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ON THE WELL-COVEREDNESS OF SQUARE GRAPHS

Zakir DENİZ

Department of Mathematics, Düzce University, Düzce, TURKEY

Abstract. The square of a graph G is obtained from G by putting an edge
between two distinct vertices whenever their distance in G is 2. A graph is

well-covered if every maximal independent set in the graph is of the same size.

In this paper, we investigate the graphs whose squares are well-covered. We
first provide a characterization of the trees whose squares are well-covered.

Afterwards, we show that a bipartite graph G and its square are well-covered

if and only if every component of G is K1 or Kr,r for some r ≥ 1. Moreover,
we obtain a characterization of the graphs whose squares are well-covered in

the case α(G) = α(G2) + k for k ∈ {0, 1}.

1. Introduction

A set of vertices in a graph is independent if no two vertices in the set are ad-
jacent. If every maximal independent set of vertices has the same cardinality, then
the graph is called well-covered. These graphs have been introduced by Plummer
in [11] and many researches have been done related to them. Most of the research
on well-covered graphs appearing in literature has focused on certain subclasses of
well-covered graphs such as well-covered line graphs [4], very well covered graphs [6]
and well-covered graphs that are 3-regular [3].

The square of a graph G, denoted by G2, is the graph whose vertex set is the
same as G, and where two vertices are adjacent in G2 if and only if their distance
is at most 2 in G. Particularly, a graph G is called square-stable if it satisfies
α(G) = α(G2) where α(G) denotes the size of a maximum independent set in G.
Levit and Mandrescu showed in [8] that every square-stable graph is well-covered,
and well-covered trees are exactly the square-stable trees. On the other hand,
König–Egerváry square-stable graphs have been studied in [9]. In addition, it has
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been proved in [10] that G2 is a König–Egerváry graph if and only if G is a square-
stable König–Egerváry graph.

In this paper, we study the graphs whose squares are well-covered. We first
present some observations for certain graph classes; cycles, paths, P4-free graphs,
and P5-free graphs. Later, we consider trees, and we define a family T of trees (see
Section 3). Our first result is that the square of a tree is well-covered if and only if
the tree is a member of T . We also extend this result to the bipartite graphs that
are well-covered. We show that a bipartite graph G and its square are well-covered
if and only if every component of G is K1 or Kr,r for some r ≥ 1. Finally, we
consider the graphs satisfying α(G) = α(G2)+ k for k ∈ {0, 1}. For the case k = 0,
we prove that G2 is well-covered if and only if every component of G is a complete
graph. By using this result, we also provide a characterization of the graphs whose
squares are well-covered in the case α(G) = α(G2) + 1.

The paper is structured as follows. We start in Section 2 with some definitions
and preliminary results on square graphs. In Section 3, we present a characteriza-
tion of trees whose squares are well-covered, also we extend it to well-covered bipar-
tite graphs. Section 4 is devoted to the square of graphs satisfying α(G) = α(G2)+k
for k ∈ {0, 1}. We finish the paper with Section 5 in which we discuss the results
that we obtain.

2. Preliminaries

All graphs in this paper are assumed to be simple i.e. finite and undirected,
with no loops or multiple edges. We refer to [14] for terminology and notation not
defined here. Given a graph G = (V,E) and a subset of vertices S, G[S] denotes
the subgraph of G induced by S, and G − S = G[V − S]. We denote G − S by
G− v when S consists of a single vertex v. For a vertex v, the open neighbourhood
of v in a subgraph H is denoted by NH(v) while the closed neighbourhood of v is
NH(v) ∪ {v}, denoted by NH [v]. We omit the subscript H whenever there is no
ambiguity on H. For a subset S ⊆ V , NH(S) (resp. NH [S]) is the union of the
open (resp. closed) neighbourhoods of the vertices in S. We use the notation [k]
to denote the set of integers 1, 2, . . . , k.

A connected graph with no cycles is called a tree. We denote by Kn, Cn and Pn,
the complete graph, the cycle and the path on n vertices, respectively. Also, we
denote by Kr,s, the complete bipartite for any r, s ≥ 1. A star Sk is the complete
bipartite graph K1,k. The complete bipartite graph K1,3 is also known as the claw.
A subset S ⊂ V (G) is called a clique of G if G[S] is isomorphic to a complete graph.
We denote by dG(u, v) the distance (i.e., the length of the shortest path) between
vertices u and v in G.

We say that G is F -free if no induced subgraph of G is isomorphic to F . The
degree of a vertex x, the maximum and the minimum degrees of a graph G are
denoted by dG(x), ∆(G) and δ(G), respectively. A leaf is a vertex with degree one
while an isolated vertex is a vertex with degree zero. An edge of a graph is said
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to be pendant if one of its vertices is a leaf vertex. If a vertex is adjacent to every
other vertex in G, then it is called a full vertex. In a graph G, a vertex v is called
simplicial if its neighbourhood NG(v) induces a complete graph in G.

A matching is a set of edges of G having pairwise no common endvertex. A
perfect matching of a graph is a matching in which every vertex of the graph is
incident to exactly one edge of the matching.

We start with some known results and observations on the well-coveredness of
square graphs.

Theorem 1. [2] In a graph G, an independent set S is maximum if and only if
every independent set disjoint from S can be matched into S.

Observation 1. The following properties can be easily obtained.

(i) The only paths whose squares are well-covered are P1, P2, P3, P6.
(ii) The only cycles whose squares are well-covered are C3, C4, . . . , C8, C10.

Since the square of a P4-free graph is a complete graph, the following holds.

Observation 2. The squares of P4-free graphs are well-covered.

For a graph G, a subset S ⊂ V (G) is called a dominating set of G if any vertex
which is not in S is adjacent to a vertex in S. A set S of vertices is said to dominate
another set T if every vertex in T is adjacent to at least one vertex in S.

Theorem 2. [1] Every connected P5-free graph has either a dominating clique or
a dominating P3.

By using Theorem 2, we shall show that the P5-free graphs whose squares are
well-covered are complete graphs.

Proposition 1. Let G be a P5-free graph. Then, G2 is well-covered if and only if
G2 is a complete graph.

Proof. The sufficiency is clear since complete graphs are well-covered. Thus, we
suppose that G2 is well-covered. Since G is P5-free, each pair of vertices in G is at
distance at most 3. By Theorem 2, we deduce that G has a vertex v which is at
distance at most 2 from each vertex of G, and so v is a full vertex in G2. It follows
that G2 is a complete graph since G2 is well-covered. □

3. The Square of Bipartite Graphs

In this section, we first consider the square of trees and provide a characterization
of those which are well-covered. Later, we extend this result to the bipartite graphs
that are well-covered.

For a tree T , we define a class C(T ) of trees as follows. Any member of the
class C(T ) is a tree obtained from T by replacing each vertex v with a star Sk for
k ≥ 2, and where if two vertices u, v ∈ V (T ) are adjacent, then we add precisely
one edge between two leaf vertices of the corresponding stars so that each star has
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a pendant edge in the resulting graph. If a graph G is in C(T ), we denote it by
G ∼= T (Sk1 , Sk2 , . . . , Skn) for some stars {Ski}i∈[n] and the tree T with n = |T |. For
instance, P6 = P2(S2, S2), Sk = P1(Sk), and the graph G depicted in Figure 1(b)
is G = T (S2, S4, S3, S3, S2) for the tree T depicted in Figure 1(a).

Let T stand for the family of all trees that belong to a class C(T ) for some tree
T .

v1
v2 v3

v4 v5

(a) T (b) G

Figure 1. A tree T and a member G of C(T ).

Notice that if G ∼= T (Sk1
, Sk2

, . . . , Skn
) for some stars {Ski

}i∈[n] and a tree T

with |T | = n, then we have α(G2) = |T | = n by taking the centres of all stars,
where the equality holds because each star corresponds to a clique in the square of
G.

Proposition 2. [7] If G is a well-covered graph and I is an independent set of
vertices in G, then G − NG[I] must also be well-covered. In particular, α(G) =
α(G−NG[S]) + |S|.

A vertex v of a graph G is called shedding if for every independent set S in
G − NG[v], there is a vertex u ∈ NG(v) so that S ∪ {u} is independent. In other
words, v is a shedding vertex if there is no independent set I ⊂ V (G−NG[v]) which
dominates NG(v).

Lemma 1. For a tree T , the square of every graph in C(T ) is well-covered.

Proof. Given a tree T with n vertices, suppose that G ∈ C(T ) and G ∼= T (Sk1 , Sk2 ,
. . . , Skn

) for some star {Ski
}i∈[n]. Let Hi be the subgraph induced by the vertices

of Ski
in G for i ∈ [n]. By the definition of G, each Hi has at least one vertex

that is a leaf in G. Thus the center of each star Ski is a shedding vertex in G, also
in G2. This implies that each maximal independent set of G2 contains a vertex of
Hi for each i ∈ [n]. Moreover, any maximal independent set of G2 cannot contain
two vertices of Hi for i ∈ [n] since each Hi induces a clique in G2. Hence G2 is a
well-covered graph. □

We next give a complete characterization of the trees whose squares are well-
covered.
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Theorem 3. The square of a tree is well-covered if and only if the tree belongs to
T .

Proof. The sufficiency has been proved in Lemma 1. So we assume that G is a tree,
and G2 is well-covered. The claim follows when G has at most three vertices, so
let |G| ≥ 4. Consider a leaf vertex v1 in G, let w1 be its unique neighbour. Set
G = G1, we similarly pick a leaf vertex vi in Gi = Gi−1−NGi−1

[wi−1] for 2 ≤ i ≤ p
so that Gp−NGp

[wp] is an edgeless graph where wi is the unique neighbour of vi in
the graph Gi for each i ∈ [p]. Obviously, each NG[wi] induces a star Ski

in G with
ki = dGi(wi) for i ∈ [p]. We write S = {v1, v2 . . . , vp}, T = {w1, w2, . . . , wp} and
H = Gp −NGp

[wp]. Clearly, S is an independent set in G2, also H is an edgeless

graph. On the other hand, V (H) does not need to be an independent set in G2

while V (H) is an independent set in G. That is, some pair of vertices in V (H)
may have a common neighbour in G − V (H). For u, v, w ∈ V (H), if each pair of
u, v, w has a common neighbour cj in G for j ∈ [3], then c1 = c2 = c3 since G has
no cycle. Also, in such a case, we deduce that the vertices u, v, w induce a clique
in G2. Therefore, V (H) induces a graph in G2 whose each component is a clique
or an isolated vertex.

Let R be a maximal subset of V (H) containing no pair having a common neigh-
bour in G. Thus, S ∪ R is a maximal independent set in G2, and it follows that
α(G2) = |R| + p since G2 is well-covered. In particular, at most |R| vertices of
H can be contained in any maximal independent set of G2 since V (H) induces a
graph in G2 whose each component is a clique or an isolated vertex. On the other
hand, let Hi be the subgraph induced by the vertices of NGi

[wi] in G for i ∈ [p].
Obviously, for each i ∈ [p], the graph Hi is a star of size at least 2, and so V (Hi)
induces a complete graph in G2. Therefore, any maximal independent set of G2

contains at most one vertex from each V (Hi) for i ∈ [p]. If there exists a maximal
independent set L of G2, and ℓ ∈ [p] such that L contains no vertex in V (Hℓ), then
we deduce that |L| < |S ∪R|, since any maximal independent set of G2 contains at
most |R| vertices of H and contains at most one vertex from each V (Hi) for i ∈ [p].
However, this contradicts that G2 is well-covered. Hence any maximal independent
set of G2 contains exactly one vertex from each Hi for i ∈ [p].

We now claim that T is an independent set in G2. Indeed, if there exist wi, wj ∈
T with i < j having a common neighbour z in G, then z is adjacent to all vertices of
V (Hi)∪V (Hj) in G2. Extending of z into a maximal independent set in G2 gives a
set that does not contain any vertex from Hj . This is a contradiction with the fact
that any maximal independent set of G2 contains exactly one vertex from each Hi

for i ∈ [p]. Thus, T is an independent set in G2. Moreover, T is a dominating set
in G2 since every vertex of H is adjacent to some vertices of NGj

(wj) for wj ∈ T

in G. In this manner, T is a maximal independent set in G2. Since G2 is well-
covered and |S| = |T |, we infer that H has no vertex, i.e., V (H) = ∅. Hence
α(G2) = |S| = |T | = p.
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Next, we claim that each wj ∈ T for j ∈ [p] is a shedding vertex in G. Assume
for a contradiction that there is a vertex wj ∈ T such that all vertices of NG(wj)
are dominated by an independent set A ⊂ V (G − NG[wj ]) in G. Suppose that A
is a minimal set with respect to this property. Then, the path between any pair of
vertices in A is of size 5 in G since the graph G is a tree. This implies that A is an
independent set in G2 as well. Clearly, A dominates wj in G2 due to dG2(a,wj) = 2
for every a ∈ A. The extension of A into a maximal independent set in G2 gives
a set that does not contain any vertex in V (Hj). This is a contradiction with the
fact that any maximal independent set of G2 contains exactly one vertex from each
Hi for i ∈ [p]. We then conclude that each wj for j ∈ [p] is a shedding vertex in G.

Finally we claim that for each i ∈ [p], Hi consists of at least three vertices.
Assume to the contrary that there exists i ∈ [p] such that NGi [wi] induces a K2 in
G, so NGi [wi] = {wi, vi}. Note that wi cannot be adjacent to a leaf vertex of a star
Hk for k ∈ [p] \ {i} since T is an independent set in G2. It then follows from the
connectivity of G that there exists a star Hj induced by NGj

[wj ] for j ∈ [p] \ {i}
such that vi is adjacent to a leaf vertex z of the star Hj . This implies that z is
adjacent to all vertices of V (Hi) ∪ V (Hj) in G2. Hence (T − {wi, wj}) ∪ {z} is a
maximal independent set in G2, a contradiction.

Consequently, we have a tree L such that G = L(Sk1
, . . . , Skp

) where Ski
= Hi

for i ∈ [p], and L is the graph on the vertex set T = {w1, w2, . . . , wp} such that two
vertices are adjacent in L if they are at distance 3 in G. Observe that the centres
of two stars Ski and Skj have no common neighbour in G since T is an independent

set in G2. Also, each Ski has a pendant edge in G since L is connected and each
wi is a shedding vertex in G. Hence, G belongs to C(L). □

We now turn our attention to the square of bipartite graphs. Let us first give a
useful result on well-covered bipartite graphs as follows.

Theorem 4. [12,13] Let G be a connected bipartite graph. Then G is well-covered
if and only if G has a perfect matching M such that for every edge uv ∈ M ,
NG[{u, v}] induces a complete bipartite graph.

Lemma 2. Let G be a connected bipartite graph with at least 2 vertices. If G and
G2 are well-covered, then G = Kr,r for r ≥ 1.

Proof. Suppose that G is a connected bipartite graph with a bipartition I1 and
I2 where |Ii| ≥ 1 for i ∈ {1, 2}. Assume that G and G2 are well-covered. By
Theorem 4, G has a perfect matching M , and clearly |I1| = |I2| = r for r ∈ N.
Let I1 = {x1, x2, . . . , xr}, I2 = {y1, y2, . . . , yr}, and M = {x1y1, x2y2, . . . , xryr}.
It follows from Theorem 4 that for every edge xiyi ∈ M , NG[{xi, yi}] induces a
complete bipartite graph.

Assume for a contradiction that G ̸= Kr,r. Then, there exist i, j ∈ [r] with
i ̸= j such that xiyj /∈ E(G) and xjyi ∈ E(G) since G is connected. We may
assume, without loss of generality, that i = 1 and j = 2. Recall that for every
edge xkyk ∈ M , NG[{xk, yk}] induces a complete bipartite graph. Therefore, every
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vertex in NG(x1) is adjacent to each vertex of NG(y1). Similarly, every vertex in
NG(y2) is adjacent to each vertex of NG(x2). This implies that NG(x1) is complete
to NG(y1), also NG(y2) is complete to NG(x2). Thus, NG(x1) ⊆ NG(x2) and
NG(y2) ⊆ NG(y1). Consequently, y1 is adjacent to all vertices of NG[{x1, y2}] in
the graph G2.

Consider the graph G2−NG2 [y1], clearly it is a well-covered graph by Proposition
2. Since y1 is adjacent to all vertices of NG[{x1, y2}] in the graph G2, we deduce
that none of x1, y2 is adjacent to a vertex of the graph G2 − NG2 [y1], i.e., they
are isolated vertices in G2 − NG2 [y1]. Then for a maximal independent set S in
G2−NG2 [y1], we observe that S∪{y1} and S∪{x1, y2} are two maximal independent
sets in G2 with different sizes, contradicting to the well-coveredness of G2. Hence,
G = Kr,r for r ≥ 1. □

The following is an immediate consequence of Lemma 2 together with the fact
that the square of Kr,r for r ∈ N is a complete graph.

Theorem 5. A bipartite graph G and its square are well-covered if and only if
every component of G is either K1 or Kr,r for some r ≥ 1

It was shown in [12] that a tree with at least two vertices is well-covered if and
only if it has a perfect matching consisting of pendant edges. Then we have the
following by Theorems 3 and 5.

Corollary 1. A tree T and its square are well-covered if and only if T is either K1

or K2.

4. Square-Stable and Well-Covered Graphs

Recall that a graph G is square-stable if it satisfies α(G) = α(G2). It was
shown in [8] that square-stable graphs are well-covered. However, the square of a
square-stable graph does not need to be well-covered; e.g., the square of P4 is not
well-covered.

In this section, we investigate the squares of square-stable graphs as well as the
squares of graphs satisfying α(G) = α(G2) + 1.

Theorem 6. [8] Any square-stable graph is well-covered.

In what follows, we state our first result in this section, which is the characteri-
zation of the square-stable graphs whose squares are well-covered.

Theorem 7. Let G be a square-stable graph. Then, G2 is well-covered if and only
if every component of G is a complete graph.

Proof. The sufficiency is clear since any complete graph is well-covered. Thus,
we suppose that G2 is well-covered. Note that every component of a well-covered
graph is also well-covered. In addition, every component of a square-stable graph
is also square-stable. Let H be a component of G. Then, H is square-stable,



ON THE WELL-COVEREDNESS OF SQUARE GRAPHS 497

and H2 is well-covered, so α(H) = α(H2) = k. By contradiction suppose that
H is not a complete graph. Then, there exist u, v, w ∈ V (H) such that u, v are
non-adjacent and u, v ∈ NH(w). Consider the graph H2 − NH2 [w], it is clearly
well-covered by Proposition 2, and α(H2 − NH2 [w]) = k − 1. Also, if S is an
independent set in H2 − NH2 [w], then S is independent in H − NH2 [w] as well.
Thus, α(H −NH2 [w]) ≥ k − 1. Notice that H −NH2 [w] has neither u, v nor their
neighbours in H. However, S ∪ {u, v} induces an independent set in H, and so
α(H) ≥ |S ∪ {u, v}| = k + 1, contradicting that α(H) = α(H2) = k. Hence, H is a
complete graph. □

A graphG is called almost well-covered, which is introduced in [5], if any maximal
independent set is of size α(G) or α(G)− 1.

Unlike square-stable graphs, we now consider the graphs satisfying α(G) =
α(G2) + 1.

Proposition 3. If G is a graph with α(G) = α(G2) + 1, then G is either well-
covered or almost well-covered.

Proof. Assume for a contradiction that G has a maximal independent set T such
that |T | ≤ α(G) − 2. Let α(G) = k, we pick a maximum independent set S in
G2, and so |S| = k − 1. Obviously, S is an independent set in G as well. Also,
dG(u, v) ≥ 3 for every u, v ∈ S.

First we assume that S is maximal in G. Then, every vertex of T − S has a
neighbour in S − T . Notice that a vertex of T − S cannot have more than one
neighbour in S − T since dG(u, v) ≥ 3 for every u, v ∈ S. We also note that
|S| ≥ |T | + 1, and let R := NG(T − S) ∩ S. It then follows that T ∪ (S − R) is a
maximal independent set including T in the graph G with |T ∪(S−R)| ≥ α(G)−1,
contradicting to the maximality of T .

We now assume that S is not maximal in G. Then, there exists a vertex u ∈
V (G)−S such that S∪{u} is an independent set in G. In fact, S∪{u} is a maximum
independent set in G since α(G) = α(G2) + 1. We write S′ := S ∪ {u}, and clearly
|S′| = α(G). Similarly as before, consider T and S′, if u ∈ T ∩ S′, then it turns
out the previous case. Thus, we further assume that u /∈ T , i.e., u ∈ S′ − T . Let
R = NG(T −S′)∩S′. It then follows that T −S′ has at most |T −S′|+1 neighbours
in S′ since dG(x, y) ≥ 3 for every x, y ∈ S′ − u. In particular |R| ≤ |T − S′| + 1.
We therefore deduce that T ∪ (S′−R) is a maximal independent set including T in
the graph G with |T ∪ (S′ −R)| ≥ α(G)− 1, contradicting to the maximality of T .
Consequently, G has no maximal independent set of size at most α(G) − 2. This
completes the proof. □

We next deal with the graphs satisfying α(G) = α(G2)+1 under the assumption
that G2 is well-covered. We manage to characterize those graphs in Theorem 8
with a series of lemmas.
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Lemma 3. Let G be a graph with α(G) = α(G2) + 1. If G2 is well-covered, then
G is claw-free.

Proof. Let G2 be a well-covered graph. Assume for a contradiction that G contains
a claw. Let {x, y, z} be an independent set in G, and suppose that w is adjacent to
all vertices of {x, y, z} in the graph G. Pick a maximal independent set S containing
w in G2, clearly S is also maximum in G2 due to the well-coveredness of G2. Thus
α(G2) = |S| and α(G) = |S|+1. On the other hand, G2−NG2 [w] is well-covered by
Proposition 2, and α(G2 −NG2 [w]) = |S| − 1. Notice that S−w is an independent
set in G−NG2 [w]. It then follows that (S −w)∪ {x, y, x} is independent set in G.
However, this contradicts that α(G) = α(G2) + 1. Hence, G is claw-free. □

Lemma 4. Let G be a graph with α(G) = α(G2) + 1. Suppose that G2 is well-
covered. If v is a non-simplicial vertex in G, then every component of G−NG2 [v]
is a complete graph.

Proof. Suppose that v is a non-simplicial vertex in G, and let α(G2) = k. Then
v has two non-adjacent neighbours x, y in G. Consider a maximum independent
set S containing v in G2, obviously it is an independent set in G as well. Also
α(G) = |S| + 1 = k + 1 since α(G) = α(G2) + 1. Note that S′ = (S − v) ∪ {x, y}
is an independent set in G. Since α(G) = α(G2) + 1, we then deduce that S′ is a
maximum independent set in G. Consider now the graph H = G−NG2 [v], if there
exists an independent set T larger than S − v in H, then T ∪ {x, y} would be an
independent set in G of size at least |S|+2 = α(G)+1, a contradiction. Therefore,
S − v is a maximum independent set in H, and so α(H) = |S| − 1 = k − 1.

Now we claim thatH2 is a well-covered graph. Obviously, S−v is an independent
set in H2, so α(H2) ≥ k − 1. If H2 has a maximal independent set T larger than
S− v, then T would be an independent set in H as well, which contradicts the fact
that S−v is a maximum independent set inH. Hence, α(H2) = |S|−1 = k−1. This
implies that H is square-stable, and so H is well-covered by Theorem 6. It remains
to show that H2 has no maximal independent set smaller than S−v. Assume to the
contrary that H2 has a maximal independent set T with |T | ≤ k− 2. Obviously, T
is not independent set in G2 −NG2 [v] since otherwise T ∪ {v} would be a maximal
independent set in G2, contradicting that G2 is well-covered with α(G2) = k = |S|.
This implies that some vertices of T are adjacent in G2 − NG2 [v] while they are
non-adjacent in H2. Then there exists p, q ∈ T and a vertex z ∈ NG2(v) which
is at distance 2 from v in G such that z is a common neighbour of p and q (see
Figure 2). However, we observe that w, z, p, q induce a claw in G where w is a
common neighbour of v and z in G, a contradiction by Lemma 3. Consequently, H
is square-stable, and H2 is well-covered. Hence, the result follows from Theorem 7.

□

We now ready to prove our second main result in this section.
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v

w

z

p

q

Figure 2. An illustration of the vertices v, w, z, p, q in the graph
G.

Theorem 8. Let G be a graph with α(G) = α(G2) + 1, and k ∈ N. Then, G2 is
well-covered if and only if for every non-simplicial vertex v, the graph G−NG2 [v]
consists of k complete graphs such that any pair of such components has no common
neighbour in G.

Proof. The sufficiency follows from Lemmas 3 and 4. So we assume that for every
non-simplicial vertex v, the graph G − NG2 [v] consists of k complete graphs such
that any two such components have no common neighbour in G. Let C1, C2, . . . , Ck

be the components of G−NG2 [v] for a non-simplicial vertex v in G where each Ci

is a complete graph. Let x, y be two non-adjacent neighbours of v in G, and let
ui be a vertex of Ci for i ∈ [k]. Note that dG(ui, uj) ≥ 3 for any pair ui, uj ∈ I
with i ̸= j since no pair of the components C1, C2, . . . , Ck has a common neighbour
in G. Consider the set {x, y, u1, u2, . . . , uk}, it is an independent set G. Thus,
α(G) ≥ k + 2. On the other hand, any maximal independent set containing v in
G2 can have at most one vertex from each Ci. Thus, such a maximal independent
set has at most k + 1 vertices, and so α(G2) ≤ k + 1. By combining α(G) ≥ k + 2
and α(G2) ≤ k + 1 together with the fact that α(G) = α(G2) + 1, we deduce
that α(G) = k + 2 = α(G2) + 1. This also implies that {x, y, u1, u2, . . . , uk} is a
maximum independent set in G.

It only remains to show that G2 has no maximal independent set of size less
than k + 1. Assume to the contrary that there exists such a maximal independent
set I of size r in G2 with r ≤ k. Clearly, dG(u, v) ≥ 3 for each pair u, v ∈ I. If
a vertex v ∈ I is a non-simplicial vertex, then G − NG2 [v] consists of k complete
graphs. Also each vertex in I − v belongs to a component of G − NG2 [v]. Since
|I − v| = r − 1 < k, the set I does not contain any vertex of some component of
G−NG2 [v], a contradiction with the maximality of I in G2. We further suppose that
all vertices of I are simplicial in G. Clearly I is an independent set in G. However,
it is not maximal in G by Proposition 3, since α(G) = k+2 ≥ |S|+2. Then, there
exists an independent set T ⊂ V (G)− I such that I ∪ T is a maximal independent
set in G. Let u be a vertex in T . Recall that I is a maximal independent set in G2,
and so u is at distance 2 from some vertices of I. It follows that there exist w ∈ I
and z ∈ V (G)− (I ∪T ) such that z is a common neighbour of u and w in G, and so
z is a non-simplicial vertex in G. By assumption, the graph G−NG2 [z] consists of k
complete graphs such that any two of such components have no common neighbour
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in G. Similarly as before, let D1, D2, . . . , Dk be the components of G − NG2 [z]
where each Di is a complete graph. Let ui be a vertex of Di for i ∈ [k].

Notice that every vertex in I − w is at distance at least 2 from z in G since
I is a maximal independent set in G2. By the same reason, for a vertex x ∈
(I − w) ∩ NG2 [z], we have dG(x, s) ≥ 3 for every s ∈ I. We then deduce that
x /∈ NG[z]. Also, x /∈ NG(u) since S ∪ T is an independent set in G. Thus, if
there exists a vertex x ∈ (I − w) ∩ NG2 [z] such that x is not adjacent to any Di,
then this gives a contradiction since the set {u,w, x, u1, u2, . . . , uk} would be an
independent set in G of size α(G) + 1. Thus, every vertex x ∈ (I − w) ∩ NG2 [z]
is adjacent to a Di. However, if there is such a vertex x, then x would have two
non-adjacent neighbours; one is from NG(z), and the other is from a Ci for i ∈ [k],
it contradicts that all vertices of I are simplicial in G. Consequently, we deduce
that (I − w) ∩NG2 [z] = ∅. Thus every vertex of I − w comes from the Di’s. But,
this again contradicts that I is maximal in G since |I −w| = r− 1 < k. Hence, G2

is well-covered. □

5. Conclusion

In this paper, we studied the graphs whose squares are well-covered. After we
introduced some basic observations on those graphs, we exhibited an infinite family
T of trees. We provided a characterization of the trees whose square well-covered
which is based on the family T . Also, we extended this result into bipartite graphs
that are well-covered.

In the second part, we were interested in the graphs satisfying α(G) = α(G2)+k
for k ∈ {0, 1} where the case α(G) = α(G2) is also known as the square-stable
graphs. Levit and Mandrescu showed in [8] that every square-stable graph is well-
covered, and well-covered trees are exactly the square-stable trees. By using this
result, we first proved that for the case k = 0, G2 is well-covered if and only if
every component of G is a complete graph. Moreover, the graphs for the case k = 1
have been characterized. In fact, we showed that if G2 is well-covered, and v is
a non-simplicial vertex in G, then every component of G − NG2 [v] is a complete
graph. We conjecture that indeed G−NG2 [v] consists of a unique complete graph.
That is, we believe that α(G2) = 2 when G2 is a connected well-covered graph with
α(G) = α(G2) + 1.
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