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Abstract 

In this paper, we develop an algorithm to classify 8 dimensional nilsolitons with simple nilsoliton 

derivation. We restrict our classifications to the nilsolitons corresponding to singular Gram matrix 

with nullity 1-3. This work can be considered as a continuation paper to our previous study where 

we introduced a procedure to classify algebras in dimension 8 that admit simple derivations and 

singular Gram matrices U. Having the singular Gram matrices, there exists infinitely many 

solutions to 𝑈𝑣 = [1]𝑚 , where the solutions are exactly the squares of the structure constants. 

Also, the structure constants have to satisfy the Jacobi identity for the algebra to be a Lie algebra. 

In our previous work, we did not introduce a procedure to create and solve the Jacobi identity(s). 

In this study, we take care of this issue by using computer algorithms for each index set. Thus, 

we complete classification of all 8 dimensional in-decomposable nilsolitons with the nullity of 

corresponding Gram matrix is in the set {0,1,2,3}. We provide several examples to illustrate the 

algorithm. For the implementation process of the newly introduced algorithm, we use MATLAB 

R2020b. 
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1. INTRODUCTION 

 

Symbolic computation is an area of mathematics that deals with developing, executing and applying the 

algorithms to manipulate and analyze the mathematical expressions or other mathematical objects. It 

concerns with the formulation of algorithms and mostly exact solutions of symbolic mathematical 

problems.  Implementing these algorithms with regards to the control structures or operations that are 

available in computer programming environments like FORTRAN, GAP, MATLAB ETC is also another 

part of the symbolic computation process. It is a useful tool since it does the computations more 

productively and accurately than doing by hand, or does the computations that are almost impossible to 

carry out by hand. 

 

In recent years, symbolic computation methods have been used for Lie algebra theory which is mostly result 

highly complex symbolic expressions that are very difficult to carry out without the aid of computer 

algorithms. Therefore, it becomes possible to work with structural objects in the Lie algebra theory by the 

introduction and implementation of new algorithms. Nowadays, computer algorithms help computing most 

of the basic objects in structure theory of Lie algebras, such as construction of quotient algebras, minimal 

matrix representation, the centralizer or normalizer of a Lie algebra [1-5]. 

 

There are three methods to represent a Lie algebra and its related structures: Representing a Lie algebra as 

a sub algebra of 𝑔𝑙(𝑛), using table of its structure constants or using generators and relations [3]. In this 

paper, we use the table of structure constants related to a Lie algebra. We vary the Lie algebra structure by 

finding structure constants. Namely we determine a Lie algebra 𝜂 with a fixed basis {𝑋𝑖: 1 ≤ 𝑖 ≤ 𝑛} 
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explicitly by given multiplication table, consisting of structure constants 𝛼𝑖𝑗
𝑘  which are defined by the 

relations 

 

[𝑋𝑖, 𝑋𝑗] = 𝛼𝑖𝑗 
𝑘 𝑋𝑘.                    (1) 

 

For the use of symbolic computations, we use the index set 

 

Λ = {(𝑖. 𝑗. 𝑘) ∶  𝛼𝑖𝑗 
𝑘 ≠ 0, 𝑖 < 𝑗 < 𝑘 }         

  

to encode nonzero structure constants. Since we work on nilpotent Lie algebras, it is possible to consider 

𝑖 < 𝑗 < 𝑘 condition because of the skew-symmetry, and nilpotency.  To construct such index set, we use 

triples (𝑖. 𝑗. 𝑘) ∈ Λ such that i < j < k, and if (𝑖. 𝑗. 𝑘), (𝑖. 𝑗. 𝑚) ∈ Λ then k = m.  Also, if (𝑖. 𝑗1. 𝑘), (𝑖. 𝑗2. 𝑘) ∈
Λ then 𝑗1 = 𝑗2. Basically, we fix a basis  {𝑋𝑖: 1 ≤ 𝑖 ≤ 𝑛}   for the nilpotent Lie algebra  𝜂  with [𝑋𝑖, 𝑋𝑗] =

𝛼𝑖𝑗 
𝑘 𝑋𝑘 ≠ 0. Here for every  𝑖, 𝑗, there is a unique 𝑘 such that 𝛼𝑖𝑗 

𝑘 ≠ 0 and for every 𝑖, 𝑘, there is a unique j, 

such that 𝛼𝑖𝑗 
𝑘 ≠ 0. The existence of such basis was proven by Nikolayevsky in [6].  

 

It is well known that one can define several different Riemannian metrics on Lie groups. Among them the 

most preferable is Einstein metrics mainly because of its Ricci tensor complying the Einstein metric:  

𝑅𝑖𝑐 =  𝑐𝑔 for some constant 𝑐 ∈ 𝐼𝑅.  But unfortunately, Einstein metrics cannot be defined on non-abelian 

nilpotent Lie algebras. Therefore, we consider a left invariant metric 𝑔 on a nilpotent Lie group G called 

nilsoliton metrics satisfying the weaker condition 

 

𝑅𝑖𝑐𝑔 = 𝛽𝐼 + 𝐷                                                                                                  (2) 

 

For some 𝛽𝜖𝐼𝑅  and 𝐷 ∈ 𝐷𝑒𝑟(𝜂). Here 𝑅𝑖𝑐𝑔 denotes the Ricci operator of 𝜂, where 𝜂 is the Lie algebra of 

G and Der( 𝜂) denotes the Lie algebra of derivations of 𝜂. Equation (2) is called nilsoliton condition, D is 

called nilsoliton derivation, and 𝛽 is called nilsoliton constant. 

 

Nilsolitons are an important topic in mathematics for several reasons. First, nilsoliton metric Lie algebras 

are unique up to isometry and scaling. In [7], Theorem 2.11 states that a nilpotent Lie algebra admits a 

nilsoliton metric if and only if it is an Einstein nilradical. Therefore, it indicates that classification of 

nilsoliton metrics on a nilpotent Lie algebra is equivalent to the same of Einstein nilradicals. On the other 

hand, an Einstein solvmanifold 𝛿 can completely be determined by the Lie algebra 𝜂 = [𝛽, 𝛽]. Therefore, 

the study of solvmanifolds are actually the study of nilsolitons. See [7, 8] for a survey on nilsoliton metric 

Lie algebras. 

 

Nilsoliton metrics are classified in different dimensions by several approaches [6, 7, 9-14].  In dimension 

7 and 8 with non-singular Gram matrix in [15] and in dimension 7 in [10, 16]. Also, in [17] the ordered 

type of nilsoliton metrics in higher dimensions were classified. In this paper, we classify 8-dimensinal 

nilsoliton metric Lie algebras with simple nilsoliton derivation D corresponding to a singular Gram matrix. 

On the other hand, Theorem 7 in [18] suggests that the direct sum of nilsolitons is again a nilsoliton. In 

dimension 7 and lower, nilsolitons are classified. Therefore, in higher dimensions, one can easily compute 

nilsolitons by using the direct sums of lower dimensional nilsolitons. By considering any nilpotent Lie 

algebra of dimension less than or equal to 6 is an Einstein nil-radical, and that all nilsoliton metric Lie 

algebras are classified in dimension 7, we focus on studying indecomposable algebras in this paper. 

 

This paper can be considered as a continuation paper to our last two papers. The first of these papers, we 

defined an algorithm which prunes algebras with non-simple derivation and with non-singular Gram matrix 

[19]. But we have not considered the Jacobi identity. The second of these papers, we present some important 

theorems to construct and solve the Jacobi identity. Also, we presented some other theorems regarding to 

the other structural elements of a nilsoliton [20]. In this study, we construct an algorithm with the help of 

the theoretical approach in our last paper. By this study, we have all nilsolitons with nullity 0,1,2 and 3 in 

dimension 8, because we have already classified 8 dimensional nilsoliton metric Lie algebras with simple 
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derivation, where the corresponding Gram matrix is nonsingular [15]. In dimension 8, the classifications of 

such nilsoliton metric Lie algebras can be found in the following theorem: 

 

Theorem 1.1. Let (𝜂, 〈 , 〉) be an 8-dimensional nilsoliton metric Lie algebra with simple nilsoliton 

derivation D. If the corresponding canonical Gram matrix U has nullity 1, 2 or 3, then (𝜂, 〈 , 〉)  is homothetic 

to precisely one of the nilsolitons of dimension 8 that are listed in Tables 1-3. 

 

Proof. The proof of Theorem 1.1 relies on the algorithmic method that is implemented in the computing 

and programming environment MATLAB.   

 

This paper consists of six sections. In the second section, we present preliminary background to construct 

the symbolic computation algorithm. In the third section, we present algorithms and we give some examples 

to illustrate the steps of them. In the fourth section, we present some concluding remarks regarding to the 

computation results. And in fifth section, we present the notations we have used in classification tables with 

the several examples, and in the sixth section, we present classification tables. 

 

We use MATLAB R2020b for the implementation of the computational process. 

 

2. PRELIMINARIES 

  

Let (𝜂, 〈 , 〉 ) be a metric algebra, with  𝜇 ∈ Λ2𝜂⨂𝜂 ∗, and B={𝑋𝑖: 1 ≤ 𝑖 ≤ 𝑛}   be an ordered  〈 , 〉-
orthonormal basis of 𝜂𝜇. The nil-Ricci endomorphism 𝑅𝑖𝑐𝜇 is defined as 〈 𝑅𝑖𝑐𝜇𝑋, 𝑌 〉 = 𝑟𝑖𝑐𝜇(𝑋, 𝑌) , 

where 𝑋, 𝑌 ∈ 𝜂, and 

 

𝑟𝑖𝑐𝜇(𝑋, 𝑌) = −
1

2
∑ 〈[𝑋, 𝑋𝑖] , [𝑌, 𝑋𝑖]〉𝑛

𝑖=1 +
1

4
〈[𝑋𝑖, 𝑋𝑗], 𝑋〉〈[𝑋𝑖, 𝑋𝑗], 𝑌〉 .                                                        (3) 

 

If 𝜂 is a nilpotent Lie algebra, then the nil-Ricci endomorphism is the Ricci endomorphism. Throughout 

this paper, we call the orthonormal basis as a Ricci eigenvector basis, if it consists of eigenvectors for the 

nil-Ricci endomorphism 𝑅𝑖𝑐𝜇. 

 

Let 𝜂 be a nilpotent Lie algebra. 𝜂 and 𝑟 are called an r-step nilpotent Lie algebra and the nilpotency index 

of 𝜂 respectively if  𝜂𝑟 = 0, and 𝜂𝑟−1 ≠ 0. Here the lower central series for the Lie algebra is defined by 

𝜂0 = 𝜂  and 𝜂𝑘 = [𝜂, 𝜂𝑘] for each for 𝑘 ≥ 1.    

 

Let  Λ = {(𝑖, 𝑗, 𝑘): 𝛼𝑖𝑗 
𝑘 ≠ 0, 𝑖 < 𝑗 < 𝑘 } be a finite set that indexes the set of nonzero structure constants 

corresponding to a Lie algebra, ignoring repetitions due to skew-symmetry. For 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛, we define 

1 × 𝑛 row vector 𝑦𝑖𝑗
𝑘 =𝜖𝑖

𝑇+𝜖𝑗
𝑇 − 𝜖𝑘

𝑇, where {𝜖𝑖}1≤𝑖≤𝑛 is the standard orthonormal basis for 𝐼𝑅𝑛. We call the 

vectors in {𝑦𝑖𝑗
𝑘  ∶  (𝑖, 𝑗, 𝑘) ∈ Λ }  as root vectors for Λ. Let 𝑦1, 𝑦2, . . . , 𝑦𝑟 (where r= |Λ| ) be an enumeration 

of the root vectors in dictionary order. Writing each root vectors as the rows, we create a matrix Y, which 

we call “root matrix. It can easily be seen that Y is an 𝑟 × 𝑛 matrix. On the other hand, the Gram matrix U 

is the 𝑟 × 𝑟 matrix defined by 𝑈 = 𝑌𝑌𝑇. It clearly is a symmetric matrix, with each (i, j) entry it is the inner 

product of the 𝑖𝑡ℎand 𝑗𝑡ℎ row vectors in Y. From Theorem 5 in [21] we know that U is a matrix where it’s 

all diagonal entries are 3 and its off-diagonal entries are in the set {−2, −1, 0, 1, 2}.  

 

To classify the Lie algebras, we need to fix our basis to create the possible Lie brackets for nilsolitons. In 

our paper, we use “nice” basis which was defined by Nikolayevski in [6].  We use this type of basis in our 

classifications. This way our Gram matrices corresponding to metric nilpotent Lie algebras does not have 

a 2 or -2 as an entree in their Gram matrices (Lemma 2 in [15]). 

 

Now, suppose that |Λ| = 𝑟 and [1]𝑟 represents a column vector [1  1  1 .   .  . 1]𝑇 in 𝐼𝑅𝑟 
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Theorem 2.1. (Theorem 1 in [21]) Let 𝜂 be a nonabelian metric algebra with the basis B which consists 

of Ricci eigen vectors. Let U and [𝛼2] be the Gram matrix and the structure vector for with respect to B. 

Then 𝜂 satisfies the nilsoliton condition with nilsoliton constant if and only if U [𝛼2]  = 2𝛽[1]𝑟. 

 

Above theorem indicates a Lie algebra 𝜂 admits a nilsoliton metric if and only if the linear system U v = 
[1]𝑟 has a solution v ∈ IRr where all entries are positive real numbers. 

 

3. ALGORITHM 

 

In this section, we present three algorithms that we have used in our classifications. Algorithm Index and 

Algorithm Rank provide algorithm to compute the index and rank of 𝜂 respectively. Algorithm JI provides 

construction and solution to the Jacobi Identity(s) for corresponding index set, and finally the Main 

Algorithm provides all necessary steps for the classifications. 

 

3.1. Algorithm for Computation of the Index and Rank 

 

We start with the definition of the index of a Lie algebra: 

 

Definition 3.1. Let 𝑋 ∈  𝜂, 𝑎𝑑𝑋  denotes the adjoint representation and denotes the dual of the Lie algebra 

𝜂. Then the skew symmetric bilinear form Ψ𝑓 where 𝑓 ∈ 𝜂 ∗ is defined by 

 

𝛹𝑓:  𝜂 × 𝜂 →  𝐼𝑅 

      (X, Y) →   𝛹𝑓(𝑋, 𝑌) = 𝑓(𝑋, 𝑌).   

 

The index of 𝜂 is the integer 𝑖𝑛𝑓{𝑑𝑖𝑚(𝜂𝑓):   𝑓 ∈ 𝜂 ∗}, where 𝜂𝑓 = 𝑘𝑒𝑟(𝛹𝑓) defined by  

 

𝜂𝑓 = {𝑋 ∈ 𝜂 ∶   𝑓([𝑋, 𝑌]) = 0, ∀ 𝑌 ∈ 𝜂}. 

     

Proposition 3.2. (Proposition 4 in [22]) The index of a n-dimensional Lie algebra is the integer  

 

𝑖𝑛𝑑𝑒𝑥𝜂 = 𝑛 − 𝑅𝑎𝑛𝑘𝐿𝐼(𝜂)([𝑋𝑖, 𝑋𝑗])1≤𝑖,𝑗≤𝑛                                                                                                   (4) 

 

where LI (𝜂) is the quotient field of symmetric algebra S (𝜂). 

 

Remark 3.3. Above proposition tells us that the index of a Lie algebra is the nullity of the matrix 𝐿𝐼𝜂 

with (𝑖, 𝑗)𝑡ℎ entrée as [𝑋𝑖, 𝑋𝑗]. 

 

To create the matrix 𝐿𝐼𝜂, we need following properties: 

 

Proposition 3.4. [20] For an n-dimensional nilsoliton represented by an index set Λ with a nice basis, the 

matrix 𝐿𝐼𝜂  is an is 𝑛 × 𝑛 matrix with zero diagonal entries whose rank is even. Also, both of its n-th row 

and column are zero matrices. If the cardinality of the index set Λ is K, then then 𝐿𝐼𝜂  has 2K nonzero 

entries. 

 

Now we define an algorithm "Algorithm Index" regarding to the computation of the index of 𝜂 by symbolic 

methods using computer systems. The input is the index set Λ, and n=dim (𝜂), and the output is the index 

of the Lie algebra. In the algorithm, LI is the matrix in Remark 3.3. 

 

Algorithm 1. Algorithm Index 
 
Let basis = {𝑎1, 𝑎2 , . . . . , 𝑎𝑛} (basis for 𝜂)  
Define the cardinality of Λ as K. 

    Compute matrix 𝑡 by placing each index triple of Λ in dictionary order. 
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for each i, 1 ≤ 𝑖 ≤ 𝐾   do 
 

Define a = t (i,1), b = t (i, 2), c = t (i, 3) (follows from the Remark 3.3.) 
 

Define LI (i,i) = 0, LI (a, b) = basis(c), LI(b, a) =-1.basis(c) 

Define LI(i,n) = 0, LI (n, i) = 0 (follows from the Proposition 3.4). 
 

Index = n- rank (LI). 
 

end for  
 

The Rank: 

 

Let 𝜂 be a metric algebra, and 𝐷𝑒𝑟(𝜂) be its derivation algebra.  The maximal torus is the maximal abelian 

subalgebra of 𝐷𝑒𝑟(𝜂) consisting of semi simple elements. The dimension of a maximal torus is called the 

rank of 𝜂. For the computation of the rank of a nilsoliton, we use following corollary: 

 

Corollary 3.5. (Corollary 3.2.2 in [20]) Let  𝜂 be an n-dimensional nonabelian Lie algebra that admits a 

simple derivation. Let B be an eigenvector basis with index set Λ , and let Y be the root matrix associated 

to Λ. Then the rank of a nilsoliton metric Lie algebra is 

 

rank (𝜂) = n + nullity( 𝑌𝑌𝑇) − |𝛬|                                                                                                      (5) 

 

Therefore, to compute the rank of a Lie algebra, we need to compute the nullity of the Gram matrix,  

K = |𝛬|, and the dimension of the Lie algebra. 

 

3.2. Algorithm for Creating and Solving Jacobi Identities 

 

Now we present theorems which help to create possible Jacobi identities: 

 

Theorem 3.6. [21] Let 𝜂  be an n-dimensional algebra, 𝐵 = {𝑋𝑖: 1 ≤ 𝑖 ≤ 𝑛}   be a basis for 𝜂. Suppose that 

a set of nonzero structure constants 𝛼𝑖𝑗 
𝑘  relative to B indexed by Λ , defines a skew symmetric product on 

𝜂. Assume that if (𝑖, 𝑗, 𝑘) ∈ Λ, then i < j < k. Then the algebra is a Lie algebra if and only 

if whenever there exists m so that the inner product of root vectors 〈𝑦𝑖𝑗
𝑙 , 𝑦𝑙𝑘

𝑚 〉 = −1  for triples 

(𝑖, 𝑗, 𝑙), (𝑙, 𝑘, 𝑚) ∈ Λ, then the equation 

 
∑ 𝛼𝑖𝑗 

𝑠 𝛼𝑠𝑘 
𝑚 + 𝛼𝑗𝑘 

𝑠 𝛼𝑠𝑖 
𝑚 + 𝛼𝑘𝑖 

𝑠 𝛼𝑠𝑗 
𝑚 = 0𝑠<𝑚                               (6) 

         

holds. Moreover,  〈𝑦𝑖𝑗
𝑙 , 𝑦𝑙𝑘

𝑚 〉 = −1 if and only if the term 𝛼𝑖𝑗 
𝑙 𝛼𝑙𝑘 

𝑚   is nonzero. 

   

To illustrate use of above theorem to create Jacobi identities, we have following example: 

 

Example 3.7. Let Λ = {(1,2,4), (1,4,5), (1,5,7), (2,3,6), (2,7,8), (3,6,8), (4,5,8) }. The nullity of the 

Gram matrix 𝑈 = 𝑈Λ is 1. Then the solution to 𝑈[𝛼2] = [1] is 

 

(𝛼12
4 )2 = 𝑥, (𝛼14

5 )
2

= 1/3 ,  (𝛼15
7 )2 = 4/9 − 𝑥 , (𝛼23

6 )2 = 2/9,   (𝛼27
8 )2 = 1/3 − 𝑥 , 

 

 (𝛼36
8 )2 = 2/9,  (𝛼45

8 )2 = 𝑥. 
 

Here 𝑥 stands for the parameter of the solution space. The couple of indexes that leads -1 entrée as 

defined in Theorem 3.6 are (1, 2, 4)(4,5,8) and  (1,5,7) (2,7,8). There is a unique Jacobi identity for m = 

8 in the Equation (6) and the Jacobi identity is:  

 

𝛼12
4 𝛼45

8 + 𝛼15
7 𝛼72

8 = 0.  
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Therefore, the Jacobi identity is √𝑥√𝑥 + √4/9 − 𝑥 √1/3 − 𝑥 = 0, whose solution is 𝑥 = 4/21, and 𝛼2 =
1

63
(12,21,16,14,9,14,12). Since all components of 𝛼2  is positive, then the given index set  corresponds to 

nilsoliton metric Lie algebra, whose eigenvalues of the nilsoliton derivation is  𝐷 =
1

18
(2,4,5,6,8,9,10,14). 

This nilsoliton metric Lie algebra appears in row 50 of Table 1. 

 

Remark:  Considering Theorem 3.6, the Jacobi identity appears only if there exists  (𝑖1, 𝑗1, 𝑘1), (𝑖2, 𝑗2, 𝑘2) ∈

Λ such that 〈𝑦𝑖1,𝑗1

𝑘1 , 𝑦𝑖2,𝑗2

𝑘2  〉 = −1. Therefore, if, 〈𝑦𝑖1,𝑗1

𝑘1 , 𝑦𝑖2,𝑗2

𝑘2  〉 ≠ −1 (which leads to -1 entrée in the Gram 

matrix U) for all couples in the index set, then Jacobi identity is automatically satisfied, i.e., the index set 

corresponds to a Lie algebra. 

 

Lemma 3.8. (Lemma 2.8 in [15]) Suppose that an n-dimensional nilpotent Lie algebra 𝜂 admits a 

derivation D having distinct real positive eigenvalues. Let B be the eigenvector basis for the derivation D,  

Λ indexes the nonzero structure constants with respect to B, and Y be the 𝑟 × 𝑛 root matrix for Λ . If Y has 

a maximum rank, then we have 

 

i. |Λ| ≤ 𝑛 − 1 

ii. 𝐼𝑓 (𝑖1, 𝑗1, 𝑘1), (𝑖2, 𝑗2, 𝑘2) ∈ Λ, then 〈𝑦𝑖1,𝑗1

𝑘1 , 𝑦𝑖2,𝑗2

𝑘2  〉 ≠ −1.  

 

Theorem 3.9. (Theorem 3.2 in [19]) Let 𝜂  be an n-dimensional nonabelian nilsoliton with simple 

derivation where n > 5. Suppose that B is an eigenvector basis regarding to the nilsoliton derivation 𝐷, 

and Λ  indexes the nonzero structure constants with respect to B. If the corresponding Gram-matrix U is 

singular, then |Λ| ≥ 5. 

 

Remark: Considering Lemma 3.8 (ii), if the Gram matrix has a -1 entrée, then the Gram matrix is singular 

whenever the algebra 𝜂 is a nilsoliton metric Lie algebra with distinct positive eigenvalues. On the other 

hand, from Lemma 3.8 (i), we conclude that if the cardinality of the index set is greater than n-1, then the 

Gram matrix is singular whenever the algebra 𝜂 is a nilsoliton metric Lie algebra with distinct positive 

eigenvalues. Also, from Theorem 3.9, the cardinality of the index set being less than 5 corresponds to non-

singular Gram matrices. Since we are considering to classify the nilsoliton metric Lie algebras with distinct 

positive eigenvalues corresponding to a singular Gram matrix, we will eliminate the index set such that 

 

• The cardinality is greater than 7 corresponding a Gram matrix with no -1 entrée. 

•  The cardinality is less than 5. 

 

In order to decide if a given index set corresponds to a Lie algebra, we need to create and solve Jacobi 

identities for each m that appears in Equation (6). The following definition gives a procedure to create 

Jacobi Identities. 

 

Definition 3.10. [20] If there are r product couples in the Jacobi identity for the same m as in Equation (6) 

such that (𝑖, 𝑗, 𝑠), (𝑠, 𝑘, 𝑚) ∈ Λ  or (𝑖, 𝑗, 𝑠), (𝑠, 𝑘, 𝑚) ∈ Λ  then we define 

 

𝑃𝑚 = {𝑝1, 𝑝2, . . . , 𝑝𝑟 ∶  𝑝𝑠 = |𝛼𝑖𝑗 
𝑠 𝛼𝑠𝑘 

𝑚 | ,   1 ≤ 𝑠 ≤ 𝑟 }                                                                                  (7) 

 

We call 𝑃𝑚 as the set of product couples for the same #m in Equation (6). Also, we define the set of all #m 

that appears in the Equation (6) as follows:  

 

𝐴𝑜𝑀 = {𝑚 ∈ 𝐼𝑁 ∶   (𝑖, 𝑗, 𝑠), (𝑠, 𝑘, 𝑚) ∈ 𝛬  𝑜𝑟 (𝑖, 𝑗, 𝑠), (𝑠, 𝑘, 𝑚) ∈ 𝛬  }.                                                    (8) 

  

Theorem 3.11. [20] Let 𝜂 be an algebra that is indexed by Λ , and  𝑈 = 𝑌𝑌𝑇 be the Gram matrix related to 

Λ . Let v belongs to the solution space to the linear system U v = [1] where 𝑣 = [𝛼2] the structure constants 

with respect to a “nice” basis B (as defined in the introduction section), and |𝑃𝑚| = 𝑟. Then the Jacobi 

identity for each 𝑚 ∈ 𝐴𝑜𝑀 is given by 
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√𝑣𝑖𝑗
𝑠1𝑣𝑠1𝑘

𝑚 ± √𝑣𝑗𝑘
𝑠2𝑣𝑠2𝑖

𝑚 ± √𝑣𝑘𝑖
𝑠𝑟𝑣𝑠𝑟𝑗

𝑚 = 0 .                                                                                                     (9) 

 

In the following, we use above definitions and Theorem 3.11 for defining an algorithm that creates Jacobi 

identity for each 𝑚 ∈ 𝐴𝑜𝑀. 

 

Remark 3.12. The above theorem helps one to create Jacobi identity for each m ∈ AoM. So far, we create 

Jacobi Identities in Equation (6) separately for each distinct m in AoM. In this process one needs to make 

sure that for all the products 𝑣𝑖𝑗
𝑠1𝑣𝑠1𝑘

𝑚  in Equation (9) must have the same i,j, and k indices. There can be 

more than one possible {i,j,k} entries in the above equation. In that case, the equation should be written 

and solved separately.  Therefore, besides writing index couples with the same #m in AoM, we should also 

divide index couples with the same #m in terms of their {i,j,k} entrees to create all Jacobi Identities to be 

solved. The following example illustrates this issue. 

 

Example 3.13. Suppose that the index set is Λ = {(1,2,4), (1,4,5), (1,5,6), (2,6,7), (4,5,7), (3,7,8)}. If we 

compute the #m’s that lead -1 entries in the Gram matrix, 𝐴𝑜𝑀 = {7,8}. The couples of index triples that 

lead m=8 are {(2,6,7), (3,7,8)}  and{(4,5,7), (3,7,8)}. The first and the second couple of index triples lead 

to the products 𝛼26
7 𝛼73

8  and 𝛼45
7 𝛼73

8    respectively. Therefore, the first index couple represent the Jacobi 

identity for {i,j,k}={2,6,3} , and the second index couple represent the Jacobi identity for  {i,j,k}={4,5,3}. 

They clearly are different, so they both have to be solved separately as 𝛼26
7 𝛼73

8 = 0  and 𝛼45
7 𝛼73

8 = 0. 

Clearly at least one of the structure constants is zero, therefore this case should be eliminated. 

 

The Procedure to Create Jacobi Identities 

 

If there are r product couples in the Jacobi identity for same 𝑚 ∈ 𝐴𝑜𝑀, to encode those 2𝑟−1 − 1  

number of sign choices, we define a (2𝑟−1 − 1) × (𝑟 − 1)  matrix denoted by 𝑆𝐶 = [𝑠𝑗𝑠] such that for each   

𝑗 ∈ {1,2, . . . , 2𝑟−1 − 1 }, we have 

 

𝑠𝑗𝑠 = {
1
0

    
𝑝𝑠 > 0
𝑝𝑠 < 0

  

  

where 𝑝𝑠 = ±√𝑣𝑖𝑗
𝑠 𝑣𝑠𝑘

𝑚 . The 𝑗𝑡ℎ Jacobi identity is calculated by 𝑝1 + ∑ (−1)𝑠𝑗𝑖𝑝𝑖 = 0𝑟−1
𝑖=1 . For example, if 

there are 3 product couples for 𝑚 ∈ 𝐴𝑜𝑀, then possible Jacobi identities are  

 

𝑝1 + (−1)𝑠11𝑝2 + (−1)𝑠12𝑝3 = 0 

 

𝑝1 + (−1)𝑠21𝑝2 + (−1)𝑠22𝑝3 = 0 

 

𝑝1 + (−1)𝑠31𝑝2 + (−1)𝑠32𝑝3 = 0 

 

 

In order 𝜂 to be a Lie algebra, at least one of the above equations has to be satisfied for each 𝑚 ∈ 𝐴𝑜𝑀. If 

there is more than one entry in 𝐴𝑜𝑀, then we need to find a common solution of Jacobi identities for all m. 

 

Now we present the algorithm for creating and solving the Jacobi identity(s) for a given an index set Λ, 

where its cardinality is K. The input of the algorithm is the index set Λ , and the outputs are 𝑒𝑞𝑛𝑟 for all 

𝑟 ∈ {2,3}. In the Algorithm JI, 𝑒𝑞𝑛𝑟  represents the Jacobi identity consisting of r product couples for each 

𝑟 ∈ {2,3}, W represents the 0/1 matrix, where each row represents possible characteristic vectors for 

canonical index sets for nilpotent Lie algebras of dimension n with singular Gram matrix. We note that r 

cannot be 1 because of the fact that r=1 corresponds to a unique product couple in the equation, which leads 

the fact that at least one of the structure constants is zero.  
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 Algorithm 2. Algorithm JI 

 

𝐾 = |Λ|, and there are 𝑘1 rows appear in W.  
for Each i,  1 ≤ 𝑖 ≤ 𝑘1  do 

 
      Compute matrix t by placing each index triple in Λ  in dictionary order.  
      Compute Gram matrix 𝑈 = 𝑌𝑌𝑇 (it is of size 𝐾 × 𝐾)  
      Use -1 entries of U to create AoM set. 

 
      for each j, 1 ≤ 𝑖 ≤ 𝐾  do 

 
            Define 𝑏 = [1]𝐾 

 
              Find parametric solution 𝑣𝑝 to Uv = b 
 

            Compute SC matrix (Sign choices) 
              Define 𝑒𝑞𝑛𝑟 as in Equation (9) for all r =1, 2…,5.  
        end for 
 
end for  
 
 

3.3. The Main Algorithm 

 

In our previous paper [19], we construct a 0/1 matrix representing all possible characteristic vectors for 

canonical index sets for an n-dimensional nilpotent Lie algebra with singular Gram matrix. Using 

theoretical background, we have pruned the rows corresponding to a unique -1 inner product of root vectors, 

nonsingular Gram matrices, abelian algebras, and non-simple derivations. We also have pruned some of 

the rows of W that correspond to algebras that does not satisfy Jacobi identity in the 14th step of the 

algorithm. For each algebra in the row of W matrix, we first obtain the array of number m’s in Equation (6) 

in the Theorem 3.6. We call the array as Arrayofms which consists of the elements of AoM set. Therefore, 

different number m’s correspond to different equations. Thus, if there is a unique m for Λ, there exists a 

unique product couple 𝑝𝑠 = 𝛼𝑖𝑗
𝑠 𝛼𝑠𝑘

𝑚   in 𝑃𝑚. So, the Jacobi identity turns into 𝛼𝑖𝑗
𝑠 𝛼𝑠𝑘

𝑚 = 0 , which implies 

that 𝛼𝑖𝑗
𝑠 = 0 or 𝛼𝑠𝑘

𝑚 = 0. This is a contradiction to the assumption that the set Λ indexes the nonzero 

structure constants. Therefore, we eliminate these cases in our algorithm. The following is an example of 

such case: 

 

Example 3.14. Let Λ = {(1,2,3), (1,6,7), (3,4,7), (3,5,6), (3,6,8)}, then -1 entries are coming from 
{(1,2,3), (3,4,7)}, {(1,2,3), (3,5,6)}, {(1,2,3), (3,6,8)} and {(1,6,7), (3,5,6)}. Then, 𝐴𝑜𝑀 = {6,7,8} 

respectively. As can be seen, m = 8 is coming only from indexes {(1,2,3), (3,6,8)}. So, corresponding 

Jacobi identity is 𝛼12
3 𝛼36

8 = 0. This kind of cases will be eliminated in our procedure. 

 

So far, we have eliminated the rows that correspond to zero structure constants. But this does not eliminate 

the rows not corresponding to a nilsoliton metric Lie algebra. What we need to do is to compute Jacobi 

identity equation/equations (which are non-linear equations) for each algebra, and find out if there exists a 

common solution to the system of non-linear equations. 

 

For this, we first start with dividing the W matrix in terms of its nullity type. Since we classify nilsolitons 

with the nullity of the Gram matrix is 1- 3, we need to create three submatrices of W, WNullity1 to 

WNullity3 which consist of the rows of W. Please note that the maximum nullity is 5, therefore one needs 

to create WNullity4 and WNullity5 to classify nilsolitons with the corresponding Gram matrices have 

nullity 4 or 5. 

 

Now we present the algorithm that we have used for our classifications. The input is the Prunned W matrix 

in [19], and the outputs are the matrices 𝑊𝑠 and V where each row of these matrices corresponds to a 

nilsoliton with simple nilsoliton derivation, and the common solution to the Jacobi identities respectively. 

Each row of V provides the squares of structure constants to the corresponding nilsoliton. 

 

Find parametric solution 𝑣𝑝  to Uv = b 
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The main algorithm of this study is the following one: 

 

Input: Prunned W ([19]) 

Output: Ws and Vs 

 
 
Algorithm 3. Find Matrix Ws and Vs   
1. Use Theorem 3.9 to eliminate the rows of W that corresponds to an index set where |Λ| < 5 

2. For each submatrix, compute AoM, and sub-index set Λs 

3. Check if each couple of index triples belongs to the same Jacobi Identity (Remark 3.12) 

4. Use Algorithm JI to create system of Jacobi Identities for each entry in AoM 

5. Find common solution v of Jacobi Identities for each entree in AoM and find square of the 

structure constants in v. 
 
6.     if  𝑣 ≤ 0 then 
 

        Delete the row from W  
    else 

 
        Save the solution in Vs matrix 

 
    end if 

 
7. Ws =W = 

 
 

Remark 3.15. To find the solution of the system of Jacobi identities, we use solve and vpasolve 

commands for exact and VPA solutions respectively in MATLAB. 

 

Remark 3.16. After finding Ws, we only need to return all structural elements of the nilsolitons. 

 

4. CONCLUSION 

 

Remark 4.1. After applying above algorithm, we find a counterexample of the reverse of Lemma 3.8. 

Therefore, if none of the inner product of root vectors is -1 does not imply that the Gram matrix of the 

nilsoliton is nonsingular. Additionally, if the cardinality of the index set |Λ| ≤ 𝑛 − 1 does not imply that 

the Gram matrix is nonsingular. The following is one of the examples of this case. 

 

Example 4.2. Suppose that 𝜂 be an algebra which is indexed by the following index set: 

 

Λ = {(1,2,5), (1,3,6), (1,5,7), (1,6,8), (2,4,7), (2,5,8), (3,4,8)}.                                                             (10) 

 

The corresponding Gram matrix is a singular with nullity = 1. Also, it does not have any -1 entry. From 

Theorem 3.6, it is a Lie algebra. Also, since the solution space of Uv = [1] is 

 

 {𝑣 = (𝑥 + 1/19, 6/19 − 𝑥, 𝑥, 5/19 − 𝑥, 5/19 − 𝑥, 3/19, 𝑥):     0 < 𝑥 < 5/19} 

 

from [20] that it is a nilsoliton metric Lie algebra with the magnitudes of the structure constants 

 

|𝛼12
5 | = √𝑥 + 1/19,   |𝛼13

6 | = √6/19 − 𝑥,    |𝛼15
7 | = √𝑥,  |𝛼16

8 | = √5/19 − 𝑥,  

 |𝛼24
7 | = √5/19 − 𝑥,   |𝛼25

8 | = √3/19, | 𝛼34
8 | = √𝑥. 

 

From Theorem 2.5 in [15], the eigenvalues of the derivation are the same for all choices of the parameter 

x. Therefore, without finding exact solution, we only need to use one of the solutions to Uv=[1] which is 
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v0 = [1/19  6/19 0 5/19 5/19 3/19 0]T .The eigenvalues are found by the formula 𝐷 = −𝑣0
𝑇𝑌 + [1]. After 

the computation, we have 

 

D= [7/19 10/19 13/19 14/19 17/19 20/19 24/19 27/19].  

 

Therefore, the given index set corresponds to a nilsoliton metric Lie algebra with distinct positive 

eigenvalues of the nilsoliton derivation of type 7 < 10 < 13 < 14 < 17 < 20 < 24 < 27. Thus, the index set 

of this nilsoliton metric Lie algebra with simple derivation corresponds to a singular Gram matrix U which 

does not have any -1 entrée and |Λ| = 𝑛 − 1 = 7.  
 

Remark 4.3. After running the algorithm, we could not find any 2-step nilpotent Lie algebra with soliton 

metric in dimension 8 where the nullity of the corresponding Gram matrices is in {0,1,2,3}. As we combine 

this result with the results of our previous paper [15], we conclude that there is no 2-step nilpotent Lie 

algebra endowed with a soliton metric in dimension 8, where the nullity of its Gram matrix is 0,1,2 or 3. 

 

5. CLASSIFICATIONS 

 

Classification results for dimension 8 appear at the end of this section. By this classification, we complete 

all nilsoliton metric Lie algebras with the nullity of their Gram matrices are in {0,1,2,3}, and with simple 

nilsoliton derivation in dimension 8. Please note that the Lie algebras appear in Tables 1, 2 and 3 are the 

ones whose nullity of the Gram matrix is 1, 2 and 3 respectively. We use vector notation to represent Lie 

algebra structures, as we did in [15, 17]. 

 

Notation: 

 

1. Lie Bracket column illustrates both structure constants and how Lie bracket functions on a given 

ordered eigenvector bases {𝑋𝑖}𝑖=1
8 . In the following, we give an example to illustrate how to read 

the tables in this section: 

 

Example 5.1.  The Lie bracket type:  

 

(0,0,2√3. 12,0,2√5. 13, √15. 15, 2√3. 24, 2√3. 26 + √15. 35)                                                (11) 

 

illustrates the structure constants together with Lie brackets as follows: 

 

[𝑋1, 𝑋2 ] = 2√3 𝑋3, [𝑋1, 𝑋3 ] = 2√5 𝑋5 , [𝑋1, 𝑋5 ] = √15 𝑋6                                                    (12) 

[𝑋2, 𝑋4 ] = 2√3 𝑋7,  [𝑋2, 𝑋6 ] =  2√3𝑋8,   [𝑋3, 𝑋5 ] =  √15𝑋8 

 

The eigenvalues of the nilsoliton derivation are 
1

120
(13,24,37,48,50,63,72,87). Therefore, the 

nilsoliton is of type 13 < 24 < 37 < 48 < 50 < 63 < 72 < 87. 

 

2. |AoM| shows how many different #m in Equation (6) appears in the Lie algebra. For example, for 

the Lie bracket type 

 

 (0,0,0, √10. 13, √11. 14, √5. 15 + √10. 23, √11. 16 + √11. 24, √10. 17 + √10. 25) 

 

|AoM| is 2, because there are two different 𝑚 ∈ 𝐴𝑜𝑀 which are [7 8]. That means, the number m’s 

in the Equation (6) are 7 and 8. Therefore there are two Jacobi identities as the following:  

               

              For m = 7, the Jacobi identity is 𝛼23
6 𝛼16

7 − 𝛼13
4 𝛼24

7 = 0, where |𝛼23
6 | = √10, |𝛼16

7 | = √11, 

 |𝛼13
4 | = √10, and |𝛼24

7 | = √11. 

 

For m=8, the Jacobi identity is  𝛼24
7 𝛼17

8 − 𝛼14
5 𝛼25

8 = 0, where |𝛼24
7 | = √11    ,  
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|𝛼17
8 | = √10     |𝛼14

5 | = √11    |𝛼25
8 | = √10  

 

in which both are satisfied. Therefore, since both Jacobi identities are satisfied, it is a Lie algebra. 

On the other hand, this solution leads to the squares of the structure constants vector  

 

v = [
2

11
  

1

5
  

1

11
  

1

5
  

2

11
  

2

11
  

1

5
  

2

11
]

𝑇
. As can be seen all of the elements of v are positives. Thus, the 

Lie algebra is nilsoliton. 

 

3. The E/VPA column, the letter E shows that the solution of the Jacobi identity is exact. VPA shows 

that the solution is approximated using VPA (Variable-precision arithmetic). Please note that VPA 

evaluates each element of the symbolic input x to at least 32 significant digits. There is also symbol 

appears in #68 and #69 in Table 1, meaning that there is no -1 entry in their Gram matrix, therefore 

the corresponding Jacobi identity is always satisfied for any real number such that all entries of the 

solution are positive numbers. 

 

4. The Rank column illustrates the dimension of maximal torus of derivations. 

 

5. The Index column illustrates the index of the Lie algebra. 

 

6. The NI column illustrates the nilpotency index of the Lie algebra, i.e. the length of the lower 

central series for the Lie algebra. 

 

Table 1. 8-dimensional nilsoliton metric Lie algebras-nullity 1 

 Lie Bracket Derivation Type |AoM

| 

E/ 

VPA 

Rank Index NI 

1 (0,0,0,0,6.13, √30. 23, √22. 15 +

√22. 24, √30. 16 + 5.25)  

5<6<7<11<12< 

13<17< 18 

1 E 3 4 3 

2 (0,0,0,0, √2. 13, √2. 15 +

1.23, √2. 24, √2. 16 + 1.25)  

2<4<5<6< 

7<9<10< 11 

 

1  E 3 4 4 

3 (0,0,0,0,2.13, √5. 23,2.14,2.16

+ √5. 25) 

8<10<11<16<19< 

21<24<29 

1  E 4 4 3 

4 (0,0,0,0,3.13, √14. 14, √14. 16 +

2√3. 23,2√3. 17 + 4.25)  

2< 5< 6< 7< 8< 9 < 

11<13 

1 E 3 4 4 

5 (0,0,0,0,3√2. 13, √11. 14 +

√22. 23,2√7. 15 +

√14. 24, √22. 17 + 2√7. 26)  

10<15<23<28< 33< 

38< 43< 53 

1 E 2 4 4 

6 (0,0,0,0,3√3. 13, √14. 14 +

√23. 23, √14. 15 + 4.24,3√3. 16 +

√23. 25)  

10<15< 18< 23< 

28< 33< 38< 43 

1 E 2 4 3 

7 (0,0,0,6√5. 13, √165. 23,

√161. 14,4√6. 15 +

2√22. 24, √161. 25 + √46. 34)  

12<13<14<26< 27< 

38< 39< 40 

1 E 2 4 3 

8 (0,0,0, √22. 13,2√7. 23,2√7. 14,

√11. 15 + √14. 24,3√2. 16 +

√22. 25)  

30< 45< 59< 89< 

104<119< 134<149 

1 E 2 4 4 

9 (0,0,0, √21. 13, √22. 14,4√2. 15,

√22. 16 + √29. 23, √21. 17 +

√29. 24)  

5< 20< 22< 27< 

32< 37< 42< 47 

1 E 2 4 6 
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10 (0,0,0,3.12,0,3.23,2√2. 14, √7. 16 

+√2. 25 + √7. 34)  

7<9< 11< 16< 18< 

20< 23<27 

1 E 3 2 3 

11 (0,0,0, √3. 12,0,2.14,2.16 +

√3. 23, √3. 17 + √2. 25 + √3. 34)  

2< 5< 6< 7< 8< 9< 

11< 13 

1 E 2 2 5 

12 (0,0,0, √5. 12,0, √3. 14 +

2.23, √2. 15 + √3. 24, √5. 16 +
2.34)  

7< 10< 14< 17< 

20< 24< 27< 31 

1 E 2 4 4 

13 (0,0,0,6√10. 12,4√39. 23,

√574. 14, √255. 15 +

√442. 34, √451. 16 + √451. 25)  

19< 24< 33< 43< 

57< 62< 76< 81 

1 E 2 2 4 

14 (0,0,0, √819. 12,6√23. 14,

√975. 23, √805. 15 +

√253. 24, √630. 16 + √750. 34)  

45< 90< 104< 135< 

180< 194< 225< 

239 

1 E 2 4 4 

15 (0,0,0,17√6. 12, √1353. 14,

7√41. 15 + 6√39. 23,

2√410. 24, √1978. 16 + 6√43. 34)  

51<107<153<158<

209<260 < 265< 

311 

1 E 2 4 5 

16 (0,0,0, √6. 12,3.13, √10. 15,

√10. 24, √5. 16 + 2.25 + √6. 34)  

2< 4< 5< 6< 7< 9< 

10< 11 

1 E 2 2 4 

17 (0,0,0, √6. 12,5.13, √10. 15 +

2.23, √10. 24,3.16 + √6. 34)  

2< 4< 5< 6< 7< 9< 

10< 11 

1 E 2 4 4 

18 (0,0,0, √21. 12, √29. 13,4√2. 15,

√22. 16 + √22. 24, √21. 25 +

√29. 34)  

17<37< 40< 54< 

57< 74< 91< 94 

1 E 2 2 4 

19 (0,0,0,3.12, √7. 13, √2. 23,

4√2. 14,3.25 + √7. 34)  

7<9< 11< 16<18< 

20< 23< 27 

1 E 3 4 3 

20 (0,0,0,3.12,2√5. 13,3√2. 14 +

4.23,3√2. 24,5.16 + 2√5. 25)  

4< 5< 8< 9< 12< 

13< 14< 17 

1 E 2 4 4 

21 (0,0,0,2√3. 12,3.13, √14. 14,

√14. 16,4.25 + 2√3. 34)  

2< 5< 6< 7<8< 9< 

11< 13 

1 E 3 2 4 

22 (0,0,0,3√91. 12, √630. 13,

6√23. 14, √805. 16 +

√253. 24,5√39. 25 + 5√30. 34)  

45< 90< 119< 135< 

164< 180 < 225< 

254 

1 E 2 2 4 

23 (0,0,0,3√3. 12,3√3. 13, √14. 14,

√14. 15 + 4.24, √23. 25 +

√23. 34)  

5< 7< 9< 12< 14< 

17< 19< 21 

1 E 2 4 3 

24 (0,0,0,2√42. 12,9√2. 13,3√11. 14,

√77. 15 + √110. 24, √33. 16 +

√140. 25 + 3√5. 34)  

2< 3< 4< 5< 6< 7< 

8< 9 

1 E 1 2 4 

25 (0,0,0, √31. 12,2.13,3√2. 14 +

5.23, √14. 15 +  2√5. 24,

√31. 16 + 5.34)  

2< 3< 4< 5< 6< 7< 

8< 9 

1 E 1 4 4 

26 (0,0,0, √33. 12,9√2. 13,3√11. 14 +

3√15. 23, √77. 15 +

√110. 24,2√42. 16 + √140. 25)  

2< 3< 4< 5< 6< 7< 

8< 9 

1 E 1 4 4 

27 (0,0, √11685. 12,0,2√3399. 13,

4√1030. 23,14√103. 15 +

2< 3< 5< 6< 7< 8< 

9< 11 

1 E 1 2 5 
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√7885. 24, √13653. 17 +

√12566. 26 + √9215. 34)  

28 (0,0, √287. 12,0, √176. 13,

√456. 23, √287. 15 +

√246. 24, √374. 16 + √323. 25)  

15< 19< 34< 45< 

49< 53< 64< 68 

1 E 2 4 4 

29 (0,0, √46. 12,0,6√5. 13, √161. 15

+ 4√6. 23, √161. 24, √165. 16

+ 2√22. 25) 

7<14< 21< 24< 28< 

35< 38< 42 

1 E 2 4 5 

30 (0,0, √22. 12,0, √30. 13,6.23,

√22. 14,5.16 + √30. 25)  

4<5< 9< 11< 13< 

14< 15<18 

1 E 3 4 4 

31 (0,0, √14. 12,0,3√3. 13, √14. 14 +

√23. 23,4.24,3√3. 16 + √23. 25)  

20<23<43<46<63< 

66< 69<86 

1 E 2 4 4 

32 (0,0, √253. 12,0,3√70. 13,

6√23. 14, √105. 16 +

√819. 23,5√30. 17 + √975. 25)  

37< 90< 127< 

143<164< 180< 

217< 254 

1 E 2 4 4 

33 (0,0, √442. 12,0, √451. 13,

√255. 14 +

√451. 23, √574. 15, √624. 26 +

6√10. 34)  

17< 22<39< 44< 

56< 61< 73< 83 

1 E 2 2 4 

34 (0,0,4.12,0,3√3. 13, √14. 14,

√14. 15 + 3√3. 23, √23. 17 +

√23. 25)  

7< 14<21< 27< 28< 

34< 35< 42 

1 E 2 4 5 

35 (0,0, √14820. 12,0, √15774. 13,

√7885. 14 +

√19120. 23, √23422. 15,

√6692. 17 + √22464. 26 +

√11952. 34)  

2< 3<5< 6< 7< 8< 

9< 11 

1 E 1 2 5 

36 (0,0,2√255. 12,0, √5610. 13, 

√3071. 14 + 20√17. 23,

√8330. 15 + 4√249. 24,

2√1591. 17 + 8√129. 26)  

2< 3< 5< 6< 7< 8< 

9<11 

1 E 1 4 5 

37 (0,0, √1533. 12,0, √3120. 13,

√1022. 14 + √2720. 23,

√1533. 15 + √1460. 24,

√2574. 16 + √2244. 25)  

2< 3<5< 6< 7< 8< 

9< 10 

1 E 1 4 4 

38 (0,0, √10925. 12, √16709. 13, 

√5642. 23, √14030. 14,

√11718. 25, √9690. 26 +

√12444. 34)  

65< 82< 147< 212< 

229< 277< 311< 

359 

1 E 2 4 5 

39 
(0,0, √

495

2716
. 12, √

55

201
. 13, √

58

497
. 23,

√
699

2770
. 14, √

31

497
. 16 +

√
50

251
. 25, √

77

488
. 26 + √

220

1007
. 34)  

1478229562 <
 2217119646 <
3695349208, <
 5173384043 <
 5912403141 <
 6651461046 <
8129676552 <
868681594  

1 E 1 2 5 
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40 (0,0,2√3. 12,4.13,0,2√3. 14,2.15,

√13. 26 + √13. 34)  

8< 27<35< 43< 48< 

51< 56< 78 

1 E 3 2 5 

41 (0,0,2.12, √5. 13,0,2.14,1.15 +
1.23,2.26 + 2.34)  

3<8< 11< 14<16< 

17< 19< 25 

1 E 2 2 5 

42 (0,0,6√2. 12, √85. 13,0,8.14 +

√34. 23, √34. 15,9.26 + 6√2. 34)  

4< 8< 12< 16< 17< 

20< 21< 28 

1 E 2 2 5 

43 (0,0, √11. 12, √21. 13, √21. 14,

3√3. 23,2√5. 15, √14. 16 +

3√2. 24)  

19< 50< 69< 88< 

107< 119< 126< 

138 

1 E 2 4 5 

44 (0,0,8.12, √85. 13,6√2. 14, √34. 15, √34. 16,6√2. 25
+ 9.34) 

2< 11< 13< 15< 

17< 19< 21< 28 

1 E 2  2 6 

45 (0,0, √26. 12, √31. 13, √30. 14,

4.15, √11. 16 + √11. 23, √26. 25 +

√30. 34)  

1<4< 5< 6< 7<8< 

9< 11 

1 E 1 2 6 

46 (0,0, √603. 12, √1995. 13, 

√1943. 14, √2680. 15, √1742. 16 +

√2695. 23, √1824. 17 +

√2464. 24)  

1< 4< 5< 6< 7< 8< 

9< 10 

1 E 1 4 7 

47 (0,0,0,0, √19. 12, √22. 23,2√3. 15 +

√13. 24, √19. 17 + √22. 36 +

√13. 45)  

18<22< 27< 36< 

40< 49< 58< 76 

1 E 2 2 4 

48 (0,0,0,0, √29. 12, √22. 13, √22. 15 

+√29. 24, √21. 17 + 4√2. 36 +

√21. 45)  

11< 20< 21< 

22<31< 32< 42< 53 

1 E 2 2 4 

49 (0,0,0,0,3√2. 12,3√2. 13,3√2. 14 +

√10. 23, √21. 27 + 4.36 +

√21. 45)  

46< 51< 56< 61< 

97< 102< 107<158 

1 E 2 2 4 

50 (0,0,0,2√3. 12, √21. 14, √14. 23,

4.15,3.27 + √14. 36 + 2√3. 45)  

2< 4< 5< 6< 8< 9< 

10< 14 

1 E 2 2 5 

51 (0,0,3.12,0,0, √14. 13,3.16 +

√6. 24,3.27 + 3.36 + √6. 45)  

5< 9< 14< 15< 18< 

19< 24< 33 

1 E 2 2 5 

52 (0,0,0,0, √238. 14, √253. 23, 

√253. 15 + 2√21. 34, √153. 17 +

√230. 26 + 3√6. 35)  

11<18< 22< 25< 

36< 40< 47< 58 

1 E 2 2 4 

53 (0,0,0,0,6√23. 13,5√30. 14 +

√253. 23,5√39. 24,3√70. 17 +

3√91. 26 + √805. 35)  

83< 90< 97< 104< 

180< 187< 194< 

277 

1 E 2 2 3 

54 (0,0,0,0,4√2. 13, √21. 14, √22. 15 

+√29. 24, √21. 17 + √29. 26 +

√22. 35)  

21< 40< 42< 44< 

63< 65< 84< 105 

1 E 2 2 4 

55 (0,0,0,0, √414. 13, √260. 14 +

√391. 23, √529. 15 + √338. 24,

√430. 17 + √559. 26 + √138. 35)  

2< 3< 4< 5< 6< 7< 

8< 10 

1 E 1 2 4 

56 (0,0,0,0,3.12,2√2. 15 +

2.23,2.25 + 2√2. 34, 3.16 + 2.35)  

10< 19< 20<28< 

29< 39< 48< 49 

1 E 2 2 4 
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57 (0,0,0,0, √21. 12,2√5. 14 +

√14. 23, √21. 25 +

√11. 34,3. √3. 16 + 3√2. 35)  

38< 50< 63< 75< 

88< 113< 138< 151 

1 E 2 2 3 

58 (0,0,0,0, √2. 12, √2. 14 +

√2. 23, √2. 24, √3. 16 + √3. 35)  

5< 6< 7< 8< 11< 

13< 14< 18 

1 E 3 2 3 

59 (0,0,0,0,2.12, √3. 14 +

2.23, √2. 15 + √3. 24, √5. 16 +

√5. 35)  

8< 11< 13< 16< 

19< 24< 27< 32 

1 E 2 2 3 

60 (0,0,0,0,3√3. 12,3√3. 13, √14. 16 +

4.25 + √14. 34, √23. 26 +

√23. 35)  

27< 28< 29< 54< 

55< 56< 83< 84 

1 E 2 2 3 

61 (0,0,0, √22. 12,3√2. 13, √22. 14,  

2√7. 24, √11. 17 + √14. 26 +

2√7. 35)  

4< 5< 7< 9< 11< 

13< 14< 18 

1 E 2 2 4 

62 (0,0,0, √13. 12,3.13,4.14,3.16 +

4.24,2√2. 17 + 2√2. 26 + √19. 35)  

2< 4< 5< 6< 7< 8< 

10<12 

1 E 1 2 5 

63 (0,0,0, √391. 12, √414. 13, 

√430. 14, √138. 15 +

√559. 24, √260. 17 + √338. 26 +

√529. 35)  

2< 3< 4< 5< 6< 7< 

8< 10 

1 E 1 2 4 

64 (0,0,3.12,0, √21. 23, √14. 14,

√14. 16 + 2√3. 25,2√3. 17 + 4.35)
  

2< 3< 5< 7< 8< 9< 

11< 13 

1 E 2 4 5 

65 (0,0,2√3. 12,0,2√5. 13, √15. 15,

2√3. 24,2√3. 26 + √15. 35)  

13< 24< 37< 48< 

50< 63< 72; < 87 

1 E 3 4 5 

66 (0,0,2√6. 12,0,2√10. 13, √31. 15,

2.16 + 2√6. 24,2√6. 26 + √31. 35)  

25< 52< 77< 100< 

102< 127< 152< 

179 

1 E 2 2 5 

67 (0,0,2√6. 12,0,2√10. 13,2.14,

2√6. 15 + 2√6. 24, √31. 27 +

√31. 35)  

32< 45< 77< 96< 

109< 128< 141< 

186 

1 E 2 2 5 

68 (0,0,0,0, 1.12, 1.13, 1.15+1.24, 

1.16+1.25+1.34) 

7 < 10 < 13 < 14 < 

17 < 20 < 24 < 27 

0 - 2 2 3 

69 (0,0,0,12,13,14,15+23,16+24) 5 < 10 < 14 < 15 < 

19 < 20 < 24 < 25 

0 - 2 4 4 

70 (0,0,0, √2. 12, √7. 13,3.23,2√2. 14,

√7. 16 + 3.25)  

7 < 9 < 11 < 16 < 18 

< 20 < 23 < 27 

1 E 3 4 3 

71 (0,0,0,0, √30. 13, √22. 16 +

5.23, √22. 24,6.16 + √30. 25)  

(5,6,8,9,13,14,15,19) 1 E 3 4 3 

72 
(0,0, √

19

269
. 12, √

9590

46357
. 13, √

11900

46357
. 23,

√
36

151
. 14, √

13289

139071
. 15 +

√
16490

139071
. 24 , √34. 5 + √

22

151
. 16 +

√
86

453
. 25)  

29588 < 44383
< 73971
< 103562
< 118357
< 133152
< 147947
< 162742 

1 E 1 4 5 
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73 (0,0,0, √7. 12, √7. 13, √2. 24, √2. 25

+ √2. 34 + 3.45) 

5 < 8 < 10 < 13 
<  15 <  21  
< 23 < 28 

2 E 3 4 3 

 

Table 2. 8-dimensional nilsoliton metric Lie algebras-nullity 2 

 Lie Bracket Derivation 

Type 

|AoM| E/ 

VPA 

Rank Index NI 

1 (0,0,0, √10. 13, √11. 14, √5. 15 +

√10. 23, √11. 16 +  √11. 24,

√10. 17 + √10. 25)  

8 < 24 < 35 <
43 < 51 <
59 < 67 < 75  

2 E 2 4 6 

2 (0,0,0,1.13,1.14,1.15 + 1.23,1.16 +
1.24,1.17 + 1.25 + 1.34)  

1 < 3 < 4 <
5 < 6 < 7 <
8 < 9  

2 VPA 1 2 6 

3 (0,0,0,1.12,1.13,1.23,1.15 +
1.24,1.16 + 1.25 + 1.34)  

5 < 6 < 7 <
11 < 12 <
13 < 17 < 18  

1 VPA 2 4 3 

4 (0,0,1.12, 1.13, 1.23,1.15+1.24,1.25, 
1.16+1.34) 

8 < 9 < 17 <
25 < 26 <
34 < 35 < 42  

2 VPA 2 2 5 

5 (0,0,1.12,1.13,0,1.15 + 1.23,1.16 +
1.24,1.17 + 1.34)  

5 < 14 < 19 <
24 < 28 <
33 < 38 < 43  

2 EA 2 4 5 

6 (0,0,1.12,1.13,1.14,1.15,1.25 +
1.34,1.17 + 1.26)  

1 < 4 < 5 <
6 < 7 < 8 <
11 < 12  

2 VPA 2 2 6 

7 (0,0,1.12, 1.13, 1.14, 1.15+1.23,1.25+ 
1.34, 1.17+ 1.26), 

1 < 3 < 4 < 5
< 6 < 7 < 9
< 10 

2 VPA 1 2 6 

8 (0,0, √806361. 12,120√78. 13, 

√922743. 14, 4√29666. 15 +

20√1430. 23, 12√4914. 16 +

6√10010. 24, √837983. 25 +

√958929. 34)  

1 < 3 < 4 < 5
< 6 < 7 < 8
< 9 

2 VPA 1 4 6 

9 (0,0,0,√14.12, √14. 13, √6. 24, 

√13. 25+√13.34,√14.17+ √13.45), 

5 < 8 < 10
< 13 < 15
< 21 < 23
< 28 

2 E 3 2 4 

10 (0,0,0,1.12,1.13,1.24,1.25 +
1.34,1.17 + 1.26 + 1.45)  

20 < 29 <
38 < 49 <
58 < 78 <
87 < 107  

2 VPA 2 2 4 

11 (0,0,0,1.12,1.14 + 1.23,0,1.15 +
1.34,1.27 + 1.36 + 1.45)  

22 < 25 <
44 < 47 <
69 < 72 <
91 < 116  

2 VPA 1 4 5 

12 (0,0,0,1.13,0,1.14 + 1.23,1.16 +
1.24,1.17 + 1.26 + 1.35)  

7 < 14 < 17
< 24 < 28
< 31 < 38
< 45 

2 VPA 2 4 5 
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13 (0,0,0,1.13,1.23,1.14,1.15 +
1.24,1.17 + 1.26 + 1.35)  

8 < 13 < 16 <
24 < 29 <
32 < 37 < 45  

2 VPA 2 4 4 

14 (0,0,0,1.12,1.14 + 1.23,1.24,1.15 +
1.34,1.17 + 1.26 + 1.35)  

18914 <
28370 <
37828 <
47284 < 66199 

< 75657 <
85113 <
104027  

2 VPA 1 2 5 

15 (0,0,0,1.12,1.13,1.14 + 1.23,1.15 +
1.24,1.17 + 1.26 + 1.35)  

2 < 3 < 4 < 5
< 6 < 7 < 8
< 10 

1 VPA 1 2 4 

16 (0,0,1.12,0,1.23,1.24,1.16 + 1.25
+ 1.34,1.17 + 1.35) 

7 < 8 < 15 <
16 < 23 <
24 < 31 < 38  

2 VPA 2 2 5 

17 (0,0,1.12,0,1.14 + 1.23,0,1.16
+ 1.25 + 1.34,1.17
+ 1.35) 

7 < 8 < 15 <
16 < 23 <
24 < 31 < 38  

2 VPA 2 2 5 

18 (0,0, √37. 12,0,3√5. 13, √37. 15 +

√37. 24,5.16 + 5.34,2√10. 26 +

2√10. 35)  

41 < 71 <
112 < 123 <
153 < 194 <
235 < 265  

2 E 2 2 5 

19 (0,0,3√2. 12,4.13, √19. 14,0,3√2. 25 

+√19. 34, √14. 17 + 2.26 +

√14. 35)  

1 < 4 < 5 <
6 < 7 < 8 <
11 < 12  

2 E 2 2 6 

20 (0,0,1.12,1.13,1.14,1.23,1.25 +
1.34,1.17 + 1.35)  

1 < 4 < 5 <
6 < 7 < 9 <
11 < 12  

2 VPA 2 2 6 

 
Table 3. 8-dimensional nilsoliton metric Lie algebras-nullity3 

 Lie Bracket Derivation 

Type 

|AoM| E/VPA Rank Index NI 

1 (0,0,0, √5. 13, √5. 14 + √5. 23, √6. 15 +

√6. 24, √5. 16 + √6. 25, √5. 17 + √5. 26)  

1 < 2 <
5 < 6 <
7 < 8 <
9 < 10  

3 E 2 4 6 

2 (0,0,0,1.13, 1.14 + 1.23, 1.15 +
1.24, 1.16 + 1.25, 1.17 + 1.26 + 1.34)  

1 < 2 <
4 < 5 <
6 < 7 <
8 < 9  

3 VPA 1 2 6 

3 (0,0,0, √15. 12, √14. 14 +

√14. 23, √15. 15 + √14. 34, √10. 16 +

√10. 35, √15. 26 + √15. 45)  

8 < 13 <
16 < 21 <
29 < 37 <
45 < 50  

3 E 2 2 5 

4 (0,0, √15. 12, √14. 13, √15. 14, √15. 25 +

√15. 34, √14. 16 + √14. 35, √10. 17 +

√10. 45)  

1 < 20 <
21 < 22 <
23 < 43 <
44 < 45  

3 E 2 2 7 
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5 (0,0, 2√14. 12, 2√6. 13, √56. 14, 2√14. 25 +

√57. 34, 2√13. 16 + 2√13. 35, 2√14. 27 +

2√13. 36)  

13 < 20 <
33 < 46 <
59 < 79 <
92 < 112  

3 E 2 2 7 

6 (0,0, 0,

√323. 12, 2√17. 14

+ 4√7. 23, √252. 24, √323. 15

+ 4√7. 34, 6√5. 27, +8√5. 36 + 6√5. 45) 

22< 25< 

44< 47< 

69< 72< 

91< 116 

2 E 2 2 5 

7 (0,0,1.12, 0, 1.13, 1.14 + 1.23, 1.16
+ 1.25, 1.27 + 1.36 + 1.45) 

4<5 < 9< 

10< 13< 

14< 18< 23 

2 VPA 2 2 5 

8 (0,0,1.12, 1.13, 1.14, 1.15 + 1.23, 1.16
+ 1.24, 1.27 + 1.36 + 1.45) 

1< 3< 4< 

5< 6< 7< 

8< 11 

2 VPA 1 2 7 

9 (0,0, 6√5. 12, 0, 4√7. 14 + 4√17. 23,

6√7. 24, 8√5. 16 + 6√5. 25

+  4√7. 34, √323. 35) 

7< 8< 15< 

16< 23< 

24< 31< 38 

2 E 2 2 5 

10 (0,0, 6√5. 12, 4√17. 13, √323.  14,

6√7. 15, 6√5. 25

+ √323. 34, 8√5. 26

+  4√7. 35) 

1< 4< 5< 

6< 7< 8< 

11< 12 

2 E 2 2 6 

11 (0,0,2√2. 12, √5. 13, √7. 14 + √5. 23 , 1.15

+ 1.24, 2√2. 25

+ √7. 34, √7. 17 + √7. 35) 

1< 2< 3< 

4< 5< 6< 

7< 8 

3 E 1 2 6 
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