., Kundu, D., “Inferences on stress-strength reliability from 

Lindley distributions”, Communications in Statistics-Theory and Methods, 42(8): 1443-1463, 

(2013). 

 
[28] Nadar, M., Kizilaslan, F., Papadopoulos, A., “Classical and Bayesian estimation of P(Y <  X) for 

Kumaraswamy’s distribution”, Journal of Statistical Computation and Simulation, 84(7): 1505-

1529, (2014). 

 
[29] Alghamdi, S. M., Percy, D. F., “Reliability equivalence factors for a series parallel system of 

components with exponentiated Weibull lifetimes”, IMA Journal of Management Mathematics, 

28(3): 339-358, (2017). 

 
[30] Kizilaslan, F., Nadar, M., “Estimation of reliability in a multicomponent stress–strength model 

based on a bivariate Kumaraswamy distribution”, Statistical Papers, 59: 307-340, (2018). 

 
[31] Rezaei, A., Sharafi, M., Behboodian, J., Zamani, A., “Inferences on stress-strength parameter 

based on GLD5 distribution”, Communications in Statistics - Simulation and Computation, 47(5): 

1251-1263, (2018). 

 
[32] Alzaatreh, A., Lee, C., Famoye, F., “A new method for generating families of continuous 

distributions”, Metron, 71 (1): 63-79, (2013). 

 
[33] Nadarajah, S., Bagheri, S. F., Alizadeh, M., Bahrami Samani, E., “Estimation of the stress strength 

parameter for the generalized exponential-Poisson distribution”, Journal of Testing and 

Evaluation, 46(5): 2184-2202, (2017). 

 
[34] Gross, A. J., Clark, V. A., “Survival Distributions: Reliability Applications in the Biomedical 

Sciences”, New York: John Wiley and Sons, 105-105, (1975).  

 
[35] Eliwa, M. S., El-Morshedy, M., Ibrahim, M., “Inverse Gompertz Distribution: Properties and 

Different Estimation Methods with Application to Complete and Censored Data”, Annals of Data 

Science, 6: 321-339, (2019). 
  
[36] El-Gohary, A., Alshamrani, A., Al-Otaibi, A. N., “The generalized gompertz distribution”, 

Applied Mathematical Modelling, 37: 13-24, (2013).  

 
[37] Crowder, M., “Tests for a family of survival models based on extremes”, In: Limnios N., Nikulin 

M. (eds.), Recent Advances in Reliability Theory: Statistics for Industry and Technology, 

Birkhäuser Boston, Boston, MA, 307–321, (2000). 
  

 

https://link.springer.com/journal/362

