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Abstract
The main goal of this paper is to study the class of countably A-rings (or the countably
McCoy rings) introduced by T. Lucas in [The diameter of a zero divisor graph, J. Algebra
301, 174-193, 2006] which turns out to lie properly between the class of A-rings (or McCoy
rings) and the class of total-A-rings. Also, we introduce and investigate the module
theoretic version of the countably A-ring notion, namely the countably A-modules. Our
focus is shed on the behavior of the countably A-property vis-à-vis the polynomial ring,
the power series ring, the idealization and the direct products. Numerous examples are
provided to show the limits of the results.
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1. Introduction
Throughout this paper, all rings are supposed to be commutative with unit element and

all R-modules are unital. Let R be a commutative ring and M an R-module. We denote
by ZR(M) = {r ∈ R : rm = 0 for some nonzero element m ∈ M} the set of zero divisors
of R on M and by Z(R) := ZR(R) the set of zero divisors of the ring R. In citeAC3,
the notions of A-module and SA-module are extensively studied. In fact, an R-module
M satisfies Property (A), or M is an A-module over R (or A-module if no confusion is
likely), if for every finitely generated ideal I of R with I ⊆ ZR(M)), there exists a nonzero
m ∈ M with Im = 0, or equivalently, annM (I) ̸= 0. M is said to satisfy strong Property
(A), or is an SA-module over R (or an SA-module if no confusion is likely), if for any
r1, cdots, rn ∈ ZR(M), there exists a nonzero m ∈ M such that r1m = cdots = rnm = 0.
The ring R is said to satisfy Property (A), or an A-ring, (respectively, SA-ring) if R is an
A-module (resp., an SA-module). One may easily check that M is an SA-module if and
only if M is an A-module and ZR(M) is an ideal of R. It is worthwhile reminding the
reader that the Property (A) for commutative rings was introduced by Quentel in citeQ
who called it Property (C) and Huckaba used the term Property (A) in citeH,HK. In citeF,
Faith called rings satisfying Property (A) McCoy rings. The Property (A) for modules was
introduced by Darani citeD who called such modules F-McCoy modules (for Faith McCoy
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terminology). He also introduced the strong Property (A) under the name super coprimal
and called a module M coprimal if ZR(M) is an ideal. In citeMH, the strong Property (A)
for commutative rings was independently introduced by Mahdou and Hassani in citeMH
and further studied by Dobbs and Shapiro in citeDS. Note that a finitely generated module
over a Noetherian ring is an A-module (for example, see cite[Theorem 82]K) and thus a
Noetherian ring is an A-ring. Also, it is well known that a zero-dimensional ring R is
an A-ring as well as any ring R whose total quotient ring Q(R) is zero-dimensional. In
fact, it is easy to see that R is an A-ring if and only if so is Q(R) [9, Corollary 2.6]. Any
polynomial ring R[X] is an A-ring citeH as well as any reduced ring with a finite number
of minimal prime ideals citeH. In citeB, we generalize a result of T.G. Lucas which states
that if R is a reduced commutative ring and M is a flat R-module, then the idealization
R ⋉ M is an A-ring if and only if R is an A-ring cite[Proposition 3.5]L. In effect, we drop
the reduceness hypotheses and prove that, given an arbitrary commutative ring R and any
submodule M of a flat R-module F , R ⋉ M is an A-ring (resp., SA-ring) if and only if R
is an A-ring (resp., SA-ring). In citeBEK, we present an answer to a problem raised by
D.D. Anderson and S. Chun in citeAC3 on characterizing when is the idealization R ⋉M
of a ring R on an R-module M an A-ring (resp., an SA-ring) in terms of module-theoretic
properties of R and M . Also, we were concerned with presenting a complete answer to
an open question asked by these two authors which reads the following: What modules
over a given ring R are homomorphic images of modules satisfying the strong Property
(A)? cite[Question 4.4 (1)]AC3. The main theorem of citeBE extends a result of Hong,
Kim, Lee and Ryu in citeHKLR which proves that a direct product

∏
Ri of rings is an

A-ring if and only if so is any Ri cite[Proposition 1.3]HKLR. In this regard, we show that
if {Ri}i∈I is a family of rings and {Mi}i∈I is a family of modules such that each Mi is
an Ri-module, then the direct product

∏
i∈I

Mi of the Mi is an A-module over
∏
i∈I

Ri if and

only if each Mi is an A-module over Ri, i ∈ I. Finally, our main concern in citeABE is to
introduce and investigate a new class of rings lying properly between the class of A-rings
and the class of SA-rings. The new class of rings, termed the class of PSA-rings, turns out
to share common characteristics with both A-rings and SA-rings. Numerous properties
and characterizations of this class are given as well as the module-theoretic version of
PSA-rings is introduced and studied. For further works related to the Property (A) and
(SA), we refer the reader to citeAC1,AC2,AC3,AC4,HEZ,HKLR,L,MM,MMZ.

The main goal of this paper is to study the class of countably A-rings (CA-rings for
short) introduced by T. Lucas in citeL which turns out to lie properly between the class
of A-rings (or McCoy rings) and the class of total-A-rings. Any Noetherian ring proved to
be a CA-ring. Furthermore, we introduce the module theoretic version of the countably
CA-ring notion, namely the countably CA-modules. Our focus is shed on the behavior
of the CA-property vis-à-vis the polynomial ring, the power series ring, the idealization
and the direct products. Numerous examples are also provided to show the limits of the
results. It is known that the polynomial ring R[X] is always an A-ring. Now, the legitimate
question which arises is whether this result remains true for the CA-property. We prove
that the polynomial ring R[X] needs not be a CA-ring, in general, and we give necessary
and sufficient conditions for R[X] to be a CA-ring when the base ring R is an A-ring.
Regarding the power series ring, recall that a longstanding question, which is still open,
asks whether R[[X]] is always an A-ring. In this aspect, recall that McCoy’s theorem on
polynomial rings don’t carry over to power series ring R[[X]] over R (see cite[Example
32]F). Then several authors showed interest in determining the commutative rings R that
satisfy the extension of McCoy’s theorem to R[[X]] and that we will call throughout the
R[[X]]-McCoy’s theorem. In this regard, Fields proved that if R is Noetherian, then R
satisfies the R[[X]]-McCoy’s theorem cite[Theorem 5]Fi. Also, Gilmer, Grams and Parker
proved that if either R is reduced or the total quotient ring of R is a von Neumann
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regular ring, then R satisfies the R[[X]]-McCoy’s theorem (see citeGGP). We prove, in
this context, that if R satisfies the R[[X]]-McCoy’s theorem, then R is a CA-ring implies
that R[[X]] is a CA-ring and thus, in particular, an A-ring. This stands as a partial answer
to the above question on A-property of R[[X]]. Moreover, we give an example of an A-ring
R such that R[[X]] is a not a CA-ring. In Section 4, we aim at seeking when an idealization
R ⋉ M of a ring R on an R-module M is a CA-ring. We characterize the CA-Property of
R ⋉ M in terms of properties of R and M . In particular, we prove that if R is a domain,
then R⋉M is a CA-ring if and only if M is a CA-module. Finally, in Section 5, we study
the behavior of the CA-property with respect to direct products of rings. In fact, it is
known that the direct product

∏
i

Ri of rings (Ri)i∈Λ is an A-ring if and only if so is each

ring Ri. We aim next at characterizing when
∏
i

Ri is a CA-ring. In this aspect, we prove

that
∏

i∈Λ
Ri is a CA-ring if and only if Λ is a finite set and Ri is a CA-ring for each i ∈ Λ.

2. CA-rings and CA-modules
Recall that the countably McCoy rings were introduced by T. Lucas in citeL in his

investigation on the graph of power series rings. In this section, we aim at studying this
class of rings. Also, we introduce and investigate the countably McCoy modules. We
prove that the class of CA-rings is a proper intermediate class between the class of A-rings
and the class of total-A-rings. Also, it is worth reminding that the polynomial ring R[X]
is always an A-ring. Now, the legitimate question which arises is whether this result still
remains true for the CA-property. In this section, we prove that the polynomial ring R[X]
needs not be a CA-ring, in general, and we give necessary and sufficient conditions for
R[X] to be a CA-ring when the base ring R is an A-ring.

Definition 2.1. Let R be a ring and M an R-module.
(1) R is said to be a countably McCoy ring or a countably A-ring ( CA-ring for short),

if any ideal J ⊆ Z(R) such that J is countably generated, annR(J) ̸= 0.
(2) M is said to be a countably McCoy module or a countably A-module ( CA-module

for short), if any ideal I ⊆ ZR(M) such that I is countably generated, annM (I) ̸= 0.

Next, we exhibit some examples of CA-rings.

Proposition 2.2. Let R be a ring. Then
(1) If R is Noetherian, then R is a CA-ring.
(2) Any Noetherian or Artinian module M is a CA-module.
(3) Let Λ denote the set of all countably generated ideals of R. Then

⊕
I∈Λ

R

I
is a

CA-module over R.

Proof. 1) It is clear as any ideal of R is finitely generated.
2) In fact, any Noetherian or Artinian module over R is a total-A-module cite[Theorem
2.2]AC3.
3) Let I ⊆ Z(R) be a countably generated ideal of R. Then I1R/I = (0) and 1R/I ̸= 0.

Hence
⊕

I∈Λ

R

I
is a CA-module over R.

□
The next proposition records the fact that the class of countably McCoy rings is a

proper intermediate class between the class of total McCoy rings and the class of McCoy
rings. Recall that a ring R is said to be a total-A-ring if for any ideal I ⊆ Z(R), we have
annR(I) ̸= 0.

Proposition 2.3. total-A-rings ⊊ CA-rings ⊊ A-rings.
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Proof. The large inclusions are clear from the definition of CA-rings. The second strict
inclusion is proved by Lucas in cite[Example 5.4]L. Ahead, Example 4.6 proves the first
strict inclusion by providing an example of a CA-ring which is not a total-A-ring. □

In cite[Example 5.4]L, T. Lucas presented an example of a reduced A-ring which is not
a CA-ring. In this aspect, the next example provides a countable 0-dimensional local ring
R which is an A-ring while it is not a CA-ring.

Example 2.4. Let R = Q[Xn]n∈N
(X2

n)n
. Then:

(1) R is a countable local 0-dimensional ring.
(2) R is an A-ring.
(3) R is not a CA-ring.

Proof. R is a countable local ring of Krull dimension 0.
1) Since R is zero-dimensional, then R is an A-ring.
2) Let xn = Xn for each integer n ≥ 0. Let I = (xn)n∈N be the unique maximal ideal
of R. Assume that annR(I) ̸= (0). Note that I = Z(R). Let f(X1, X2, cdots, Xp) ∈
Q[X1, X2, cdots, Xp] such that 0 ̸= f(X1, cdots, Xp) ∈ annR(I) for some positive integer
p. Then, we may assume, without loss of generality, that

f(X1, cdots, Xp) =
∑

1≤i1,cdots,is≤p

ai1cdotsaisXi1cdotsXis ,

that is, the degree of f on each indeterminate Xi is degXi
(f) ≤ 1. Now, fI = (0),

then, in particular, fxp+1 = 0. Thus fXp+1 ∈ ({X2
n}n∈N). This leads to a contradiction

since degXi
(f) ≤ 1 for each i = 1, cdots, p, so that degXi

(fXp+1) ≤ 1 for each i =
1, cdots, p, p + 1. It follows that R is not a CA-ring. □

Let R be a commutative ring and M an R-module. Put SM := R\ ZR(M) the set of non
zero divisors of M . We define the total quotient ring of M over R to be the localization
ring QR(M) := S−1

M R and the total quotient module of M to be the QR(M)-module
Q(M) := S−1

M M . It is well known that M is an A-module over R if and only if Q(M) is
A-module over QR(M) cite[Theorem 2.1 (3)]AC3. We next prove an analog result of this
theorem for the CA-property.

Theorem 2.5. Let R be a commutative ring and M be an R-module. Then the following
assertions are equivalent.

(1) M is a CA-module over R;
(2) Q(M) is a CA-module over QR(M);

Proof. 1) ⇒ 2) Assume that M is a CA-module over R. Let J be a countably generated
ideal of QR(M) such that

J = (a1/s1, a2/s2, cdots, an/sn, cdots) ⊆ ZQR(M)(Q(M))
with an ∈ ZR(M) and sn ∈ SM for each integer n ≥ 1 since, by cite[Lemma 2.2]BEK,
ZQR(M)(Q(M)) = S−1

M ZR(M). Let I = (a1, a2, cdots, an, cdots). Then I is a countably
generated ideal of R. Let x = r1a1 + r2a2 + cdots + rnan ∈ I with the ri ∈ R. Then
x/1 = r1a1/1 + cdots + rnan/1 ∈ J ⊆ ZQR(M)(Q(M)). Hence there exists s ∈ SM such
that sx ∈ ZR(M). Thus there exists 0 ̸= t ∈ M such that sxt = 0 so that, since s ∈ SM ,
xt = 0. Then x ∈ ZR(M). It follows that I ⊆ ZR(M). Hence there exists 0 ̸= y ∈ M such
that Iy = 0 since M is a CA-module. Observe that y/1 ̸= 0 in Q(M). Hence J(y/1) = (0)
with y/1 ̸= 0. Therefore annQ(M)(J) ̸= (0). It follows that Q(M) is a CA-module over
QR(M), as desired.
2) ⇒ 1) Assume that Q(M) is a CA-module over QR(M). Let I be a countably generated
ideal of R such that I ⊆ ZR(M). Then J = S−1

M I is a countably generated ideal of QR(M).
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Hence there exists 0 ̸= x/s ∈ Q(M) such that J(x/s) = 0. Therefore it is easy to check
that Ix = (0) and that x ∈ M with x ̸= 0. It follows that M is a CA-module over R
completing the proof of the theorem. □

It is worth reminding the reader that the property A of modules is not stable under
direct sums and direct summands. The property CA turns out to be pathologic as well
vis-à-vis direct sums and direct summands. In fact, Anderson and Chun gave an example,
namely cite[Example 2.6]AC3, of an A-module A = A1 ⊕ A2 while neither A1 nor A2 is
an A-module. In this example, the two authors proved that A is a total-A-module. Con-
sequently, Example 2.6 of citeAC3 turns out to be an example of a CA-ring A = A1 ⊕ A2
while neither A1 nor A2 is a CA-module. This proves that the CA-property is not sta-
ble under direct summand. Also, Anderson and Chun proved that the A-property is not
stable under direct sum by providing an example of two modules A1 and A2 over a two-
dimensional regular local ring R such that A1 and A2 are A-modules while A1 ⊕ A2 is not
an A-module see cite[Example 2.11]AC3. A2 is proved to be a total-A-module and thus A2
is a CA-module over R. Besides, A1 = R/(x) with x /∈ Z(R). Then ZR(A1) = (x) as R/(x)
is a regular local domain and thus (x) is a prime ideal of R. Hence, if J ⊆ ZR(A1), then
J1A1 = 0. It follows that A1 is a total-A-module and thus a CA-module. Consequently,
A1 and A2 are CA-modules while A1 ⊕ A2 is not a CA-module.

Recall that the polynomial ring R[X] over a ring R is always an A-ring. It turns out
that this is no longer true for the CA-property. In fact, ahead, we give, via Example 2.7,
an example of a countable ring R such that R[X] is not a CA-ring. Also, the next theorem
provides a necessary and sufficient condition for the polynomial ring R[X] to be a CA-ring
when the base ring R is an A-ring. Given a ring R and an element f ∈ R[X], we denote
by c(f) the content of f , that is, the ideal of R generated by the coefficients of f .

Theorem 2.6. Let R be a ring.
(1) If R is a CA-ring, then R[X] is a CA-ring.
(2) Moreover, if R is an A-ring, then R[X] is a CA-ring if and only if so is R.

Proof. 1) Assume that R is a CA-ring. Let J = (f1, cdots, fn, cdots) be a countably
generated ideal of R[X] such that J ⊆ Z(R[X]). Let I = (c(f1), c(f2), cdots, c(fn), cdots)
be the ideal of R generated by the contents of the fn. Then I is a countably generated ideal
of R. We prove that I ⊆ Z(R). In fact, it suffices to prove that (c(f1), c(f2), cdots, c(fn)) ⊆
Z(R) for each integer n ≥ 1. Fix an integer n ≥ 1. Observe that

g = f1 + Xd1+1f2 + Xd1+d2+2f3 + cdots + Xd1+d2+cdots+dn−1+n−1fn ∈ J ⊆ Z(R[X]).

Then, by McCoy’s theorem, there exists a ∈ R \ {0} such that ag = 0. Hence, by the
construction of g, afi = 0 for i = 1, cdots, n. It follows that ac(fi) = 0 for i = 1, cdots, n.
Hence (c(f1), c(f2), cdots, c(fn)) ⊆ Z(R) for each integer n ≥ 1 and thus I ⊆ Z(R) proving
our claim. Since R is a CA-ring, we get annR(I) ̸= (0). Let b ∈ R \{0} such that bI = (0).
Then it is easy to see that bJ = (0). This proves that R[X] is a CA-ring.
2) Assume that R is an A-ring. Also, suppose that R[X] is a CA-ring. Let J ⊆ Z(R)
be a countably generated ideal of R. Then, as R is an A-ring, JR[X] ⊆ Z(R[X]). Since
JR[X] is a countably generated ideal of R[X] and R[X] is a CA-ring, then there exists
f ∈ R[X] \ {0} such that f(0) ̸= 0 and fJR[X] = 0. Hence f(0)J = (0) and f(0) ̸= 0. It
follows that R is a CA-ring completing the proof of the theorem.

□

We next exhibit an example of a countable local 0-dimensional ring R such that R[X]
is not a CA-ring.
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Example 2.7. Let R = Q[Xn]n
(X2

n)n
. As R is a 0-dimensional ring, then R is an A-ring. By

Example 2.4, R is not a CA-ring. It follows, by Theorem 2.6, that R[X] is not a CA-ring,
as desired.

Corollary 2.8. Let R be a ring and let n ≥ 0 be an integer. Let X, X1, X2, cdots, Xn be
indeterminates over R. Then R[X1, X2, cdots, Xn] is a CA-ring if and only if R[X] is a
CA-ring. Moreover, if R is an A-ring, then R[X1, X2, cdots, Xn] is a CA-ring if and only
if R is a CA-ring

Proof. By Theorem 2.6(1) and by iteration, if R[X] is a CA-ring then so is R[X1, cdots, Xn].
Conversely, assume that R[X1, cdots, Xn] is a CA-ring. As R[X] is an A-ring, applying
Theorem 2.6(2), we get R[X1] is a CA-ring and thus R[X] is a CA-ring, as desired. □

3. CA-property and power series ring
This section aims at investigating the behavior of the power series ring R[[X]] with

respect to the property CA. At this point, recall that, given a ring R, McCoy proved
that if f ∈ Z(R[X]), then there exists a ∈ R \ {0} such that af = 0. This theorem don’t
carry over to power series ring R[[X]] over R (see cite[Example 32]F). The question that
arises is what are the commutative rings R that satisfy the extension of McCoy’s theorem
to R[[X]] and that we will call throughout the R[[X]]-McCoy’s theorem. In this regard,
Fields proved that if R is Noetherian, then R satisfies the R[[X]]-McCoy’s theorem. Also,
Gilmer, Grams and Parker proved that if either R is reduced, or the total quotient ring
of R is a von Neumann regular ring or each zero divisor f of R[[X]] is annihilated by an
element of R[X], then R satisfies the R[[X]]-McCoy’s theorem. On the other hand, it is
an open question to know whether the power series ring R[[X]] is an A-ring. The main
theorem of this section answers positively this question when R is a CA-ring such that
Z(R) = Rad(R). Also, it permits to construct an example of a ring R such that R[[X]] is
not a CA-ring.

We begin by announcing the main theorem of this section. Given a ring R, we denote
by Z(R)[X] (resp., Z(R)[[X]]) the subset of R[X] (resp., of R[[X]]) consisting of elements
f of R[X] (resp., of R[[X]]) such that the coefficients of f are elements of Z(R).

Theorem 3.1. Let R be a ring.
(1) Assume that Z(R[[X]]) ⊆ Z(R)[[X]]. If R is a CA-ring, then R[[X]] is a CA-ring.
(2) Assume that Z(R) = Rad(R). Then R[[X]] is a CA-ring if and only if R is a

CA-ring.

It is worthwhile noting that in the case of a polynomial ring R[X] over a ring R, we
always have by McCoy’s theorem that Z(R[X]) ⊆ Z(R)[X]. This is no longer true in the
case of a power series ring R[[X]], in the sense that, Z(R[[X]]) ⊈ Z(R)[[X]], in general (see
cite[Example 3.2]Fi).

To prove Theorem 3.1, we need the following proposition.

Proposition 3.2. Let R be a ring such that Z(R[[X]]) ⊆ Z(R)[[X]]. Let J ⊆ Z(R[[X]])
be an ideal of R[[X]]. Then I = ({c(f) : f ∈ J}) ⊆ Z(R).

Proof. It suffices to handle the case where J = (f1, f2, cdots, fn) is a finitely gener-
ated ideal of R[[X]]. Let fi = ai0 + ai1X + cdots + aimXm + cdots and thus c(fi) =
(ai0, ai1, cdots, aim, cdots) for i = 0, cdots, n and let I = (c(f1), cdots, c(fn)) be the ideal
of R generated by the contents of the fi. Let y = (r10a10 + cdots + r1m1a1m1) + cdots +
(rn0an0 + cdots + rnmnanmn), with the rij ∈ R, be an arbitrary element of I such that
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aimi ̸= 0 and rimi ̸= 0 for i = 1, cdots, n. Without loss of generality, we may assume that
m1 ≤ m2 ≤ cdots ≤ mn. Put
g = (r10Xmn+r11Xmn−1+cdots+r1m1Xmn−m1)f1+cdots+(rn0Xmn+rn1Xmn−1+cdots+rnmn)fn

and note that g ∈ J so that g ∈ Z(R[[X]]). Then, by hypotheses, g ∈ Z(R)[[X]]. Hence,
since y is the mnth coefficient of g, we get y ∈ Z(R). Therefore I ⊆ Z(R), as contended.

□
Proof of Theorem 3.1. 1) Assume that R is a CA-ring. Let J = ({fn}n∈N) be a count-
ably generated ideal of Z(R[[X]]). By Proposition 3.2, K = ({c(fn)}n∈N) ⊆ Z(R). Now,
as R is a CA-ring and K is a countably generated ideal of Z(R), we get annR(K) ̸= {0}.
It follows that annR[[X]](J) ̸= {0} yielding that R[[X]] is a CA-ring.
2) Suppose that Z(R) = Rad(R) and R[[X]] is a CA-ring. Note that, By cite[Theorem
3]Fi, Z(R[[X]]) ⊆ Z(R)[[X]]. Then, applying (1), if R is a CA-ring, R[[X]] is so. Con-
versely, assume that R[[X]] is a CA-ring and let I = ({an}n∈N) be a countably generated
ideal contained in Z(R) = Rad(R). Observe that, as Rad(R) ⊆ Rad(R[[X]]), we get that

(Rad(R))R[[X]] ⊆ Rad(R[[X]]) ⊆ Z(R[[X]]).
Then IR[[X]] ⊆ (Rad(R))R[[X]] ⊆ Z(R[[X]]). Hence, as R[[X]] is a CA-ring, there exists
g ∈ R[[X]] with g(0) ̸= 0 such that gIR[[X]] = (0) and thus g(0)I = (0). It follows that
R is a CA-ring completing the proof of the theorem. □

It is easy to see that if R satisfies the R[[X]]-McCoy’s theorem, in particular, if R is
reduced, then Z(R[[X]]) ⊆ Z(R)[[X]]. The next result is a direct consequence of Theorem
3.1.

Corollary 3.3. Let R be a ring.
(1) Assume that R satisfies the R[[X]]-McCoy’s theorem. If R is a CA-ring, then

R[[X]] is a CA-ring.
(2) Assume that R is a reduced ring. If R is a CA-ring, then R[[X]] is a CA-ring.

The following example shows that there exists an A-ring R such that R[[X]] is not a
CA-ring.

Example 3.4. Let k be a field and R = k[Xn]n
(X2

n)n
= k[xn]n∈N. Then Z(R) = Rad(R) =

({xn}n∈N). Also, note, as proved in Example 2.4, that R is not a CA-ring. Then, by
Theorem 3.1, R[[X]] is not a CA-ring.

4. CA-property and idealization
This section aims at seeking when the idealization R ⋉ M of a ring R on an R-module

M is a CA-ring. We characterize the CA-property of R ⋉ M in terms of properties of R
and M . In particular, we prove that if R is a domain, then R ⋉ M is a CA-ring if and
only if M is a CA-module.

Our first results investigate some characterizations of modules satisfying the CA-property.

Theorem 4.1. Let R be a ring. Let M be an R-module and N a submodule of M such
that ZR(M) = ZR(N). If N is a CA-module, then M is so.

Proof. Let J be a countably generated ideal of R with J ⊆ ZR(M) = ZR(N). Suppose
that N is a CA-module. Then annN (J) ̸= 0. Hence, as N ⊆ M , annM (J) ̸= 0. It follows
that M is a CA-module. □
Corollary 4.2. Let M and N be R-modules such that ZR(N) ⊆ ZR(M). If M is a
CA-module, then M ⊕ N is so.
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Proof. Note that ZR(M) = ZR(M ⊕ N) and M is a submodule of M ⊕ N . Then apply
Theorem 4.1 to get the desired result. □

Corollary 4.3. Let M be an R-module. Then M is a CA-module if and only if
⊕
I

M is
so.

Proof. Assume that M is a CA-module. We have ZR(
⊕
I

M) = ZR(M) and M ⊆
⊕
I

M .

Then, by Theorem 4.1,
⊕
I

M is a CA-module. Conversely, assume that
⊕
I

M is a CA-

module. Let J be a countably generated ideal of R such that J ⊆ ZR(M) = ZR(
⊕
I

M).

Then ann⊕
I

M (J) ̸= 0. So there exists 0 ̸= m = (mi)i ∈
⊕
I

M such that (Jmi)i = Jm = 0.

Therefore Jmi = 0 for each i ∈ I. Then, there exists k ∈ I such that mk ̸= 0 and Jmk = 0.
It follows that annM (J) ̸= 0. Hence M is a CA-module completing the proof. □

Anderson and Chun proved in citeAC3 that if R is an integral domain and M is an
R-module, then the idealization R ⋉ M is an A-ring (resp., an SA-ring) if and only if M
is an A-module (resp., SA-module) cite[Theorem 2.12]AC3. Also, we proved in citeBEK
that R⋉m is an A-ring if and only if R ⊕ M is an A-module cite[Theorem 2.1]BEK. The
next theorem examines this result for the CA-property.

Theorem 4.4. Let R be a commutative ring and M an R-module. Then R ⋉ M is a
CA-ring if and only if R ⊕ M is a CA-module over R.

Proof. Assume that T := R ⋉ M is a CA-ring. Let I be a countably generated ideal
of R such that I ⊆ ZR(R ⊕ M). Then J := I ⋉ (0) is a countably generated ideal of
R⋉M . Since I ⊆ ZR(R⊕M) = Z(R)cup ZR(M), we get J ⊆ Z(R⋉M) (see cite[Theorem
3.5]AW). Therefore annR⋉M (J) ̸= 0 as T is a CA-ring. Hence there exists nonzero (r, m) ∈
R ⋉ M such that (r, m)J = (0, 0). Let a be an arbitrary element of I. Then (0, 0) =
(r, m)(a, 0) = (ra, am), so that ra = 0 and am = 0. If r = 0, then (0, m) ̸= (0, 0) and
a(0, m) = (0, 0), that is, I(0, m) = (0). Hence annR⊕M (I) ̸= 0, as desired. Now, suppose
that r ̸= 0. Then a(r, 0) = (0, 0) and (r, 0) ̸= (0, 0). Hence annR⊕M (I) ̸= 0. It follows
that R ⊕ M is a CA-module, as desired. Conversely, assume that R ⊕ M is a CA-module.
Let J = ((a1, m1), cdots, (an, mn), cdots)T be a countably generated ideal of T such that
J ⊆ Z(T ). Let I := (a1, cdots, an, cdots)R. Next, we prove that I ⊆ ZR(R ⊕ M). In fact,
let x =

n∑
i=1

airi ∈ I with the ri ∈ R. Then, as J is an ideal of T contained in Z(T ),

n∑
i=1

(ai, mi)(ri, 0) =
n∑

i=1
(airi, miri) = (x,

n∑
i=1

miri) ∈ Z(T ).

Hence, by cite[Theorem 3.5]AW, x ∈ Z(R)cup ZR(M) = ZR(R ⊕ M). It follows that
I ⊆ ZR(R ⊕ M). As R ⊕ M is a CA-module over R, there exists (a, m) ∈ R ⊕ M such
that (a, m) ̸= (0, 0) and I(a, m) = (0, 0). Thus aia = 0 and aim = 0 for each i ∈ N \ {0}.
Hence, for each i ∈ N \ {0},

(ai, mi)(a, m) = (aia, aim + ami) = (0, ami).

If ami = 0 for each i ∈ N\{0}, then (ai, mi)(a, m) = (0, 0) and thus J(a, m) = (0, 0) which
means that annT (J) ̸= (0, 0). Assume that there exists j ∈ N \ {0} such that amj ̸= 0.
Then

(ai, mi)(0, amj) = (0, aaimj) = (0, 0)
for each i ∈ N \ {0}. It follows that annT (J) ̸= (0, 0). Consequently, T is a CA-ring
completing the proof.

□
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Corollary 4.5. Let R be an integral domain and M an R-module. Then R ⋉ M is a
CA-ring if and only if M is a CA-module.

Proof. Assume that R⋉M is a CA-ring. Then, by Theorem 4.4, R ⊕ M is a CA-module.
Let I be a nonzero countably generated ideal of R such that I ⊆ ZR(M) = ZR(R ⊕ M)
since R is an integral domain. Then annR⊕M (I) ̸= 0 and so there is a nonzero element
(r, m) ∈ R ⊕ M such that Ir = 0 and Im = 0. Now, since R is an integral domain
and I ̸= (0), then r = 0 and thus m ̸= 0. It follows that annM (I) ̸= 0. Hence M
is a CA-module, as desired. Conversely, assume that M is a CA-module. Then, since
ZR(R ⊕ M) = ZR(M), by Theorem 4.1, R ⊕ M is a CA-module. Finally, apply Theorem
4.4 to complete the proof.

□

Now, we are able to present a CA-ring which is not a total-A-ring. First, we provide a
local domain R admitting a CA-module which is not a total-A-module.

Example 4.6. Let k be a field, Λ an uncountable set and {Xi}i∈Λ be a set of indetermi-
nates over k. Let R = k[[{Xi}i∈Λ]] and note that R is a local domain of maximal ideal
m = (Xi)i∈Λ. Let Ω be the set of all countable subsets of Λ and, for each A ∈ Ω, let
PA = (Xj)j∈A be the countably generated prime ideal of R generated by the Xj with

j ∈ A. Consider the R-module M =
⊕

A∈Ω

R

PA
. Observe that ZR(M) =

∪
A∈Ω

PA and that

the maximal ideal m = (Xi)i∈Λ ⊆
∪

A∈Ω
PA = ZR(M). Let I ⊆ ZR(M) be a countably

generated ideal of R. Note that there exists A ∈ Ω such that I ⊆ PA. As PA(1R/PA
) = 0,

we get that I(1R/PA
) = 0. It follows that M is a CA-module over R. We prove that M

is not a total-A-module. In effect, assume that there exists 0 ̸= a = (a1, cdots, an) ∈ M

such that ma = (0). Let a1 ̸= 0 and a1 ∈ R

PA
for some A ∈ Ω. Hence ma1 ⊆ PA and

thus m ⊆ PA as a1 /∈ PA. Therefore m = PA. This leads to a contradiction since m is
not a countably generated ideal. It follows that annM (m) = (0). Consequently, M is a
CA-module which is not a total-A-module. Therefore, by applying cite[Corollary 2.4]BEK
and Theorem 4.4, we get T = R ⋉ M is a CA-ring which is not a total-A-ring.

Proposition 4.7. Let R be a ring and M a free R-module. Then R ⋉ M is a CA-ring if
and only if R is so.

Proof. Assume that R ⋉ M is a CA-ring. By Theorem 4.4, R ⊕ M =: N is a CA-
module. Since M is a free R-module, then N = R(Λ) is a free R-module for some set
Λ. Hence, by Corollary 4.3, R is a CA-ring. Conversely, assume that R is a CA-ring.
Then, by Corollary 4.3, M is a CA-module as M is a free R-module. Also, note that
Z(R) = ZR(M) = ZR(R ⊕M). Hence, by Theorem 4.4, R ⊕M is a CA-module. It follows,
by Theorem 4.4, that R ⋉ M is a CA-ring, as desired. □

Proposition 4.8. Let R be a ring and N ⊆ M be R-modules such that M is an essential
extension of N . Then M is a CA-module if and only if N is so.

Proof. Note that, by cite[Theorem 2.2 (4)]AC3, ZR(N) = ZR(M). Then, by Theorem 4.1,
N is a CA-module implies that M is so. Conversely, assume that M is a CA-module. Let
I ⊆ ZR(N) = ZR(M) be a countably generated ideal of R. Then, since M is a CA-module,
we get annM (I) ̸= 0. As M is an essential extension of N , then annM (I)capN ̸= 0. Thus
there exists 0 ̸= x ∈ N such that Ix = 0 so that annN (I) ̸= 0. It follows that N is a
CA-module establishing the desired equivalence. □
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5. CA-property and direct products of modules
This section goal is to study the behavior of the CA-property with respect to direct

products of rings. In fact, it is known that the direct product
∏
i

Ri of rings (Ri)i∈Λ is an

A-ring if and only if so is each ring Ri cite[Proposition 1.3]HKLR. As to SA-property, it
is proved that, if the cardinal |Λ| of the set Λ is ≥ 2, then

∏
i

Ri is never an SA-ring. We

aim next at characterizing when
∏
i

Ri is a CA-ring.

Theorem 5.1. Let (Ri)i∈Λ be a family of rings and (Mi)i∈Λ a family of modules such that
Mi is an Ri-module for each i ∈ Λ. Then the following assertions are equivalent:

(1)
∏

i∈Λ
Mi is a CA-module over

∏
Λ

Ri;

(2) Λ is a finite set and Mi is a CA-module over Ri for each i ∈ Λ.

We need the following lemma.

Lemma 5.2. Let (Ri)i∈Λ be a family of rings and (Mi)i∈Λ a family of modules such
that Mi is an Ri-module for each i ∈ Λ. If Λ is an infinite set, then

∏
i∈Λ

Mi is never a

CA-module over
∏
Λ

Ri.

Proof. Let R :=
∏

i∈Λ
Ri and M :=

∏
i∈Λ

Mi. Assume that Λ is infinite. Let

Γ = {i0, i1, cdots, in, cdots} ⊆ Λ

be an infinite countable subset of Λ. Let xn = (ai)i∈Λ ∈ R such that ak = 1 for k = in or
k ∈ Λ \ Γ, and aj = 0 otherwise. Let J = (xn)n∈N be the countably generated ideal of R
generated by the xn. It is easily seen that J is a proper ideal of R and that J ⊆ ZR(M).
Let b = (bi)i∈Λ be an element of M such that Jb = (0). Then xnb = 0 for each positive
integer n. Hence, by the construction of the xn, we get bi = 0 for each i ∈ Λ so that b = 0.
Therefore annM (J) = (0). It follows that M is not a CA-module over R, as desired. □

Proof of Theorem 5.1. 1) ⇒ 2) Assume that M :=
∏

i∈Λ
Mi is a CA-module over R.

Then, by Lemma 5.2, Λ is a finite set. Let j ∈ Λ and let I ⊆ ZRj (Mj) be a countably
generated ideal of Rj . Let K =

∏
i∈Λ

Ki such that Ki = R for all i ̸= j and Kj = I. Then

K is a countably generated ideal of R such that K ⊆ ZR(M). Therefore, there exists a
nonzero element a = (ai)i∈Λ of M such that Ka = 0. Then Rai = 0 for all i ̸= j. Hence
ai = 0 for all i ̸= j so that aj ̸= 0. It follows that Iaj = 0 and 0 ̸= aj ∈ Mj . Consequently,
Mj is a CA-module over Rj .
2) ⇒ 1) Assume that Λ is a finite set and that Mi is a CA-module for each i ∈ Λ. Then it
suffices to handle the case where R = R1 ×R2 and M = M1 ×M2 with M1 is a CA-module
over R1 and M2 is a CA-module over R2. Let K ⊆ ZR(M) be a countably generated ideal
of R. Then K = I1 × I2 such that I1 is a countably generated ideal of R1 and I2 is a
countably generated ideal of R2 with either I1 ⊆ ZR1(M1) or I2 ⊆ ZR2(M2). Suppose that
I1 ⊆ ZR1(M1). Therefore annM1(I) ̸= 0 as M1 is a CA-module over R1. Let a ∈ M1 \ {0}
such that Ia = 0. Then K(a, 0) = (0, 0) and (0, 0) ̸= (a, 0) ∈ M . Hence annM (K) ̸= (0).
It follows that M is a CA-module over R completing the proof of the theorem.

□

We next list some consequences of Theorem 5.1.

Corollary 5.3. Let (Ri)i∈Λ be a family of rings. Then the following assertions are equiv-
alent:
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(1)
∏

i∈Λ
Ri is a CA-ring;

(2) Λ is a finite set and Ri is a CA-ring for each i ∈ Λ.
We deduce the following result on finite direct products of modules.

Corollary 5.4. Let n ≥ 2 be an integer. Let R1, R2, cdots, Rn be rings and M1, M2, cdots, Mn

be modules such that Mi is an Ri-module for each i = 1, 2, cdots, n. Then M1 × M2 ×
cdots × Mn is a CA-module over R1 × R2 × cdots × Rn if and only if Mi is a CA-module
over Ri for each i = 1, 2, cdots, n.

We give the following particular version of Corollary 5.3. In particular, it sheds light
on why the direct sum of two CA-modules over a ring R is not a CA-module over R, in
general.
Corollary 5.5. Let R be a ring and M, N be R-modules. Then M ⊕ N is a CA-module
over R ⊕ R if and only if M and N are CA-modules over R.

We close by the following result which represents the ring theoretic version of Corollary
5.3.
Corollary 5.6. Let R1, R2, cdots, Rn be rings with n ≥ 2 an integer. Then R1 × R2 ×
cdots × Rn is a CA-ring if and only if Ri is a CA-ring for each i = 1, 2, cdots, n.
Acknowledgment. The authors would thank the referee for her/his careful reading of
the paper.
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