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Abstract 
Traditional permutation flowshop scheduling problem (PFSP), which has unlimited buffer space, has been interested 

over the fifty years by several authors to account for many industrial applications. However, some industries, such as the 

aerospace industry and other sectors processing industrial waste, have different blocking conditions due to the limited or 

lack of buffer area between their machines. In this study, a mixture of different blocking types is considered to solve PFSP 
with the total flow time criterion regarding several blocking types. A constraint programming model is proposed to solve 

the PFSP with mixed blocking constraints (MBFSP). Due to the problem's NP-hard nature of the problem, an adaptive 

large neighborhood search heuristic is proposed to solve the large size instances. The results of the proposed algorithm 

are very competitive. 
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Karışık Blokalmalı Akış Tipi Çizelgeleme Problemi İçin Uyarlanabilir Büyük 

Komşuluk Arama Sezgiseli 

 
Öz 

Sınırsız tampon alanına sahip geleneksel permütasyon akış tipi çizelgeleme problemi (PFSP), pek çok endüstriyel 
uygulaması olduğundan dolayı yaklaşık elli yıldır yazarlar tarafından araştırılan bir konudur. Bununla birlikte, havacılık 

endüstrisi ve endüstriyel atıkları işleyen bazı endüstriler, makineleri arasında sınırlı veya eksik tampon alanı olması 

nedeniyle farklı bloklama koşullarına sahiptir. Bu çalışmada, farklı bloklama türlerine sahip olan bir PFSP'yi toplam akış 

süresini dikkate alarak çözecektir. PFSP'yi karışık bloklama kısıtları (MBFSP) ile çözmek için bir kısıt programlama 

modeli önerilmiştir. Problemin NP-zor doğası nedeniyle, büyük boyutlu problemleri çözmek için uyarlanabilir bir büyük 

komşuluk arama sezgisel yöntemi önerilmektedir. Önerilen algoritmanın sonuçları çok rekabetçidir. 

 

Anahtar Kelimeler: Akış tipi çizelgeleme, kısıt programlama, uyarlanabilir büyük komşuluk araması

INTRODUCTION 

Traditional permutation flowshop scheduling 

problem (PFSP) was first proposed by Johnson 

(1954) and then has been interested in several authors 
(Blazewicz et al., 2007; Pan & Ruiz, 2012; Ruiz-

Torres et al., 2011; Vallada & Ruiz, 2010). In PFSP, 

a set of jobs is processed through a set of machines 

following the same order and have unlimited buffer 
space. Then, a classical blocking constraint was 

added to PFSP by T. Sawik (1995) and T. J. Sawik 

(1993). Then, the problem turns to be a blocking 
permutation flowshop scheduling problem (BFSP) 

(Jozef Grabowski & Pempera, 2000; N. G. Hall & 

Sriskandarajah, 1996; Kizilay et al., 2018; Tasgetiren 

et al., 2015). In BFSP, a buffer area between the 

machines does not exist; therefore, a job must stay on 
the machine until the upstream machines become 

available to process it. Thus, the currently used 

machine is blocked by the awaiting task and cannot 

process the next job until the current job leaves the 
machine. This classical blocking variant is denoted as 

RSb (release when start blocking). BFSP is proven to 

be NP-Hard if the number of machines is greater than 
two (N. G. Hall & Sriskandarajah, 1996). Therefore, 

several heuristics and metaheuristic algorithms are 
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employed to solve BFSP, such as a genetic algorithm 

(GA) (Caraffa et al., 2001), tabu search (TS) 

algorithm (Józef Grabowski & Pempera, 2007), 

iterated greedy (IG) algorithm (Tasgetiren et al., 
2017), discrete differential evolution (DDE) 

algorithm (Zhang et al., 2018) hybrid DDE algorithm 

(HDDE) (Qian et al., 2009), particle swarm 
optimization (PSO). Besides those heuristic 

algorithms, many constructive heuristics and local 

search procedures are also proposed for BFSP. Those 

algorithms include profile fitting (PF) heuristic 
(Mccormick et al., 1989), improvement heuristic (N. 

Hall & Sriskandarajah, 2000), and Nawaz, Enscore, 

Ham (NEH) (Nawaz et al., 1983) -based heuristics 
(Nawaz et al., 1983; Newton et al., 2019; Riahi et al., 

2019; D P Ronconi & Armentano, 2001).  

A new blocking constraint denoted as RCb, 
which means release when completing blocking, was 

introduced by Martinez et al. (2006). This type of 

blocking constraint states that a job blocks a machine 

until its operation on the next machine completes and 
the job leaves the next machine. In other words, a job 

occupies two consecutive machines at the same time. 

This kind of blocking constraint occurs while 
manufacturing the metallic parts for the aerospace 

industry and processing the industrial waste. Another 

new blocking constraint, RCb* (release when 
complete blocking), which is a variant of RCb, was 

proposed by Wajdi Trabelsi et al. (2010). It is similar 

to the RCb constraint, but this time a job blocks a 

machine until its operation on the next machine 
completes, regardless of releasing the next machine. 

In this study, regarding the aforementioned 

blocking types, a mixture of them is considered to 
solve PFSP with the total flowtime criterion. The 

considered problem is denoted as 𝐹𝑚/
𝑚𝑖𝑥𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔/ ∑ 𝐹 according to Graham et al. 

(1979). The PFSP with mixed blocking constraints 
(MBFSP) was first considered by W Trabelsi et al. 

(2011), and its linear mathematical model with 

complexity analysis is provided. The model is tested 
on instances that have up to 12 jobs and 100 

machines, and the authors conclude that heuristics or 

metaheuristics should be developed for larger-size 
problems. Then, the same authors employed the NEH 

heuristic and proposed Trabelsi, Sauvey, and Sauer 

(TSS) heuristic as well as GA metaheuristic to solve 

MBFSP with up to 12 jobs and 100 machines (Wajdi 
Trabelsi et al., 2012). A constructive heuristic to 

minimize the makespan in MBFSP was proposed by 

Khorramizadeh & Riahi (2015), and the algorithm 

was tested on the well-known instances of Taillard's 

(Taillard, 1993) that includes large-size problems up 

to 200 jobs and 20 machines. In both studies, the 
authors used the same repetitive sequence of mixed 

blocking types, which is (RCb, RSb, RCb*, Wb), for 

the successive machines. However, in 2017, the 
authors in Riahi et al. (2017) stated the following 

drawback of this blocking sequence: The RSb 

constraint applied to a machine, which is placed 

immediately after another machine running under the 
RCb constraint, cannot make any difference in the 

makespan. Therefore, the authors used a new 

blocking sequence generated with equal probability 
for each machine. In the generation procedure, they 

paid attention not to have RSb type of machine 

immediately after RCb type of machine, and they 
stated that the last machine always has Wb type. The 

authors applied a scatter search for MBFSP to 

minimize the makespan. Besides Taillard's instances, 

they used VRF large benchmark instances proposed 
by Vallada et al. (2015). A local search based on the 

characteristics of different types of blockings was 

proposed to solve MBFSP with the makespan 
criterion (Riahi et al., 2019). Most recently, a multi-

temperature simulated annealing algorithm is 

proposed to solve the MBFSP with the makespan 
criterion (Lin et al., 2021). For the total completion 

time criterion, MBFSP is considered by Cheng et al. 

(2020). The authors provide results for Taillard's 

instances. 
Several heuristic algorithms were applied to 

solve the MBFSP, such as GA, SA, NEH-based 

heuristics, and constructive heuristics. However, 
adaptive neighborhood-based search procedures have 

not been applied to MBFSP before. Neighborhood 

search-based methods have great potential as 

competitive approaches for real-life scale problems. 
Therefore, motivated by the challenge of 

computational time and the problem size, an adaptive 

large neighborhood search (ALNS) heuristic is 
proposed to solve the MBFSP by minimizing the total 

flowtime criterion.  

The main contributions in this paper are listed as 
follows. 

• A constraint programming (CP) model to solve the 

MBFSP problem, to the best of the authors' 

knowledge, for the first time in literature. 

• ALNS heuristic with four different remove and two 

different insert strategies as well as two different 
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swap operations are employed. Based on an 

adaptive structure, the best strategy for each 

instance is determined by the algorithm to find the 

best solution. 

• To the best of the authors' knowledge, solutions for 
the small-size VRF benchmark instance sets 

(Vallada et al., 2015) are proposed for the first time 

in literature.  
The remainder of the paper is organized as 

follows. The problem definition and the formulation 

of the CP model for the MBFSP are presented in 
Section 2. The proposed adaptive large neighborhood 

search heuristic is described in Section 3. Section 4 

presents the results of the computational experiments 

for all presented models and algorithms. Finally, 
Section 5 provides conclusions and future work. 

 

PROBLEM DEFINITION AND 

FORMULATION 

Formulation of MBFSP has a set of jobs that are 

processed through a set of machines following the 

same order. Both machines and jobs are available at 
time zero, and each machine can handle one job at a 

time. Similarly, each job can be processed by at most 

one machine at a time. In MBFSP, there are several 
blocking types, and each machine can have different 

blocking constraints. Those types can be classified 

under four definitions: Without blocking (Wb), 
release when starting blocking (RSb), and two types 

of release when completing blocking (RCb, RCb*). 

In the formulation of MBFSP, different types of 

blocking constraints of the machines are regarded to 
minimize the total flow time of the jobs. In the light 

of this objective, a constraint programming (CP) 

model is developed. The sets and the parameters used 
by the model are presented in Table 1. 

The model has a set of jobs and machines, as 

well as processing times of each job on each machine. 
Those sets and parameters are standard in all 

flowshop problems. Different than the other 

problems, MBFSP has a blocking type for each 

machine represented by 𝑏𝑙𝑘 parameter. In 𝑏𝑙𝑘, the 

index 𝑙 takes values like 0, 1, 2, and 3, and those 

integer numbers represent Wb, RSb, RCb*, and RCb 

constraints, respectively. For example, 𝑏2,1 = 1 

means that machine 1 applies a blocking type of 

RCb*. The following sub-section explains the CP 

model. 
 

Constraint Programming Model 

The CP, which is a declarative method, depends 

on the constraints. It uses constraints to infer new 

constraints in order to solve a problem. Rather than 

the solution methodology, the problem to be solved is 
more important. It has several advantages, such as 

having a compact model compared to MILP and 

adaptable to meet new requirements compared to 
typical procedural programs. Also, using the logical 

rules and the constraints, it becomes easier to prove 

the correctness of the models. The expanded search 

space and the advanced relaxation techniques of the 
CP approaches make it promising, but the 

applications of the CP are limited. Although, recent 

works about scheduling in real scenarios are still  
 

Table 1 Problem Notation 

Sets 

𝑀 Set of machines {1, 2, … , 𝑚} 

𝑁 Set of jobs {1, 2, … , 𝑛} 

Parameters 

𝑝𝑖𝑘 Processing time of job 𝑖 on machine 𝑘 

𝑏𝑙𝑘 {
1, if blocking type 𝑙 is applied at machine 𝑘    
0,                         otherwise                                

   

Table 2 CP Decision Variables 

𝑥𝑖𝑘
𝐶𝑃

  Interval variable for job 𝑖, processed by 

machine 𝑘 with duration 𝑝𝑖𝑘 

𝑧𝑖  Interval variable for job 𝑖 

𝑠𝑒𝑞𝑘  
Sequence variable for machine 𝑘, which is 

defined over a set of interval variables 𝑥𝑖𝑘
𝐶𝑃  

concentrating on MILP as a tool of choice (Fuchigami 

& Rangel, 2018), even if CP seems better suited for 

scheduling problems, especially for large-scale 
instances (Ku & Beck, 2016). 

CP model is developed for MBFSP for the first 

time in literature. The decision variables include 
interval and sequence variables and are defined in 

Table 2. The CP model has two sets of interval 

variables, and both have a start, a duration, and an 
end. To define the domain of each job and to represent 

the process of each job on each machine, two 

different interval variables are introduced. Since each 

machine processes all the jobs, an interval variable of 
a job on any machine is not an optional variable. In 

other words, the interval variable always presents in 

the solution. Also, sequence variables are defined for 
each machine to represent the set of interval variables.  

Therefore, the jobs are assigned to the machines 

respecting their processing times in the definition 
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step. The objective function and the constraints of the 

CP model are given and explained as follows. 

Objective Function 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑒𝑛𝑑(𝑥𝑖𝑚
𝐶𝑃)𝑖∈𝑁    (1) 

Constraints 

𝑒𝑛𝑑𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑡𝑎𝑟𝑡(𝑥𝑖,𝑘−1
𝐶𝑃 , 𝑥𝑖𝑘

𝐶𝑃 )  

∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀|𝑘 > 1    (2) 

(𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘 , 𝑥𝑖,𝑘
𝐶𝑃)𝑏1𝑘) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+1, 𝑥𝑖,𝑘+1
𝐶𝑃 )𝑏2𝑘) +

 (𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+1, 𝑥𝑖,𝑘+1
𝐶𝑃 )𝑏3𝑘) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑘+2, 𝑥𝑖,𝑘+2
𝐶𝑃 )𝑏4𝑘)  ≤

𝑠𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝑖,𝑘
𝐶𝑃) ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀|𝑘 < 𝑚 − 1  (3) 

(𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚−1, 𝑥𝑖,𝑚−1
𝐶𝑃 )𝑏1,𝑚−1) +

 (𝑠𝑡𝑎𝑟𝑡𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚, 𝑥𝑖𝑚
𝐶𝑃)𝑏2,𝑚−1) +

 (𝑒𝑛𝑑𝑂𝑓𝑃𝑟𝑒(𝑠𝑒𝑞𝑚 , 𝑥𝑖𝑚
𝐶𝑃)𝑏3,𝑚−1)  ≤

𝑠𝑡𝑎𝑟𝑡𝑂𝑓(𝑥𝑖,𝑚−1
𝐶𝑃 )  ∀𝑖 ∈ 𝑁    (4) 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑠𝑘)    ∀𝑘 ∈ 𝑀   (5) 

𝑆𝑎𝑚𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑠1, 𝑠𝑘)  ∀𝑘 ∈ 𝑀|𝑘 > 1   (6) 

In the objective function (1), the CP model 

minimizes total completion time by calculating the 

total end time of the jobs on the last machine 𝑚. 
Constraint set (2) ensures that each job is processed 

through the machines respectively. First, their process 

should be completed on the first machine, and then 
the job can proceed to the next machine. Constraint 

sets (3) indicate the RSb, RCb*, and RCb type of 

blocking constraints on the corresponding machines. 

The first part of the constraint set is employed when 
the machine does not have any blocking constraints. 

Therefore, when the operation of the previous job is 

completed, the next job can start its operation. If the 
machine works as RSb, then the second part of 

Constraint set (3) ensures that a job cannot start its 

process unless the preceding job starts its operation 
on the successive machine. The third part of the same 

constraint provides that a job can start its operation on 

the machine after its preceding job completes its 

operation on the succeeding machine. This situation 
is valid for the machines that work with RCb* type. 

The last part of the constraint set is similar to the 

previous part, but it ensures that the preceding job 
leaves the succeeding machine. Therefore, in order to 

provide RCb type of constraint, the start of a job 

interval on machine 𝑘 is related to the start of the 

preceding job interval on machine 𝑘 + 2. Constraint 
set (4) is warren for the last machine to ensure the 

different blocking constraints on the last machine. 

Constraint set (5) states that the job interval variables 

on each machine should not be overlapped. In other 

words, each machine can process one job at a time. 

Finally, Constraint set (6) provides that the 

processing order of the jobs on each machine must be 
the same. 

ADAPTIVE HEURISTIC APPROACH 

 The ALNS heuristic is proposed as an extension 
of the Large Neighborhood Search (LNS) heuristic, 

which is first suggested in Shaw (1998). The ALNS 

heuristic uses the same logic with LNS but employs 

the remove and insertion methods adaptively. The 
removal and insertion methods are chosen according 

to the algorithm's performance during the same 

search. This study employs the ALNS heuristic, 
developed by Pisinger & Ropke (2007) for the vehicle 

routing problem. The ALNS heuristic is modified and 

applied to the scheduling problem in the thesis of 
Kizilay (2018).  

 

Initialization 

ALNS heuristic is a population-based algorithm 
and includes several neighboring strategies in an 

adaptive manner. In this study, the initial sequence of 

the jobs is generated randomly for each individual in 
the population, except the four of them. Those four 

sequences are generated according to the following 

rules. For all the jobs: 

• R1: Increasing order of total process times on all the 
machines. 

• R2: Decreasing order of total process times on all 

the machines. 

• R3: Increasing order of total process times on the 

machines with RCb or RCb* blocking types plus the 

process times on the succeeding machine. 

• R4: Decreasing order of total process times on the 
machines with RCb or RCb* blocking types plus the 

process times on the succeeding machine. 

The first rule is based on the shortest processing time 
(SPT), while the second rule is based on the longest 

processing time (LPT). The problem-related 

properties inspire the remaining rules. Once the initial 
sequence is generated, the NEH heuristic is applied to 

the individual as a constructive heuristic to start with 

a good solution, then ALNS is applied to this 

individual. In our problem, NEH is applied to an 
individual after generating the initial sequence.  

During ALNS, several removals, insertion, and 

swap methods are employed in the same search. 
ALNS is applied many times to an individual to 

determine the weights of the removal, insert and swap 
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move types and thus provides an adaptive search 

scheme. If the new solution obtained by ALNS is 

better than the current solution, it replaces the current 

solution, and the weights of the remove-insert-swap 
methods are updated accordingly. Otherwise, an SA-

based acceptance criterion is employed to accept the 

new solution to escape local minima. The following 
procedure presents the general solution scheme. 

 

General Solution Procedure 

for i=1 to NP (number of population) 

𝜋𝑖: Sequence created respecting Ri|i={1,2,3,4} 

𝜋𝑖: Random sequence of population i|i>4 

𝜋𝑖 = 𝑁𝐸𝐻(𝜋i) 

while not Termination Criterion 

𝜋𝑖 = ALNS(𝜋i) 

if (𝑓(𝜋𝑖) < 𝑓(𝜋best)) update 𝜋best 

end while 

end for 

Neighborhood Strategies 

The neighborhood strategies include three 

different removal, four different insertions, and two 

different swap strategies. ALNS chooses these 

strategies in an iteration respecting their weights. 
First, the algorithm selects a swap or removal 

method applying a roulette wheel selection. If ALNS 

chooses one of the swap moves concerning their 
weights, applies it to the current individual, and 

obtains the new solution. On the other hand, if ALNS 

selects a removal strategy, it disrupts the current 
solution by removing some jobs. Hence, ALNS has to 

choose one of the four insertion strategies to construct 

a new solution. The insertion strategy selection 

depends on the applied removal method and a roulette 
wheel selection considering insertion weights.  

Random removal 

The random removal algorithm randomly selects 

𝑞 jobs from the current sequence 𝜋 and removes these 

jobs. The predetermined removal size of the ALNS 

specifies the number of selected jobs (𝑞).  

Random block removal 

Random block removal selects 𝑞 consecutive 

jobs (a block of jobs) randomly and removes the 

chosen block from the current sequence 𝜋. This 
procedure is inspired by the block insertion heuristic 

(BIH) in Tasgetiren et al. (2016).  

Blocking-idle time removal 

The blocking-idle time removal algorithm 

chooses 𝑞 jobs that cause the most considerable 

blocking or idle time on the machines and removes 

them from the current sequence 𝜋.  

One of the removal strategies is applied, and the 

removed jobs are collected in a sequence 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑, and 
the remaining partial sequence is represented by 

𝜋partial. After removing jobs from the current 

sequence, The ALNS applies one of the insertion 

strategies to insert the jobs included in 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑  into 

the partial sequence 𝜋partial. If ALNS uses a random 

block removal, then it should apply random block 

insertion or best block insertion regarding the 
weights. If ALNS employs other removals, then it 

should apply random or best insertion. 

Random insertion 

Random insertion algorithm randomly selects 𝑞 

positions in partial sequence 𝜋partial and inserts the 

removed jobs collected in 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑 to the selected 

positions, one by one. 
Best insertion 

Best insertion chooses the jobs one by one from 

the set of 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑. It searches all possible positions of 

partial sequence 𝜋partial to insert the chosen job into the 
best position in terms of the objective function. The 

algorithm applies the same procedure until all the jobs 

are selected from the removed sequence and inserted 
into the partial sequence.  

Random block insertion 

Random block insertion randomly chooses a 

location in partial sequence 𝜋partial and inserts 

removed a block of jobs to the chosen location. 

Best Block Insertion 

The best block insertion takes all removed jobs 

from 𝜋𝑟𝑒𝑚𝑜𝑣𝑒𝑑 as a block and searches all possible 

positions at partial sequence 𝜋partial to insert the block.  

Swap move 
In swap move, two jobs are selected randomly 

from sequence 𝜋, and their positions are exchanged. 

Iterative Swap Move 

Iterative swap move randomly chooses and 

exchanges two jobs in the sequence 𝜋, 𝑞 times, which 

is equal to the remove size. 

 

Acceptance Criterion and the Adaptive Weight 

Adjustment Procedure 

In the acceptance criterion step, if a new 

sequence has a smaller objective function value than 
the current sequence, the new is accepted as the 

current sequence. If the new sequence is worse than 

the current sequence, then a simple SA type of 
acceptance criterion is used with constant 
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temperature (Osman & Potts, 1989) to determine if 

the new worse sequence is accepted or not. The 

following algorithm shows the general procedure of 

the ALNS heuristic with the SA acceptance criterion. 
 

ALNS Procedure 

𝜃j: how many times the strategy j is selected: j={r,s,i} 

𝑤j: weight of the strategy j in the roulette wheel. 

while not Termination Criterion 

Choose a removal 𝑟 or swap s strategy by roulette 

wheel selection 

If removal strategy 𝑟 

𝜋partial = Apply chosen removal strategy 𝑟 to current 

sequence 𝜋 

𝜃𝑟 = 𝜃𝑟 + 1 

Choose an insertion strategy 𝑖 by roulette wheel 
selection w.r.t. applied removal (block or not) 

𝜋𝑛𝑒𝑤 = Apply the insertion strategy 𝑖 to partial 

sequence 𝜋partial 

𝜃𝑖 = 𝜃𝑖 + 1 
Else if swap strategy s 

𝜋𝑛𝑒𝑤 = Apply chosen swap strategy s to current 

sequence 𝜋 

𝜃s = 𝜃s + 1 
end if 

If (𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋)) 

𝜋 = 𝜋𝑛𝑒𝑤 

If (𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋𝑏𝑒𝑠𝑡)) 

𝜋𝑏𝑒𝑠𝑡 = 𝜋𝑛𝑒𝑤 

𝜀j = 𝜀j  + 𝜎1 

Else 

𝜀j  = 𝜀j  + 𝜎2 

end if 

end if 

𝜌 = 𝑒−(𝑓(𝜋𝑛𝑒𝑤)−𝑓(𝜋))/𝑇 

Generate a random number 𝑎 ∈ [0.1] 

If (𝑎 < 𝜌) 

𝜋 = 𝜋𝑛𝑒𝑤 

𝜀j  = 𝜀j  + 𝜎3 

end if 

Update Procedure 

𝑤j = 𝑤j (1 − 𝑟𝑎𝑡𝑒) + (𝑟𝑎𝑡𝑒)𝜀j/𝜃j 

end while 

In the procedure, 𝜋, 𝜋𝑛𝑒𝑤, and 𝜋𝑏𝑒𝑠𝑡 represent the 

current, new, and the best schedule at each iteration, 

where 𝑓(𝜋), 𝑓(𝜋𝑛𝑒𝑤), and 𝑓(𝜋𝑏𝑒𝑠𝑡) denotes their total 
flow time values, respectively. The algorithm always 

accepts the new solution as the incumbent if 𝑓(𝜋𝑛𝑒𝑤) 

< 𝑓(𝜋), and always accepts the new solution as the 

global best if 𝑓(𝜋𝑛𝑒𝑤) < 𝑓(𝜋𝑏𝑒𝑠𝑡). It also accepts the 

new solution as the incumbent solution with 

probability 𝑒−(𝑓(𝜋𝑛𝑒𝑤)−𝑓(𝜋))/𝑇  to provide 

diversification by giving a chance to the worse 

schedules. 

The ALNS heuristic updates the weights of the 
removal, insertion, and swap methods in each 

iteration by considering the weights of the previous 

iteration and the current score information, as shown 

in the following equation: 𝑤j = 𝑤j(1−𝑟𝑎𝑡𝑒) + 

𝜀j/𝜃j(𝑟𝑎𝑡𝑒). In this equation, 𝑤j represents the weight 

of applied strategy j at each iteration, and 𝑟𝑎𝑡𝑒 

represents the roulette wheel rate of using the 
previous weight and the current score information, 

where 0 ≤ 𝑟𝑎𝑡𝑒 ≤ 1. The parameter 𝜀j represents the 

score of strategy j. The score is increased by 𝜎1 if the 

used strategy finds the new global best solution, by 𝜎2 

if it finds the new current best solution, or by 𝜎3 if the 

solution is worse than the current but accepted. The 

parameter 𝜃j represents the number of times that 

strategy j is used. Parameter 𝜃j gives a chance to the 

other algorithms which are not used before. 
 

RESULTS AND DISCUSSION 

The performance of the ALNS algorithm is 

compared with the mixed-integer linear programming 
(MILP) and CP models. The MILP model for MBFSP 

is presented in Riahi et al. (2019). We used a similar 

model but eliminated a decision variable representing 
the start time of the jobs on the machines to simplify 

the model. Therefore, our proposed MILP model 

employs the same calculations by only considering 
the completion time of the jobs on the machines. 

The MILP and CP models for the MBFSP were 

coded in OPL and run on the IBM ILOG CPLEX 

12.10 software suite, while the ALNS algorithm was 
coded in C++ and run on the Eclipse IDE 4.15.0. All 

results were obtained on an Intel Core i7 with 8 GB 

RAM. The benchmark suite of the VRF data set 
(Vallada et al., 2015) is used to measure the 

performance of the MILP, CP models, and ALNS 

heuristic. Blocking sequences of the machines are 

generated by Riahi et al. (2017) for only the VRF 
large instance sets. The authors give each blocking 

type an equal probability for each machine but avoid 

scenarios where one machine running under RSb 
follows another machine running under RCb. 

According to the authors, this avoided scenario 

cannot make any difference in the makespan (Riahi et 
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al., 2017). When RCb is applied to a machine 𝑘, the 

RSb condition is always satisfied by machine 𝑘 + 1, 

automatically. Therefore, this scenario also does not 

make any difference for the total flowtime criterion. 
Moreover, because the last machine does not have 

any following machine, the last machine always 

operates under Wb constraint. Respecting all those 
rules, we generated the blocking types of each 

machine for the VRF-small instances.s 

The VRF instances have 240 small instances 

with variable 𝑛 𝑥 𝑚 combinations. There are 𝑛 ∈
{20,30,40,50,60} jobs each with 𝑚 ∈ {5,10,15,20} 

machines. Each 𝑛 𝑥 𝑚 combination has ten different 

instances. MILP and CP models are employed for 
only small-sized instances due to the computational 

complexity of the problem. They were given 3600 

seconds time limit. 

The VRF large instances also have 240 test cases 

with variable 𝑛 𝑥 𝑚 combinations. There are 𝑛 ∈
{100,200,300,400,500,600,700,800} jobs each 

with 𝑚 ∈ {20,40,60} machines. Each 𝑛 𝑥 𝑚 
combination has ten different instances. In order to 

obtain the solutions for the large data sets, the 

developed ALNS heuristic is employed, and its run 

time is limited to 𝜏 × 𝑛 × 𝑚 milliseconds for each 
instance. In order to see the effects of the time limit 
(𝜏) and the remove size (𝑞), we obtained all the 

results for four different variants of ALNS: 

• ALNS1: ALNS with constant remove size, where 

𝑞 = 3, and 𝜏 = 30 

• ALNS2: ALNS with variable remove size, where 

𝑞 = 𝑛 ∗ 0.10, and 𝜏 = 30 

• ALNS3: ALNS with constant remove size, where 

𝑞 = 3, and 𝜏 = 60 

• ALNS4: ALNS with variable remove size, where 

𝑞 = 𝑛 ∗ 0.10, and 𝜏 = 60 
All the ALNS algorithms applied five 

replications for each instance. The rest of the 

parameters for the algorithm is given in Table 3. 
This study presents all the results of the models 

and the algorithms by calculating their relative 

percentage deviations (RPD): 𝑅𝑃𝐷 = 100 ∗
(𝐹𝑠𝑜𝑚𝑒 − 𝐹𝑏𝑒𝑠𝑡)/𝐹𝑏𝑒𝑠𝑡, where 𝐹𝑠𝑜𝑚𝑒  is the obtained 
objective value of the models or the algorithms and 

𝐹𝑏𝑒𝑠𝑡  is the minimum objective among all the models 

and the algorithms. 
The computational results section is divided into two 

parts. In the first part, the proposed two versions of 

the ALNS algorithms: ALNS1 and ALNS2, the CP 

approach, and the MILP, are compared for the small-

size problems. Second, the results of four versions of 

the ALNS method are discussed in terms of solution 
quality for large-size problems.  

Table 4 demonstrates the summary result of all 

the obtained solutions of the CP, MILP models, and 
ALNS algorithms. MILP can reach an optimal 

solution faster than the CP model for small-size 

problems. The MILP model provides 82 optimal 

solutions, while the CP, ALNS1, and ALNS2 ensure 
14, 72, and 71 optimal solutions, respectively, out of 

240 solutions. However, the ALNS algorithms 

outperform the CP and MILP models in terms of the 
number of best solutions, average relative percentage 

deviation (ARPD), average objective value, and 

computational time. The heuristic algorithms find  
nearly twice the number of best results than the MILP 

and the CP model for the small-size problems. 

Furthermore, the ARPDs of the heuristic 

algorithms are approximately 0.1% for the problem. 
The detail of the RPD result of each technique is 

given in Figure 1. The RPD values of the CP and 

MILP model become higher when the problem size 
increases, but the proposed heuristic algorithms are 

not affected.  In other words, it is clearly seen that the 

heuristic algorithms show respectable performance 
for small-size problems. 

Table 5 summarizes the results of ALNS 

algorithms for the large-size problems. The four 

versions of the ALNS algorithms are reported in this 
table. According to Table 5, ALNS-4 dominates other 

versions in terms of # of best, ARPD, Max RPD, and 

average objective values for all problems. 
Furthermore, it is clearly seen that constant removal 

size (𝑞 = 3) indicates better performance. Also, 

increasing the time limit helps to find a better 

solution.  
Table 3 Parameters of the ALNS algorithms 

Psize=20  The population size of the algorithms 

rate=0.2  Roulette wheel rate  
σ1=10  Global best solution score 

σ2=7  Current best solution score 

σ3=3  SA type of acceptance score 

T=100  Temperature value of SA 
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Table 4. Comparisons of the algorithms for the small-size problem 

 

 

Figure 1 RPD values of each technique for the small-size problems 

The detailed RPD values of each version are 

shown in Figure 2. It is illustrated that ALNS4 
provides an obviously small RPD value for each 

problem. Significantly, the difference of RPD value 

between the ALNS4 and others is larger when the 

problem sizes are relatively small. Overall, the 
proposed ALNS algorithm can provide an effective 

solution for the considered problem. 

 
Table 5 Comparisons of the algorithms for the large-size problems 

  # of Best ARPD Max RPD Avg. Obj. 

ALNS1 29 0.24 1.14 15777993.2 

ALNS2 47 0.15 0.75 15775594.1 

ALNS3 36 0.19 0.94 15776272.3 
ALNS4 128 0.05 0.37 15768970.5 

Methods 
# of 

Optimal 
# of Best ARPD Avg. Obj. Avg. CPU (s) Max. CPU (s) 

CP 14 48 1.4 92979.4 3515 3600 

MILP 82 95 0.7 92290.6 2516 3600 

ALNS1 71 162 0.1 91244.1 
30nm
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ALNS2 70 153 0.1 91240.5 
30nm

1000
 

30nm

1000
 

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0 40 80 120 160 200 240

R
P

D
 V

a
lu

e
s

Problems

RDP of the Proposed Techniques for Small-Size Problems

ALNS-1 ALNS-2 CP MIP



  
Int. J. Pure Appl. Sci. 7(1):152-162 (2021) 

 

  

Research article/Araştırma makalesi 

DOI: 10.29132/ijpas.911146                          
 

 

160 
 

Figure 2 RPD values of each technique for the large-size problems 
 

 
CONCLUSION 

Contrary to traditional permutation flowshop 

scheduling problems, different buffer spaces and 

blocking conditions may be available in a real 
industrial case like the aerospace industry and other 

sectors processing industrial waste. This situation 

emerges a new problem type called mixed-blocking 
permutation flowshop. Four different blocking types, 

which are the classical blocking variant (RSb), two 

types of releasing when completing blocking on the 
next machine (RCb*, RCb), and no blocking (Wb), 

are considered in this study. A novel CP model and 

ALNS algorithms are proposed to solve the small and 

large-size problems. The performance of the models 
and the algorithms are tested on the well-known VRF 

data sets. Blocking constraints of the machines are 

produced for the small VRF instances respecting the 
same generation procedure with the literature. 

According to computational results, the proposed 

techniques ensure an effective solution to the 

problem.  
As far as the managerial impacts of this study are 

concerned, MBPF problem is relatively new problem 

in the literature. However, many applications of this 
problem are avalibale in the real industry. The study 

provides managers an efficient total completion time 

value to ensure customer satisfaction and machine 
utilization. For companies, better solutions to the 

scheduling problems mean shorter completion times 
for their customers and high utilization for the 

machines or a combination thereof. Both effects can 

save a lot of money, which is ultimately the driving 

motivation of any company. Because of that, 
companies invest a substantial part of their budget in 

modern software systems to find such solutions. 

Two limitations of the study are listed below. (i) 
The proposed heuristic algorithm is not compared 

with different algoirthm beucase the aim of the study 

is to show effective strategies to solve the problem. 
Therefore, it may be a limitation  because of the 

lacking in innovation. (ii) The proposed model ant 

algorithm cannot works under uncertanity.  

Future research should be extended with 
sequence-depended setup time and integrated with 

supply chain methodology.  
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