

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

152

Adaptive Large Neighborhood Search Heuristic for Mixed Blocking Flowshop

Scheduling Problem

Damla Kizilay,

Zeynel Abidin Çil*

Izmir Democracy University, Department of Industrial Engineering, Izmir, Turkey

damla.kizilay@idu.edu.tr , *zabidin.cil@idu.edu.tr
Received date: 07.04.2021, Accepted date: 06.05.2021

Abstract
Traditional permutation flowshop scheduling problem (PFSP), which has unlimited buffer space, has been interested

over the fifty years by several authors to account for many industrial applications. However, some industries, such as the

aerospace industry and other sectors processing industrial waste, have different blocking conditions due to the limited or

lack of buffer area between their machines. In this study, a mixture of different blocking types is considered to solve PFSP
with the total flow time criterion regarding several blocking types. A constraint programming model is proposed to solve

the PFSP with mixed blocking constraints (MBFSP). Due to the problem's NP-hard nature of the problem, an adaptive

large neighborhood search heuristic is proposed to solve the large size instances. The results of the proposed algorithm

are very competitive.

Keywords: Adaptive large neighborhood search, constraint programming, flowshop scheduling

Karışık Blokalmalı Akış Tipi Çizelgeleme Problemi İçin Uyarlanabilir Büyük

Komşuluk Arama Sezgiseli

Öz

Sınırsız tampon alanına sahip geleneksel permütasyon akış tipi çizelgeleme problemi (PFSP), pek çok endüstriyel
uygulaması olduğundan dolayı yaklaşık elli yıldır yazarlar tarafından araştırılan bir konudur. Bununla birlikte, havacılık

endüstrisi ve endüstriyel atıkları işleyen bazı endüstriler, makineleri arasında sınırlı veya eksik tampon alanı olması

nedeniyle farklı bloklama koşullarına sahiptir. Bu çalışmada, farklı bloklama türlerine sahip olan bir PFSP'yi toplam akış

süresini dikkate alarak çözecektir. PFSP'yi karışık bloklama kısıtları (MBFSP) ile çözmek için bir kısıt programlama

modeli önerilmiştir. Problemin NP-zor doğası nedeniyle, büyük boyutlu problemleri çözmek için uyarlanabilir bir büyük

komşuluk arama sezgisel yöntemi önerilmektedir. Önerilen algoritmanın sonuçları çok rekabetçidir.

Anahtar Kelimeler: Akış tipi çizelgeleme, kısıt programlama, uyarlanabilir büyük komşuluk araması

INTRODUCTION

Traditional permutation flowshop scheduling

problem (PFSP) was first proposed by Johnson

(1954) and then has been interested in several authors
(Blazewicz et al., 2007; Pan & Ruiz, 2012; Ruiz-

Torres et al., 2011; Vallada & Ruiz, 2010). In PFSP,

a set of jobs is processed through a set of machines

following the same order and have unlimited buffer
space. Then, a classical blocking constraint was

added to PFSP by T. Sawik (1995) and T. J. Sawik

(1993). Then, the problem turns to be a blocking
permutation flowshop scheduling problem (BFSP)

(Jozef Grabowski & Pempera, 2000; N. G. Hall &

Sriskandarajah, 1996; Kizilay et al., 2018; Tasgetiren

et al., 2015). In BFSP, a buffer area between the

machines does not exist; therefore, a job must stay on
the machine until the upstream machines become

available to process it. Thus, the currently used

machine is blocked by the awaiting task and cannot

process the next job until the current job leaves the
machine. This classical blocking variant is denoted as

RSb (release when start blocking). BFSP is proven to

be NP-Hard if the number of machines is greater than
two (N. G. Hall & Sriskandarajah, 1996). Therefore,

several heuristics and metaheuristic algorithms are

https://orcid.org/0000-0002-6561-8819
https://orcid.org/0000-0002-7270-9321

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

153

employed to solve BFSP, such as a genetic algorithm

(GA) (Caraffa et al., 2001), tabu search (TS)

algorithm (Józef Grabowski & Pempera, 2007),

iterated greedy (IG) algorithm (Tasgetiren et al.,
2017), discrete differential evolution (DDE)

algorithm (Zhang et al., 2018) hybrid DDE algorithm

(HDDE) (Qian et al., 2009), particle swarm
optimization (PSO). Besides those heuristic

algorithms, many constructive heuristics and local

search procedures are also proposed for BFSP. Those

algorithms include profile fitting (PF) heuristic
(Mccormick et al., 1989), improvement heuristic (N.

Hall & Sriskandarajah, 2000), and Nawaz, Enscore,

Ham (NEH) (Nawaz et al., 1983) -based heuristics
(Nawaz et al., 1983; Newton et al., 2019; Riahi et al.,

2019; D P Ronconi & Armentano, 2001).

A new blocking constraint denoted as RCb,
which means release when completing blocking, was

introduced by Martinez et al. (2006). This type of

blocking constraint states that a job blocks a machine

until its operation on the next machine completes and
the job leaves the next machine. In other words, a job

occupies two consecutive machines at the same time.

This kind of blocking constraint occurs while
manufacturing the metallic parts for the aerospace

industry and processing the industrial waste. Another

new blocking constraint, RCb* (release when
complete blocking), which is a variant of RCb, was

proposed by Wajdi Trabelsi et al. (2010). It is similar

to the RCb constraint, but this time a job blocks a

machine until its operation on the next machine
completes, regardless of releasing the next machine.

In this study, regarding the aforementioned

blocking types, a mixture of them is considered to
solve PFSP with the total flowtime criterion. The

considered problem is denoted as 𝐹𝑚/
𝑚𝑖𝑥𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔/ ∑ 𝐹 according to Graham et al.

(1979). The PFSP with mixed blocking constraints
(MBFSP) was first considered by W Trabelsi et al.

(2011), and its linear mathematical model with

complexity analysis is provided. The model is tested
on instances that have up to 12 jobs and 100

machines, and the authors conclude that heuristics or

metaheuristics should be developed for larger-size
problems. Then, the same authors employed the NEH

heuristic and proposed Trabelsi, Sauvey, and Sauer

(TSS) heuristic as well as GA metaheuristic to solve

MBFSP with up to 12 jobs and 100 machines (Wajdi
Trabelsi et al., 2012). A constructive heuristic to

minimize the makespan in MBFSP was proposed by

Khorramizadeh & Riahi (2015), and the algorithm

was tested on the well-known instances of Taillard's

(Taillard, 1993) that includes large-size problems up

to 200 jobs and 20 machines. In both studies, the
authors used the same repetitive sequence of mixed

blocking types, which is (RCb, RSb, RCb*, Wb), for

the successive machines. However, in 2017, the
authors in Riahi et al. (2017) stated the following

drawback of this blocking sequence: The RSb

constraint applied to a machine, which is placed

immediately after another machine running under the
RCb constraint, cannot make any difference in the

makespan. Therefore, the authors used a new

blocking sequence generated with equal probability
for each machine. In the generation procedure, they

paid attention not to have RSb type of machine

immediately after RCb type of machine, and they
stated that the last machine always has Wb type. The

authors applied a scatter search for MBFSP to

minimize the makespan. Besides Taillard's instances,

they used VRF large benchmark instances proposed
by Vallada et al. (2015). A local search based on the

characteristics of different types of blockings was

proposed to solve MBFSP with the makespan
criterion (Riahi et al., 2019). Most recently, a multi-

temperature simulated annealing algorithm is

proposed to solve the MBFSP with the makespan
criterion (Lin et al., 2021). For the total completion

time criterion, MBFSP is considered by Cheng et al.

(2020). The authors provide results for Taillard's

instances.
Several heuristic algorithms were applied to

solve the MBFSP, such as GA, SA, NEH-based

heuristics, and constructive heuristics. However,
adaptive neighborhood-based search procedures have

not been applied to MBFSP before. Neighborhood

search-based methods have great potential as

competitive approaches for real-life scale problems.
Therefore, motivated by the challenge of

computational time and the problem size, an adaptive

large neighborhood search (ALNS) heuristic is
proposed to solve the MBFSP by minimizing the total

flowtime criterion.

The main contributions in this paper are listed as
follows.

• A constraint programming (CP) model to solve the

MBFSP problem, to the best of the authors'

knowledge, for the first time in literature.

• ALNS heuristic with four different remove and two

different insert strategies as well as two different

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

154

swap operations are employed. Based on an

adaptive structure, the best strategy for each

instance is determined by the algorithm to find the

best solution.

• To the best of the authors' knowledge, solutions for
the small-size VRF benchmark instance sets

(Vallada et al., 2015) are proposed for the first time

in literature.
The remainder of the paper is organized as

follows. The problem definition and the formulation

of the CP model for the MBFSP are presented in
Section 2. The proposed adaptive large neighborhood

search heuristic is described in Section 3. Section 4

presents the results of the computational experiments

for all presented models and algorithms. Finally,
Section 5 provides conclusions and future work.

PROBLEM DEFINITION AND

FORMULATION

Formulation of MBFSP has a set of jobs that are

processed through a set of machines following the

same order. Both machines and jobs are available at
time zero, and each machine can handle one job at a

time. Similarly, each job can be processed by at most

one machine at a time. In MBFSP, there are several
blocking types, and each machine can have different

blocking constraints. Those types can be classified

under four definitions: Without blocking (Wb),
release when starting blocking (RSb), and two types

of release when completing blocking (RCb, RCb*).

In the formulation of MBFSP, different types of

blocking constraints of the machines are regarded to
minimize the total flow time of the jobs. In the light

of this objective, a constraint programming (CP)

model is developed. The sets and the parameters used
by the model are presented in Table 1.

The model has a set of jobs and machines, as

well as processing times of each job on each machine.
Those sets and parameters are standard in all

flowshop problems. Different than the other

problems, MBFSP has a blocking type for each

machine represented by 𝑏𝑙𝑘 parameter. In 𝑏𝑙𝑘, the

index 𝑙 takes values like 0, 1, 2, and 3, and those

integer numbers represent Wb, RSb, RCb*, and RCb

constraints, respectively. For example, 𝑏2,1 = 1

means that machine 1 applies a blocking type of

RCb*. The following sub-section explains the CP

model.

Constraint Programming Model

The CP, which is a declarative method, depends

on the constraints. It uses constraints to infer new

constraints in order to solve a problem. Rather than

the solution methodology, the problem to be solved is
more important. It has several advantages, such as

having a compact model compared to MILP and

adaptable to meet new requirements compared to
typical procedural programs. Also, using the logical

rules and the constraints, it becomes easier to prove

the correctness of the models. The expanded search

space and the advanced relaxation techniques of the
CP approaches make it promising, but the

applications of the CP are limited. Although, recent

works about scheduling in real scenarios are still

Table 1 Problem Notation

Sets

𝑀 Set of machines {1, 2, … , 𝑚}

𝑁 Set of jobs {1, 2, … , 𝑛}

Parameters

𝑝𝑖𝑘 Processing time of job 𝑖 on machine 𝑘

𝑏𝑙𝑘 {
1, if blocking type 𝑙 is applied at machine 𝑘
0, otherwise

Table 2 CP Decision Variables

𝑥𝑖𝑘
𝐶𝑃

 Interval variable for job 𝑖, processed by

machine 𝑘 with duration 𝑝𝑖𝑘

𝑧𝑖 Interval variable for job 𝑖

𝑠𝑒𝑞𝑘
Sequence variable for machine 𝑘, which is

defined over a set of interval variables 𝑥𝑖𝑘
𝐶𝑃

concentrating on MILP as a tool of choice (Fuchigami

& Rangel, 2018), even if CP seems better suited for

scheduling problems, especially for large-scale
instances (Ku & Beck, 2016).

CP model is developed for MBFSP for the first

time in literature. The decision variables include
interval and sequence variables and are defined in

Table 2. The CP model has two sets of interval

variables, and both have a start, a duration, and an
end. To define the domain of each job and to represent

the process of each job on each machine, two

different interval variables are introduced. Since each

machine processes all the jobs, an interval variable of
a job on any machine is not an optional variable. In

other words, the interval variable always presents in

the solution. Also, sequence variables are defined for
each machine to represent the set of interval variables.

Therefore, the jobs are assigned to the machines

respecting their processing times in the definition

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

155

step. The objective function and the constraints of the

CP model are given and explained as follows.

Objective Function

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑛𝑑(𝑥𝑖𝑚
𝐶𝑃)𝑖∈𝑁 (1)

Constraints

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑥𝑖,𝑘−1
𝐶𝑃 , 𝑥𝑖𝑘

𝐶𝑃)

∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀|𝑘 > 1 (2)

(𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘 , 𝑥𝑖,𝑘
𝐶𝑃)𝑏1𝑘) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+1, 𝑥𝑖,𝑘+1
𝐶𝑃)𝑏2𝑘) +

 (𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+1, 𝑥𝑖,𝑘+1
𝐶𝑃)𝑏3𝑘) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+2, 𝑥𝑖,𝑘+2
𝐶𝑃)𝑏4𝑘) ≤

𝑠𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝑖,𝑘
𝐶𝑃) ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀|𝑘 < 𝑚 − 1 (3)

(𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚−1, 𝑥𝑖,𝑚−1
𝐶𝑃)𝑏1,𝑚−1) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚, 𝑥𝑖𝑚
𝐶𝑃)𝑏2,𝑚−1) +

 (𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚 , 𝑥𝑖𝑚
𝐶𝑃)𝑏3,𝑚−1) ≤

𝑠𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝑖,𝑚−1
𝐶𝑃) ∀𝑖 ∈ 𝑁 (4)

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑠𝑘) ∀𝑘 ∈ 𝑀 (5)

𝑆𝑎𝑚𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑠1, 𝑠𝑘) ∀𝑘 ∈ 𝑀|𝑘 > 1 (6)

In the objective function (1), the CP model

minimizes total completion time by calculating the

total end time of the jobs on the last machine 𝑚.
Constraint set (2) ensures that each job is processed

through the machines respectively. First, their process

should be completed on the first machine, and then
the job can proceed to the next machine. Constraint

sets (3) indicate the RSb, RCb*, and RCb type of

blocking constraints on the corresponding machines.

The first part of the constraint set is employed when
the machine does not have any blocking constraints.

Therefore, when the operation of the previous job is

completed, the next job can start its operation. If the
machine works as RSb, then the second part of

Constraint set (3) ensures that a job cannot start its

process unless the preceding job starts its operation
on the successive machine. The third part of the same

constraint provides that a job can start its operation on

the machine after its preceding job completes its

operation on the succeeding machine. This situation
is valid for the machines that work with RCb* type.

The last part of the constraint set is similar to the

previous part, but it ensures that the preceding job
leaves the succeeding machine. Therefore, in order to

provide RCb type of constraint, the start of a job

interval on machine 𝑘 is related to the start of the

preceding job interval on machine 𝑘 + 2. Constraint
set (4) is warren for the last machine to ensure the

different blocking constraints on the last machine.

Constraint set (5) states that the job interval variables

on each machine should not be overlapped. In other

words, each machine can process one job at a time.

Finally, Constraint set (6) provides that the

processing order of the jobs on each machine must be
the same.

ADAPTIVE HEURISTIC APPROACH

 The ALNS heuristic is proposed as an extension
of the Large Neighborhood Search (LNS) heuristic,

which is first suggested in Shaw (1998). The ALNS

heuristic uses the same logic with LNS but employs

the remove and insertion methods adaptively. The
removal and insertion methods are chosen according

to the algorithm's performance during the same

search. This study employs the ALNS heuristic,
developed by Pisinger & Ropke (2007) for the vehicle

routing problem. The ALNS heuristic is modified and

applied to the scheduling problem in the thesis of
Kizilay (2018).

Initialization

ALNS heuristic is a population-based algorithm
and includes several neighboring strategies in an

adaptive manner. In this study, the initial sequence of

the jobs is generated randomly for each individual in
the population, except the four of them. Those four

sequences are generated according to the following

rules. For all the jobs:

• R1: Increasing order of total process times on all the
machines.

• R2: Decreasing order of total process times on all

the machines.

• R3: Increasing order of total process times on the

machines with RCb or RCb* blocking types plus the

process times on the succeeding machine.

• R4: Decreasing order of total process times on the
machines with RCb or RCb* blocking types plus the

process times on the succeeding machine.

The first rule is based on the shortest processing time
(SPT), while the second rule is based on the longest

processing time (LPT). The problem-related

properties inspire the remaining rules. Once the initial
sequence is generated, the NEH heuristic is applied to

the individual as a constructive heuristic to start with

a good solution, then ALNS is applied to this

individual. In our problem, NEH is applied to an
individual after generating the initial sequence.

During ALNS, several removals, insertion, and

swap methods are employed in the same search.
ALNS is applied many times to an individual to

determine the weights of the removal, insert and swap

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

156

move types and thus provides an adaptive search

scheme. If the new solution obtained by ALNS is

better than the current solution, it replaces the current

solution, and the weights of the remove-insert-swap
methods are updated accordingly. Otherwise, an SA-

based acceptance criterion is employed to accept the

new solution to escape local minima. The following
procedure presents the general solution scheme.

General Solution Procedure

for i=1 to NP (number of population)

𝜋𝑖: Sequence created respecting Ri|i={1,2,3,4}

𝜋𝑖: Random sequence of population i|i>4

𝜋𝑖 = 𝑁𝐸𝐻(𝜋i)

while not Termination Criterion

𝜋𝑖 = ALNS(𝜋i)

if (𝑓(𝜋𝑖) < 𝑓(𝜋best)) update 𝜋best

end while

end for

Neighborhood Strategies

The neighborhood strategies include three

different removal, four different insertions, and two

different swap strategies. ALNS chooses these

strategies in an iteration respecting their weights.
First, the algorithm selects a swap or removal

method applying a roulette wheel selection. If ALNS

chooses one of the swap moves concerning their
weights, applies it to the current individual, and

obtains the new solution. On the other hand, if ALNS

selects a removal strategy, it disrupts the current
solution by removing some jobs. Hence, ALNS has to

choose one of the four insertion strategies to construct

a new solution. The insertion strategy selection

depends on the applied removal method and a roulette
wheel selection considering insertion weights.

Random removal

The random removal algorithm randomly selects

𝑞 jobs from the current sequence 𝜋 and removes these

jobs. The predetermined removal size of the ALNS

specifies the number of selected jobs (𝑞).

Random block removal

Random block removal selects 𝑞 consecutive

jobs (a block of jobs) randomly and removes the

chosen block from the current sequence 𝜋. This
procedure is inspired by the block insertion heuristic

(BIH) in Tasgetiren et al. (2016).

Blocking-idle time removal

The blocking-idle time removal algorithm

chooses 𝑞 jobs that cause the most considerable

blocking or idle time on the machines and removes

them from the current sequence 𝜋.

One of the removal strategies is applied, and the

removed jobs are collected in a sequence 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑, and
the remaining partial sequence is represented by

𝜋partial. After removing jobs from the current

sequence, The ALNS applies one of the insertion

strategies to insert the jobs included in 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑 into

the partial sequence 𝜋partial. If ALNS uses a random

block removal, then it should apply random block

insertion or best block insertion regarding the
weights. If ALNS employs other removals, then it

should apply random or best insertion.

Random insertion

Random insertion algorithm randomly selects 𝑞

positions in partial sequence 𝜋partial and inserts the

removed jobs collected in 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑 to the selected

positions, one by one.
Best insertion

Best insertion chooses the jobs one by one from

the set of 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑. It searches all possible positions of

partial sequence 𝜋partial to insert the chosen job into the
best position in terms of the objective function. The

algorithm applies the same procedure until all the jobs

are selected from the removed sequence and inserted
into the partial sequence.

Random block insertion

Random block insertion randomly chooses a

location in partial sequence 𝜋partial and inserts

removed a block of jobs to the chosen location.

Best Block Insertion

The best block insertion takes all removed jobs

from 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑 as a block and searches all possible

positions at partial sequence 𝜋partial to insert the block.

Swap move
In swap move, two jobs are selected randomly

from sequence 𝜋, and their positions are exchanged.

Iterative Swap Move

Iterative swap move randomly chooses and

exchanges two jobs in the sequence 𝜋, 𝑞 times, which

is equal to the remove size.

Acceptance Criterion and the Adaptive Weight

Adjustment Procedure

In the acceptance criterion step, if a new

sequence has a smaller objective function value than
the current sequence, the new is accepted as the

current sequence. If the new sequence is worse than

the current sequence, then a simple SA type of
acceptance criterion is used with constant

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

157

temperature (Osman & Potts, 1989) to determine if

the new worse sequence is accepted or not. The

following algorithm shows the general procedure of

the ALNS heuristic with the SA acceptance criterion.

ALNS Procedure

𝜃j: how many times the strategy j is selected: j={r,s,i}

𝑤j: weight of the strategy j in the roulette wheel.

while not Termination Criterion

Choose a removal 𝑟 or swap s strategy by roulette

wheel selection

If removal strategy 𝑟

𝜋partial = Apply chosen removal strategy 𝑟 to current

sequence 𝜋

𝜃𝑟 = 𝜃𝑟 + 1

Choose an insertion strategy 𝑖 by roulette wheel
selection w.r.t. applied removal (block or not)

𝜋𝑛𝑒𝑤 = Apply the insertion strategy 𝑖 to partial

sequence 𝜋partial

𝜃𝑖 = 𝜃𝑖 + 1
Else if swap strategy s

𝜋𝑛𝑒𝑤 = Apply chosen swap strategy s to current

sequence 𝜋

𝜃s = 𝜃s + 1
end if

If (𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋))

𝜋 = 𝜋𝑛𝑒𝑤

If (𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋𝑏𝑒𝑠𝑡))

𝜋𝑏𝑒𝑠𝑡 = 𝜋𝑛𝑒𝑤

𝜀j = 𝜀j + 𝜎1

Else

𝜀j = 𝜀j + 𝜎2

end if

end if

𝜌 = 𝑒−(𝑓(𝜋𝑛𝑒𝑤)−𝑓(𝜋))/𝑇

Generate a random number 𝑎 ∈ [0.1]

If (𝑎 < 𝜌)

𝜋 = 𝜋𝑛𝑒𝑤

𝜀j = 𝜀j + 𝜎3

end if

Update Procedure

𝑤j = 𝑤j (1 − 𝑟𝑎𝑡𝑒) + (𝑟𝑎𝑡𝑒)𝜀j/𝜃j

end while

In the procedure, 𝜋, 𝜋𝑛𝑒𝑤, and 𝜋𝑏𝑒𝑠𝑡 represent the

current, new, and the best schedule at each iteration,

where 𝑓(𝜋), 𝑓(𝜋𝑛𝑒𝑤), and 𝑓(𝜋𝑏𝑒𝑠𝑡) denotes their total
flow time values, respectively. The algorithm always

accepts the new solution as the incumbent if 𝑓(𝜋𝑛𝑒𝑤)

< 𝑓(𝜋), and always accepts the new solution as the

global best if 𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋𝑏𝑒𝑠𝑡). It also accepts the

new solution as the incumbent solution with

probability 𝑒−(𝑓(𝜋𝑛𝑒𝑤)−𝑓(𝜋))/𝑇 to provide

diversification by giving a chance to the worse

schedules.

The ALNS heuristic updates the weights of the
removal, insertion, and swap methods in each

iteration by considering the weights of the previous

iteration and the current score information, as shown

in the following equation: 𝑤j = 𝑤j(1−𝑟𝑎𝑡𝑒) +

𝜀j/𝜃j(𝑟𝑎𝑡𝑒). In this equation, 𝑤j represents the weight

of applied strategy j at each iteration, and 𝑟𝑎𝑡𝑒

represents the roulette wheel rate of using the
previous weight and the current score information,

where 0 ≤ 𝑟𝑎𝑡𝑒 ≤ 1. The parameter 𝜀j represents the

score of strategy j. The score is increased by 𝜎1 if the

used strategy finds the new global best solution, by 𝜎2

if it finds the new current best solution, or by 𝜎3 if the

solution is worse than the current but accepted. The

parameter 𝜃j represents the number of times that

strategy j is used. Parameter 𝜃j gives a chance to the

other algorithms which are not used before.

RESULTS AND DISCUSSION

The performance of the ALNS algorithm is

compared with the mixed-integer linear programming
(MILP) and CP models. The MILP model for MBFSP

is presented in Riahi et al. (2019). We used a similar

model but eliminated a decision variable representing
the start time of the jobs on the machines to simplify

the model. Therefore, our proposed MILP model

employs the same calculations by only considering
the completion time of the jobs on the machines.

The MILP and CP models for the MBFSP were

coded in OPL and run on the IBM ILOG CPLEX

12.10 software suite, while the ALNS algorithm was
coded in C++ and run on the Eclipse IDE 4.15.0. All

results were obtained on an Intel Core i7 with 8 GB

RAM. The benchmark suite of the VRF data set
(Vallada et al., 2015) is used to measure the

performance of the MILP, CP models, and ALNS

heuristic. Blocking sequences of the machines are

generated by Riahi et al. (2017) for only the VRF
large instance sets. The authors give each blocking

type an equal probability for each machine but avoid

scenarios where one machine running under RSb
follows another machine running under RCb.

According to the authors, this avoided scenario

cannot make any difference in the makespan (Riahi et

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

158

al., 2017). When RCb is applied to a machine 𝑘, the

RSb condition is always satisfied by machine 𝑘 + 1,

automatically. Therefore, this scenario also does not

make any difference for the total flowtime criterion.
Moreover, because the last machine does not have

any following machine, the last machine always

operates under Wb constraint. Respecting all those
rules, we generated the blocking types of each

machine for the VRF-small instances.s

The VRF instances have 240 small instances

with variable 𝑛 𝑥 𝑚 combinations. There are 𝑛 ∈
{20,30,40,50,60} jobs each with 𝑚 ∈ {5,10,15,20}

machines. Each 𝑛 𝑥 𝑚 combination has ten different

instances. MILP and CP models are employed for
only small-sized instances due to the computational

complexity of the problem. They were given 3600

seconds time limit.

The VRF large instances also have 240 test cases

with variable 𝑛 𝑥 𝑚 combinations. There are 𝑛 ∈
{100,200,300,400,500,600,700,800} jobs each

with 𝑚 ∈ {20,40,60} machines. Each 𝑛 𝑥 𝑚
combination has ten different instances. In order to

obtain the solutions for the large data sets, the

developed ALNS heuristic is employed, and its run

time is limited to 𝜏 × 𝑛 × 𝑚 milliseconds for each
instance. In order to see the effects of the time limit
(𝜏) and the remove size (𝑞), we obtained all the

results for four different variants of ALNS:

• ALNS1: ALNS with constant remove size, where

𝑞 = 3, and 𝜏 = 30

• ALNS2: ALNS with variable remove size, where

𝑞 = 𝑛 ∗ 0.10, and 𝜏 = 30

• ALNS3: ALNS with constant remove size, where

𝑞 = 3, and 𝜏 = 60

• ALNS4: ALNS with variable remove size, where

𝑞 = 𝑛 ∗ 0.10, and 𝜏 = 60
All the ALNS algorithms applied five

replications for each instance. The rest of the

parameters for the algorithm is given in Table 3.
This study presents all the results of the models

and the algorithms by calculating their relative

percentage deviations (RPD): 𝑅𝑃𝐷 = 100 ∗
(𝐹𝑠𝑜𝑚𝑒 − 𝐹𝑏𝑒𝑠𝑡)/𝐹𝑏𝑒𝑠𝑡, where 𝐹𝑠𝑜𝑚𝑒 is the obtained
objective value of the models or the algorithms and

𝐹𝑏𝑒𝑠𝑡 is the minimum objective among all the models

and the algorithms.
The computational results section is divided into two

parts. In the first part, the proposed two versions of

the ALNS algorithms: ALNS1 and ALNS2, the CP

approach, and the MILP, are compared for the small-

size problems. Second, the results of four versions of

the ALNS method are discussed in terms of solution
quality for large-size problems.

Table 4 demonstrates the summary result of all

the obtained solutions of the CP, MILP models, and
ALNS algorithms. MILP can reach an optimal

solution faster than the CP model for small-size

problems. The MILP model provides 82 optimal

solutions, while the CP, ALNS1, and ALNS2 ensure
14, 72, and 71 optimal solutions, respectively, out of

240 solutions. However, the ALNS algorithms

outperform the CP and MILP models in terms of the
number of best solutions, average relative percentage

deviation (ARPD), average objective value, and

computational time. The heuristic algorithms find
nearly twice the number of best results than the MILP

and the CP model for the small-size problems.

Furthermore, the ARPDs of the heuristic

algorithms are approximately 0.1% for the problem.
The detail of the RPD result of each technique is

given in Figure 1. The RPD values of the CP and

MILP model become higher when the problem size
increases, but the proposed heuristic algorithms are

not affected. In other words, it is clearly seen that the

heuristic algorithms show respectable performance
for small-size problems.

Table 5 summarizes the results of ALNS

algorithms for the large-size problems. The four

versions of the ALNS algorithms are reported in this
table. According to Table 5, ALNS-4 dominates other

versions in terms of # of best, ARPD, Max RPD, and

average objective values for all problems.
Furthermore, it is clearly seen that constant removal

size (𝑞 = 3) indicates better performance. Also,

increasing the time limit helps to find a better

solution.
Table 3 Parameters of the ALNS algorithms

Psize=20 The population size of the algorithms

rate=0.2 Roulette wheel rate
σ1=10 Global best solution score

σ2=7 Current best solution score

σ3=3 SA type of acceptance score

T=100 Temperature value of SA

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

159

Table 4. Comparisons of the algorithms for the small-size problem

Figure 1 RPD values of each technique for the small-size problems

The detailed RPD values of each version are

shown in Figure 2. It is illustrated that ALNS4
provides an obviously small RPD value for each

problem. Significantly, the difference of RPD value

between the ALNS4 and others is larger when the

problem sizes are relatively small. Overall, the
proposed ALNS algorithm can provide an effective

solution for the considered problem.

Table 5 Comparisons of the algorithms for the large-size problems

 # of Best ARPD Max RPD Avg. Obj.

ALNS1 29 0.24 1.14 15777993.2

ALNS2 47 0.15 0.75 15775594.1

ALNS3 36 0.19 0.94 15776272.3
ALNS4 128 0.05 0.37 15768970.5

Methods
of

Optimal
of Best ARPD Avg. Obj. Avg. CPU (s) Max. CPU (s)

CP 14 48 1.4 92979.4 3515 3600

MILP 82 95 0.7 92290.6 2516 3600

ALNS1 71 162 0.1 91244.1
30nm

1000

30nm

1000

ALNS2 70 153 0.1 91240.5
30nm

1000

30nm

1000

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0 40 80 120 160 200 240

R
P

D
 V

a
lu

e
s

Problems

RDP of the Proposed Techniques for Small-Size Problems

ALNS-1 ALNS-2 CP MIP

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

160

Figure 2 RPD values of each technique for the large-size problems

CONCLUSION

Contrary to traditional permutation flowshop

scheduling problems, different buffer spaces and

blocking conditions may be available in a real
industrial case like the aerospace industry and other

sectors processing industrial waste. This situation

emerges a new problem type called mixed-blocking
permutation flowshop. Four different blocking types,

which are the classical blocking variant (RSb), two

types of releasing when completing blocking on the
next machine (RCb*, RCb), and no blocking (Wb),

are considered in this study. A novel CP model and

ALNS algorithms are proposed to solve the small and

large-size problems. The performance of the models
and the algorithms are tested on the well-known VRF

data sets. Blocking constraints of the machines are

produced for the small VRF instances respecting the
same generation procedure with the literature.

According to computational results, the proposed

techniques ensure an effective solution to the

problem.
As far as the managerial impacts of this study are

concerned, MBPF problem is relatively new problem

in the literature. However, many applications of this
problem are avalibale in the real industry. The study

provides managers an efficient total completion time

value to ensure customer satisfaction and machine
utilization. For companies, better solutions to the

scheduling problems mean shorter completion times
for their customers and high utilization for the

machines or a combination thereof. Both effects can

save a lot of money, which is ultimately the driving

motivation of any company. Because of that,
companies invest a substantial part of their budget in

modern software systems to find such solutions.

Two limitations of the study are listed below. (i)
The proposed heuristic algorithm is not compared

with different algoirthm beucase the aim of the study

is to show effective strategies to solve the problem.
Therefore, it may be a limitation because of the

lacking in innovation. (ii) The proposed model ant

algorithm cannot works under uncertanity.

Future research should be extended with
sequence-depended setup time and integrated with

supply chain methodology.

CONFLICT OF INTEREST

The Author report no conflict of interest relevant

to this article

RESEARCH AND PUBLICATION ETHICS

STATEMENT

The author declares that this study complies with
research and publication ethics.

REFERENCES
Blazewicz, J., H. Ecker, K., Pesch, E., Schmidt, G., &

0

0,2

0,4

0,6

0,8

1

1,2

0 40 80 120 160 200 240

R
P

D
 V

a
lu

e
s

Problems

RPD Values of ALNS Algorithms for Large-Size Problems

ALNS-2 ALNS-3 ALNS-1 ALNS-4

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

161

Wȩglarz, J. (2007). Handbook on scheduling. From

theory to applications. International Handbook on

Information Systems. https://doi.org/10.1007/978-3-

540-32220-7

Caraffa, V., Ianes, S., P. Bagchi, T., & Sriskandarajah, C.

(2001). Minimizing makespan in a blocking

flowshop using genetic algorithms. International
Journal of Production Economics, 70(2), 101–115.

https://doi.org/10.1016/S0925-5273(99)00104-8

Cheng, C.-Y., Lin, S.-W., Pourhejazy, P., Ying, K.-C., &

Zheng, J.-W. (2020). Minimizing Total Completion

Time in Mixed-Blocking Permutation Flowshops.

IEEE Access, 8, 142065–142075.

https://doi.org/10.1109/ACCESS.2020.3014106

Fuchigami, H., & Rangel, S. (2018). A survey of case

studies in production scheduling: Analysis and

perspectives. Journal of Computational Science, 25.

https://doi.org/10.1016/j.jocs.2017.06.004

Grabowski, Jozef, & Pempera, J. (2000). Sequencing of
jobs in some production system. European Journal

of Operational Research, 125(3), 535–550.

https://doi.org/10.1016/S0377-2217(99)00224-6

Grabowski, Józef, & Pempera, J. (2007). The permutation

flow shop problem with blocking. A tabu search

approach. Omega, 35(3), 302–311.

https://doi.org/10.1016/J.OMEGA.2005.07.004

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H.

G. R. (1979). Optimization and Approximation in

Deterministic Sequencing and Scheduling: a Survey.

Annals of Discrete Mathematics, 5, 287–326.
https://doi.org/10.1016/S0167-5060(08)70356-X

Hall, N. G., & Sriskandarajah, C. (1996). A Survey of

Machine Scheduling Problems with Blocking and

No-Wait in Process. Oper. Res., 44(3), 510–525.

https://doi.org/10.1287/opre.44.3.510

Hall, N., & Sriskandarajah, C. (2000). Minimizing Cycle

Time in a Blocking Flowshop. Operations Research,

48, 177–180.

https://doi.org/10.1287/opre.48.1.177.12451

Johnson, S. M. (1954). Optimal Two and Three Stage

Production Schedules With Set-Up Time Included.

Naval Research Logistics Quarterly, 1, 61–68.
https://doi.org/10.1002/nav.3800010110

Khorramizadeh, M., & Riahi, V. (2015). A Bee Colony

Optimization Approach for Mixed Blocking

Constraints Flow Shop Scheduling Problems.

Mathematical Problems in Engineering, 2015,

612604. https://doi.org/10.1155/2015/612604

Kizilay, D. (2018). Integrating the Optimization of Quay

and Yard Operations in Container Terminals. Yasar

University.

Kizilay, D., Eliiyi, D. T., & Van Hentenryck, P. (2018).

Constraint and Mathematical Programming Models
for Integrated Port Container Terminal Operations.

In W.-J. van Hoeve (Ed.), Integration of Constraint

Programming, Artificial Intelligence, and

Operations Research (pp. 344–360). Springer

International Publishing.

Ku, W.-Y., & Beck, J. C. (2016). Mixed Integer

Programming models for job shop scheduling: A

computational analysis. Computers & Operations

Research, 73, 165–173.

https://doi.org/https://doi.org/10.1016/j.cor.2016.04.
006

Lin, S. W., Cheng, C. Y., Pourhejazy, P., & Ying, K. C.

(2021). Multi-temperature simulated annealing for

optimizing mixed-blocking permutation flowshop

scheduling problems. Expert Systems with

Applications, 165, 113837.

https://doi.org/10.1016/j.eswa.2020.113837

Martinez, S., Dauzère-Pérès, S., Guéret, C., Mati, Y., &

Sauer, N. (2006). Complexity of flowshop

scheduling problems with a new blocking constraint.

European Journal of Operational Research, 169(3),

855–864.
https://doi.org/https://doi.org/10.1016/j.ejor.2004.08

.046

Mccormick, S., Pinedo, M., J. Shenker, S., & Wolf, B.

(1989). Sequencing in an Assembly Line With

Blocking to Minimize Cycle Time. Operations

Research, 37, 925–935.

https://doi.org/10.1287/opre.37.6.925

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic

algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1), 91–95.

https://doi.org/10.1016/0305-0483(83)90088-9
Newton, M. A. H., Riahi, V., Su, K., & Sattar, A. (2019).

Scheduling blocking flowshops with setup times via

constraint guided and accelerated local search.

Computers & Operations Research, 109, 64–76.

https://doi.org/10.1016/J.COR.2019.04.024

Osman, I., & Potts, C. (1989). Simulated annealing for

permutation flow-shop scheduling. Omega, 17(6),

551–557. https://doi.org/10.1016/0305-

0483(89)90059-5

Pan, Q.-K., & Ruiz, R. (2012). An estimation of

distribution algorithm for lot-streaming flow shop

problems with setup times. Omega, 40(2), 166–180.
https://doi.org/10.1016/J.OMEGA.2011.05.002

Pisinger, D., & Ropke, S. (2007). A general heuristic for

vehicle routing problems. Computers & Operations

Research, 34(8), 2403–2435.

https://doi.org/10.1016/J.COR.2005.09.012

Qian, B., Wang, L., Huang, D., Wang, W., & Wang, X.

(2009). An effective hybrid DE-based algorithm for

multi-objective flow shop scheduling with limited

buffers. Computers & Operations Research, 36(1),

209–233.

https://doi.org/10.1016/J.COR.2007.08.007
Riahi, V., Khorramizadeh, M., Hakim Newton, M. A., &

Sattar, A. (2017). Scatter search for mixed blocking

flowshop scheduling. Expert Systems with

Int. J. Pure Appl. Sci. 7(1):152-162 (2021)

Research article/Araştırma makalesi

DOI: 10.29132/ijpas.911146

162

Applications, 79, 20–32.

https://doi.org/https://doi.org/10.1016/j.eswa.2017.0

2.027

Riahi, V., Newton, M. A. H., Su, K., & Sattar, A. (2019).

Constraint guided accelerated search for mixed

blocking permutation flowshop scheduling.

Computers & Operations Research, 102, 102–120.
https://doi.org/10.1016/J.COR.2018.10.003

Ronconi, D P, & Armentano, V. A. (2001). Lower

bounding schemes for flowshops with blocking in-

process. Journal of the Operational Research

Society, 52(11), 1289–1297.

https://doi.org/10.1057/palgrave.jors.2601220

Ronconi, Débora P. (2004). A note on constructive

heuristics for the flowshop problem with blocking.

International Journal of Production Economics,

87(1), 39–48. https://doi.org/10.1016/S0925-

5273(03)00065-3

Ruiz-Torres, A. J., Ho, J. C., & Ablanedo-Rosas, J. H.
(2011). Makespan and workstation utilization

minimization in a flowshop with operations

flexibility. Omega, 39(3), 273–282.

https://doi.org/10.1016/J.OMEGA.2010.07.004

Sawik, T. (1995). Scheduling flexible flow lines with no

in-process buffers. International Journal of

Production Research - INT J PROD RES, 33, 1357–

1367. https://doi.org/10.1080/00207549508930214

Sawik, T. J. (1993). A scheduling algorithm for flexible

flow lines with limited intermediate buffers. Applied

Stochastic Models and Data Analysis, 9, 127–138.
Shaw, P. (1998). Using Constraint Programming and Local

Search Methods to Solve Vehicle Routing Problems.

In M. Maher & J.-F. Puget (Eds.), Principles and

Practice of Constraint Programming --- CP98 (pp.

417–431). Springer Berlin Heidelberg.

Taillard, E. (1993). Benchmarks for basic scheduling

problems. European Journal of Operational

Research, 64(2), 278–285.

https://doi.org/10.1016/0377-2217(93)90182-M

Tasgetiren, M. F., Kizilay, D., Pan, Q.-K., & Suganthan, P.

N. (2017). Iterated greedy algorithms for the

blocking flowshop scheduling problem with
makespan criterion. Computers and Operations

Research, 77.

https://doi.org/10.1016/j.cor.2016.07.002

Tasgetiren, M. F., Pan, Q.-K., Kizilay, D., & Gao, K.

(2016). A Variable Block Insertion Heuristic for the

Blocking Flowshop Scheduling Problem with Total

Flowtime Criterion. Algorithms, 9(4).

https://doi.org/10.3390/a9040071

Tasgetiren, M. F., Pan, Q.-K., Kizilay, D., & Suer, G.

(2015). A populated local search with differential

evolution for blocking flowshop scheduling
problem. 2015 IEEE Congress on Evolutionary

Computation, CEC 2015 - Proceedings.

https://doi.org/10.1109/CEC.2015.7257235

Trabelsi, W, Sauvey, C., & Sauer, N. (2011). Complexity

and Mathematical Model for Flowshop Problem

Subject to Different Types of Blocking Constraint.

IFAC Proceedings Volumes, 44(1), 8183–8188.

https://doi.org/https://doi.org/10.3182/20110828-6-

IT-1002.01887

Trabelsi, Wajdi, Sauvey, C., & Sauer, N. (2010). Heuristic
methods for problems with blocking constraints

solving jobshop scheduling.

Trabelsi, Wajdi, Sauvey, C., & Sauer, N. (2012). Heuristics

and metaheuristics for mixed blocking constraints

flowshop scheduling problems. Computers &

Operations Research, 39(11), 2520–2527.

https://doi.org/https://doi.org/10.1016/j.cor.2011.12.

022

Vallada, E., & Ruiz, R. (2010). Genetic algorithms with

path relinking for the minimum tardiness

permutation flowshop problem. Omega, 38(1–2),

57–67.
https://doi.org/10.1016/J.OMEGA.2009.04.002

Vallada, E., Ruiz, R., & Framinan, J. M. (2015). New hard

benchmark for flowshop scheduling problems

minimising makespan. European Journal of

Operational Research, 240(3), 666–677.

https://doi.org/https://doi.org/10.1016/j.ejor.2014.07

.033

Zhang, G., Xing, K., & Cao, F. (2018). Discrete differential

evolution algorithm for distributed blocking

flowshop scheduling with makespan criterion.

Engineering Applications of Artificial Intelligence,
76, 96–107.

https://doi.org/10.1016/J.ENGAPPAI.2018.09.005

