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Abstract

The purpose of this paper is to introduce a Kantorovich variant of Lupag-Stancu operators
based on Polya distribution with Pochhammer k-symbol. We obtain rates of convergence
for these operators by means of the classical modulus of continuity. Also, we give a
Voronovskaja type theorem for the pointwise approximation. Furthermore, we construct
a bivariate generalization of these operators and we discuss some convergence properties
of them. Finally, we present some figures to compare approximation properties of our new
operators with those of other operators which are mentioned in this paper. We observe
that the approximation of our operators to the function f is better than that of some
other operators in a certain range of values of k.

Mathematics Subject Classification (2020). 26A16, 41A10, 41A25, 41A36

Keywords. Bernstein operators, Stancu operators, Lupag operators, Kantorovich
operators, Polya distribution, modulus of continuity, Lipschitz class, Voronovskaja type
theorem, Pochhammer k-symbol

1. Introduction

In the field of approximation theory, Bernstein operators have considerable importance
in the proof of the Weierstrass approximation theorem. In 1912, Bernstein [9] presented
the well-known Bernstein operators in the following form

n

. _ n m o n—m m

Bn(f,x)—z<m>x (1-2) f<n>,fe(][0,1], (11)
m=0

where C'[0,1] is the space of all real-valued continuous functions on [0,1]. Since they

are functional in studying many problems and convenient in computer-aided studies, they

have important generalizations and applications. We refer to [1,2,23,28,29,32].
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In 1968, Stancu [35] introduced the operators P . C [0,1] — C'[0,1]
- m
=3 stk s (2). (1.2
m=0 n

with a nonnegative parameter a where pf% is defined by

n—m—1

m—
H z + ra) H (1 -2+ pa)
v=0 n=0

b0 = () Cra i e o e

(1.3)

for n € N. It is worthy of note that for « = 0, the operators (1.2) lead to the classical
Bernstein operators given by (1.1).
After Stancu’s paper, by taking into account the special choice a = % in (1.2), Lupas

1
and Lupasg [19] constructed the operators qu<,"> :C'[0,1] — C'[0, 1] as follows

PSP (i) = ;Z',Z( ) (na)y (0= o), f (2. (1.4)

n

where (s),, is a rising factorial, also known as the Pochhammer symbol, namely

(S)m:{s(s+1)(s+2)...(s+m—1) for m € N (15)

1 form =0, s #0,

where s is a real or complex number.
In 1989 Razi [33] defined the Kantorovich modification of the Bernstein-Stancu ope-

rators P, ( f;z) as follows

m+1
n n+1
K (fia) = (1) Y ploh (@) [ 1 (0
m=0 m
n+1

and studied some approximation properties. For o = 0, these operators return to the
classical Bernstein Kantorovich operators

Ko (f;2) = (n+1) Zijo( " )xm (1— )" 7f(t) dt. (1.6)

In 2012, Miclaus [20] reconsidered the operators given by (1.4) and recalculated some of
the properties such as moments, the remainder term and the monotocity of the operators
with a different technique. Also, asymptotic behaviour of the operators (1.4) was discussed.

In 2016, for o = % the Kantorovich modification of Lupas operators PT§ ) (f;x) based

on Polya distribution was studied by Agrawal et al. [6] as follows
DA (i) = 1) G 32 (1) (0 =)
’ 2n (2n)! o nem
m+1
n+1

f@dt, fecClo,1], (1.7)

X
e

3
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local and global approximation properties were obtained. Furthermore, the authors intro-
duced the bivariate form of the operators (1.7) as follows

1 1
Dm(,Z; "2)(fxy) (n1+1) (na+1 Z anﬁ{z;:,%{% (z,y)
mi1=0mo=0
+1 m2+1

m/

+1 n2+1

f(t,s)dtds, (1.8)

for f:C (J?) — C (J?), J =10,1] where

2n1! 2ng!
1 ,1 - 1: 2- ni ng
p’gll/,;lli,’rT{ﬁ?’er (mﬂy) (2”1) (2n2) < my > ( Mo ) (nlx)ml

X (N1 —m12),, _p, (M20) g, (N2 —12Y),,, 0

and they gave some rates of convergence for these operators.

Recently, many authors have studied new applications of the linear positive operators
based on Polya distribution. We refer to [3-5,10,11,13-15,21,22,26, 31].

In 2007, the notion of Pochhammer k-symbol was first proposed by Diaz and Pariguan
n [12]. For A € C, it is defined by

{ AA+E)A+2k) . (A+(m—1k); m>1

1 ;. m=0, A#0, (1.9)

()‘)m,k =
where m € N and k is a nonnegative real number. It is easy to see that for k = 1, the
definition of Pochhammer k-symbol coincides with the usual Pochhammer symbol which
is given by (1.5). This investigation has revealed many new generalizations such as k-
Gamma function, k-Beta function, k-Zeta function, k-generalization of hypergeometric
function and so on. For more details, see [12,16-18, 24, 25].

Our present study is essentially motivated by the results based on Polya distribution in
[19] and [20], and the Pochhammer k-symbol given by [12]. We define a slight modification
of Polya distribution for the special case a = % where k is a nonnegative real number by
applying the notion of Pochhammer k-symbol. The main objective of this paper is to
investigate the rates of convergence of the operators.

The structure of the paper is as follows. In section 2, we first consider a Lupa§ type gene-

(%)

ralization P, 3" (f; ) for the case a = of the Bernstein-Stancu operators P ( fiz). W

k S
compare the convergence of the operators P7S %> (f; x) with that of the operators P7§ ") (f;x)
using some graphics. We show that for 0 < k < 1 the operators P < ) (f;x) give a better

approximation than P," () (f;x). Then we introduce a Kantorov1ch—Stancu modification of

(%)

the Lupas type operators P}’ with Pochhammer k-symbol and present some approxima-
tion properties of these operaltors. More precisely, we estimate the rates of the convergence
by means of the classical modulus of continuity and discuss pointwise approximation via
Voronovskaja type theorem. Section 3 presents a biv%riate generalization of Kantorovich-
Stancu modification of the Lupag type operators Pé? Some preliminary results for the
bivariate operators are given and some approximatibn properties are discussed. Finally,
taking into account some illustrative graphics which are obtained with the help of Maple
software, we compare the rates of convergence of our bivariate operators with those of
some other operators for the different values of the parameter k.
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2. Lupas type operators by means of Pochhammer k-symbol

Before starting this section, we briefly describe the Lupas type operators that play
an important role in this paper. Let C[0,1] be the space of all real valued continuous
functions on [0, 1] endowed with the norm

[flley = sup |f (2)].
z€[0,1]

Let n € N and k be a nonnegative real number. By taking into account the special choice
k
a =% in (1.2), the operators PT§2> : C'[0,1] — C'[0,1] are defined by

P U= g 3 () s =it (2. 1)

where (X),, .. is a Pochhammer k-symbol given by (1.9) . For the case k = 0, the operators
(2.1) turn to the classical Bernstein operators. For k = 1, the operators (2.1) reduce to

k
the Lupag operators given by (1.4). In this paper, we deal with the operators Pé? (f;x)
for the case k& > 0.

Now, we begin our study by giving moments, central moments and rate of convergence
for the operators (2.1). We first give Lemma 2.1, Lemma 2.3 and Corollary 2.2 without
proof, which follow from the results given in the paper [20] for a = %, k> 0.

Throughout this paper, let us denote the monomials e; () = t/ for j € Ng where N is
the set of positive integers and No = NU {0} .

k
Lemma 2.1. Let n € N and k > 0. Then for the operators P7§2> defined by (2.1), we
have

P (ensa) = 1.
Pr§§> (61; .%') =z,
P oyt 4 20 =)

n+k
B4 (Bn+2k—2)(k+1)22(1 —x)
(n+k) (n+ 2k)

CE+1D)(k+1)z(1—2x)

(n+k) (n+ 2k) ’
N (k+1)((11n —6) (k — 1) + 6 (n? + k?)) 2® (1 — 2)

(n+ k) (n+ 2k) (n+ 3k)
(k+1)(Tn+11nk +6 (k* — k — 1)) 2® (1 — z)
(n+ k) (n+ 2k) (n + 3k)

(k+1)(n—k+6nk(k+1)z(1—a2)
n(n+ k) (n+ 2k) (n+ 3k)

S9
x>3|=
~
—
D
w
&
N—
Il
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Corollary 2.2. Letn € N and k > 0. Then the central moments of the operators Pé?
are given by

k Ek+lDz(1l—x

P7§,7c> ((61-%’)2;33):( +n)+(k )’
E) N (k1) R+ 2 (1 —2)(1 - 22)

Poj! ((e1=2)"s) = (n+ k) (n + 2k) ’
(k) ((e 796)4_96) (k+1)3n(—2+n+k(—6—6k+n)) (z(1—x))?
RO ’ n(n+k) (n+2k) (n+ 3k)
n (k+1)(n+k(-14+6(k+1)n)z(l—2x)

n(n+k)(n+ 2k) (n+ 3k)

Lemma 2.3. Let n € N and k > 0. Then for every f € C[0,1], we have

lim P53 (f10) = £ (2)

n—o0

uniformly in [0,1].
For § > 0, the modulus of continuity of f denoted by w (f; ) is defined by
w(f;6) = sup [f(t)—f(z). (2.2)

z,t€[a,b]
|t—x|<o
Then, for any ¢ > 0 and each z € [a, b], it is well known that
t—x
0 -1@l< (0 r1)wo. (23)
k

For a =, k > 0, we can give the next theorem from the results given in [32].

Theorem 2.4. Letn € N and k > 0. Then for every f € C'[0,1], the following inequality

holds
[k+1
c[o,1] 2 n—+k
for k =1, which concludes that

‘ < 3 f 2
—w | f, )
C[0,1] -2 n+1

Remark 2.5. Let n € N. Then for every f € C'[0,1], the inequality

| 20— 7 @

P (fix) — f ()

k

P7§7,2> ((61 - x)z;x) < P,§%> ((61 - x)2;:x)

k

holds for 0 < k < 1. In the case of £ = 0, the operators P7$Z> become the classical

Bernstein operators which give the best result concerning the approximation behaviour.
k

For 0 < k£ < 1, the approximation of the operators Pni is at least as good as that of the
1
classical operators Pé”>
k
Now, we demonstrate the behaviour of the approximation for the operators Prf}ﬁ by
graphical examples.

Example 2.6. Let f(z) = 202% 4+ 32% — 522 + 22, n = 10 and k¥ = 0.1. In Figure 1,

k 1
we analyse the convergence of the operators Pé'é}, the classical operators P,§”> and the

classical Bernstein operators B, to the function f. It is seen that for k = 0.1 the operators

() (3)

ni provide a better approximation than the operators Py
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Figure 1. Convergence of P<7€>, P,g"> and B,, to the function f for n =10 and k£ = 0.1

n’

Example 2.7. Let us consider f (z) = sin (67z) + 5sin (%mv) . Figure 2 illustrates the

k
approximation process of the operators Pn<7’,;> for £k = 0.5 and the special choices of n =
10,50 and 100. It can be observed that as the value of n increases, the approximation of

(%)

the operators P 7' is getting better.

—_

0 02 0.4 0.6 08

n=100 n=50 n=10 function |

k
Figure 2. Approximation of the operators P7$7€> for £k = 0.5 and n = 10, 50, 100
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Example 2.8. Let f(z) =3 (332 + 5x) cos (%m) . Figure 3 presents the convergence of

k
Pé’]c) to the function f for n = 10 and k£ = 0.1, 0.3, 0.6, 1 and 3. From this figure, it
follows that when k gets smaller towards to zero, approximation is better than others.

T T T T T T
0 0.2 0.4 0.6 0.8 1
x

— k=0.1 k=0.3 — k=0.6 k=1 — k=3

function

Figure 3. Approximation of the operators P< ) forn =10 and kK =0.1, 0.3, 0.6, 1, 3

Now we consider a Kantorovich-Stancu modification of Lupag type operators (2.1) as
follows

m+ta+1
n+pg+1
o n+B+1 &
TL]C m=0 m+a
n-‘rg-&-l

where «, 3,k are nonnegative real numbers and 0 < a < 5. In the case of k = 0, the
operators (2.5) reduce to the Kantorovich-Stancu modification of Bernstein operators [8].
For k = 1, (2.5) gives the special case s = 2 = 0 of Kantorovich type Lupas-Stancu
operators given in [31]. For k = 1 and o = 8 = 0, these operators lead to the Kantorovich

modification of the operators P< ) (f;x) given by (1.7).

In this section, we deal with the approximation properties of the operators Ky (@B for

the case k > 0. Taking into account the results given for the operators Pn< ) in Lemma
2.1, we can give the next lemma.

Lemma 2.9. Letn € N, k > 0. Then for the operators K,(la’ﬁ’k) defined by (2.5), we have
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K,(La’ﬁ’k) (eg;x) =1,

nr n 20+ 1
n+p8+1 2(n—i—,6’+1)7

KW (e ) =

(WBE) (oo ) — n? o  k+1 B 200+ 1)n (a+1)° —a?
KO ) = g 4 e O G S AP
KB (o) (n —1)(n — 2)n323 3n% (n—1) (34 2a +2k)n+ 2 (1 + 2a) k) 22
" P T B 1P (k) (n+ 2k) 2(n+ B+ 1) (n+k) (n + 2k)

(4(1+3a(1+a))k2n+6k (2 + &k + a5 + 3a + 2k))n?
+ 3
2(n+B8+1)° (n+k)(n+2k)
(7—{—6042—|—6a(2—i—k:)—|—k(9—|—4k))n3>:1: 403 + 602 + 4o+ 1
2(n+ B+ 1) (n+k)(n+ 2k) 4(n+p+1)°

)

(n—1)(n —2)(n — 3)ntz*
(n+ B+ 1)* (n+ k)(n + 2k)(n + 3k)
n 2n3 (n—1) (n —2) (4 +2a+ 3k)n + 3 (1 + 2a) k) 23
(n—+ B+ 1)* (n+ k) (n+ 2k)(n+ 3k)
N (-12 (1+3a(1 + a)) k®n? + k(=27 — 5k + 60(—11 4 a(=5 + 6k)))n?
(n+ 84 1)* (n+ k)(n + 2k)(n + 3k)
3(=5—2a8+a)+k+2a(9 +5a)k + 2(1 + 6a)k?) n?
(n+ B84+ 1)* (n+ k)(n + 2k)(n + 3k)
(15 4+ 602 + 6a(3 + 2k) + k(24 + 11k)) n® | ,
(n+ B+ )% (n+ k)(n+ 2k)(n + 3k) ) !
6(1 + 2a(2 + a(3 + 2a)))k3n + k2(23 + 12k)n?
( (n+ 6+ 1)* (n+ k)(n + 2k)(n + 3k)
k2(2a(40 + 51a + 2202 + 18(1 + a)k))n?
(n+ 84 1)* (n+ k)(n + 2k)(n + 3k)
3k(7 + 22a + 2202 + 83 + 9k + 22ak + 1002k + 4k? + 8ak?)n?
(n+ B+ 1)* (n+ k)(n+ 2k)(n + 3k)
(6 4 20(7 + 2a(3 + @) + 15k + 6 (3 + )k + 8(2 + )k + 6k) n4>
+ 1 T
(n+B8+1)" (n+k)(n+ 2k)(n+ 3k)
5ot + 1003 4 1002 + 5a + 1
5(n+pB+1)" '

KPP0 (eg;) =
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(%)

Proof. By recalling the moments of Pni
complete the proof. For f () = e (t), we have

which are indicated in Lemma 2.1, we can easily

n+B+1 &
’I’L,k m=0

_nrAEls < 77; ) () e (1= 1),y (@)

(n)mk m=0

1
For the case f (t) = ey (t), it follows

m+ta+1
n+p+1

Kr(ba’ﬁ’k) (e1;2) = Lﬁﬂ Z ( , (nx)m,k (n— ”x)nfmk tdt

(n)n,k m=0 m

n+p+1

)
)

S

TL,]C m=0

(m—l—a—|—1)2—(m—i—a)2>

(nx)m,k (n - nx)nfm,k ( <n + B8+ 1)2

= 20{+_1 L Y " nx n—na
SETC e EavTe s DY (i) [ MCEE

m=0
b 3 (1) 0 (2= 1) ()
nx n —nc
n+pB+1(n),, s\ m m.k n—mpk \
n (& 20+1 (k)
— P n P n
nr Bk em) gy Pl (o)
nT 20+1

3
Taking into account the values of Pn};> (es;.) (1 =0,1,2), we can write

m+4a+1
n n+p+1

n+p8+1
Kff’ﬁ’k) (eg;) = (n/)B Z ( :1 ) (nx)mk (n— nm)nfm,k / t2dt
TL,k m=0

m—+a

ntp+1
= ! . ny n—ne m -+ « 3
_3(n+ﬁ+1)2(n)nkn§0( )( e g (ot 1)
1 n
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( ~(n
3(n+8+1)° Wy mzo< m ) (&) (=12
n? £ « n
- P} >( 2; %) (2o +1) o (e1;)

1% —ad (k
et Ve bl i)
3n+pB+1)" "
B n? 9  k+1 (2a+1)n (a+1)*—a3
=— + z(l—x) 5T 5
(n+B8+1) n+k (n+p+1) 3(n+p5+1)
The proof for f(t) =e; (t), i = 3,4 is quite similar to others, hence the results are given
as follows

e
i n+B8+1 <[ n
Kw(?,a’& ) (63; SU) = (’I’L) Z m (nx)m,k (TL - nm)n—m,k tgdt
n,k’ m=0 m+a
n+pB+1
1

- 4n+pB+1)° {4”3]315,%) (e3;2) + 6 (2a + 1) ﬁpﬁ) (e9; 7)

+4 (3a2 + 3a + 1) nPrf’,;> (e1;2) + ((a + 1)4 — a4) Pn<i,i;> (eo; :c)}

m-+4a+1
n+pg+1

K7(la,6,k) (es;2) = LM Z ( n > (nx)m’k (n— nx)n—m,k / tAdt

(n)n,k m=o \ " mia
n+p+1
= ;4 {5n4P7§f1;> (es;2) +10 (200 4 1) ”3P7§%> (e3;7)
5(n+B+1) 7

+10 (3a2 + 3a + 1) n2pin) (ea;
n.k 2,$)
k k
+5 (4a3 + 6a% + 4a + 1) nPTS’,;) (e1;) + ((a +1)° - a5) Pn<77,;> (eo; x)} .

k
By substituting the values of P<’l;> (es5.) (1=0,1,2,3,4), we obtain the desired results. [

n,

Corollary 2.10. Letn € N, k > 0. Then the central moments of the operators Kff‘ﬁ”“)
are given by

(@Bk) (o _ .oy 2o+l — B+]1

K e w’x)_2(n+ﬁ+1) ntpB+1

(@B8) (0 — 2. 2) — 1 (k1) )
K09 (e - 2) ,m)(HBH)Q{m a:)( e = (3D

+(ﬁ+1)(ﬁ—2a)x+(a+1)3a3},

3
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Moreover K,(la"g’k) ((61 — x)4 : ac) =0 (#) as n — oo.

Proof. By exploiting the previous results and doing some simple computations, we com-
plete the proof of the corollary. O

Lemma 2.11. Forn € N and k > 0, we have
K00 ((e1 = )5 ) < €27,

3
where 570;,/: = 7n+é+l {% + B+ 2a+ 7(%'1; —a’ } )
Proof. From Corollary 2.10, it follows
1 n?(k+1)
K@t (o —?in) = — - Ly (PEED gy
S (@ —a)sn) = o e ) | 6
+1)° —a®
+ (1) (B—20)a+ 2 ; O‘}
1 (B+1) (a+1)°—a?
— < (k+1 1-— —_— 2 -
n+5+1{( Fhel o)+ Ty B 2e) e+ o e
1 (a+1)7°—a?
< —(k+1 1-— 2 —_—
_n+5+1{( +Dz(l—2)+(8+2a)+ 3
1 kE+1 (a+1)°—a
< 2 —_— .
—n+5+1{ g Fhf2at 3
O
Corollary 2.12. By using the results in Corollary 2.10, we get the following limit relations
1
nangO nK@PR) (¢ — zix) = o+ 3~ (B+1)x, (2.6)
Jim nJ (B ((61 —)?; a:) =k+1Dz(l-2x), (2.7)
nhﬁngo n2 K@k ((61 —xz)! ;x) =3(k+1)*22(1-2)%. (2.8)

2.1. Convergence properties of K(*/%F)
Theorem 2.13. Letn € N, k > 0. Then for every f € C'[0,1], we have
3 (a7ﬂ7k) . f—
Jim K0P (fix) = f (2) (2.9)
uniformly in [0,1].
Proof. Making use of the results in Lemma 2.9, we deduce that
Jim KO0 (eit); 2) = ei(w) , 1=0,1,2

uniformly in [0, 1] . According to Korovkin’s theorem, one can easily get the desired result.
O

Now, we give the theorems for the rates of convergence of the operators by virtue of
the classical modulus of continuity given by (2.2).

Theorem 2.14. Let n € N, k > 0. Then for every f € C[0,1], we have the following
result

\K&ﬁ@<ﬁxw—f@ﬂs2w<ﬁ¢K#ﬂ@(wl—meJ), (2.10)

where w (f;.) is modulus of continuity defined by (2.2).
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Proof. Taking into consideration [34, p. 1196, Theorem 1], we obtain the desired result
easily. O

Theorem 2.15. If f € C'[0,1], then

[K@PR (f30) = £ (@)] < [l [ (@) + 20 w (15 v/7)
where v = K2 (e1 —x;2) and vy = KPR ((61 —z)%; x) .
Proof. The proof follows directly by applying the result in [7, p. 268, Theorem 5.1.2].
Hence the details are omitted. ([l
Theorem 2.16. Let f € C'[0,1]. Then for any z € (0,1) at which f’, f" exist, we have

Jim n [KED (F10) — £ @)] = 5 (2041 —2(5+1)2) £@) + b+ 1) w (1 - 2) ()],
(2.11)

Proof. Let x € [0,1]. According to Taylor’s series expansion of the function f at the
point z, we can write

f(s)=f(@) + f(2)(s —2) + %f"(l‘)(s —2)* +1(s,x)(s — x)°, (2.12)
where n(s, z) € C[0, 1] which satisfies
lim n(s,x) =0. (2.13)
Employing the operators Kff’ﬁ k) to the both sides of (2.12) and taking limit for n — oo,
it follows that
K@) (fiz) = £ (2)) = f/(x) lim nKPP (s 2;2)

n—oo

lim n (
n—oo

—}—ff”( ) hm nK 5k ((s—x)Z;x>

+ lim nEK(PH (n(s,2)(s - 2)%a)

n—oo

Applying Cauchy-Schwarz inequality to the last term nE Pk (n(s,x)(s — x)%z), we
have
nE (n(s,2)(s = a)w) < VKD (s i) m KD (- 2. (210
Taking into account
. 2 _
;l_fgn (S,IE) - Oa (215)
where 7%(s,z) € C[0,1] and according to Theorem 2.13, we can write
Jim_ K(@Bk) (77 (5,1:);:5) = n*(x,x) = 0. (2.16)

Moreover, considering the limit relation which is given by (2.8), we have

lim n2K @4k ((61 —xz)! ;:E) =3(k+1)*22(1—-2)%

n—oo
Combining (2.8), (2.14) and (2.16) , we obtain the following result
nh_}ngo nI (B (n(s, x)(s — x)2;x> =0.
Finally, by (2.6) and (2.7) we arrive at

tim (KO (Fi2) — f (1)) = £ (2ot 1= 28+ 1)) /(@) + (k+ D (1— ) /()]

n—oo

which is the required result. ]
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Remark 2.17. If we get « = f = 0 and £k = 1 in Theorem 2.16, we obtain the
(%)

Voronovskaja type theorem for the operators D:; given by Agrawal et al. [6].

Now, we continue by analizing the approximation properties of the operators K,(La’ﬁ k) with
some examples.

Example 2.18. Let f (z) = 2®sin (47z), n = 50, @ = 0.2, B = 0.5 and k = 0.4. Behaviours

1
of the approximation for the modified operators Kfla’ﬁ ’k), the operators D:,(") which were

given in [6] and the classical Kantorovich operators K,, are illustrated in Figure 4. We
choose the same function in [6] for the better comparison and in Figure 4, one can see

that for £k = 0.4 , the operators KT(LO"B k) provide a better approximation than the ope-

1
rators DZ(”) to the function f but the classical Kantorovich operators K, have better
approximation than the others.

Example 2.19. Consider f (z) = 2z cos (3rz®) and k = 0.3. Figure 5 presents the ap-

proximation process of the operators KT(La’ﬁ k) for the special choices of n = 30,90, 150,
a =2 and B = 3. It is clearly seen that as the value of n increases, the approximation of

the operators KT(LO"ﬁ’k) is getting better.

Example 2.20. Let f(z) = 2° (x — i) sin (rz). Figure 6 shows the convergence of

KT(LO"B’IC) to the function f for n = 20, k = 0.3, 0.6, 0.9, 1.2, 1.5 and a = = 1. As

the value of k decreases towards to zero, the approximation of the operators Ky(fv’ﬂ k) i
getting better.

w(L
Figure 4. Convergence of Kr(ta’@k), Dn(") and K, to the function f for n = 50,

a=0.2,8=05and k=0.4
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Figure 5. Approximation of the operators Kfla’ﬁ’k) fora=2 =3, k=03
and n = 30,90, 150

0.12+

0.08-

0.06-

0.04+

0.02+

y T T T
0 0.2 04 0.6 0.8 1
x

[— k=03 k=0.6 —— k=0.9 k=12 — k=15

Funclion]

Figure 6. Approximation of the operators K,(la’ﬂ’k) for n =20, = f =1 and
k=10.3, 06, 0.9, 1.2, 1.5

3. Bivariate generalization of the Lupas-Kantorovich-Stancu type opera-
tors by means of Pochhammer k-symbol

In 2016, Agrawal et al. [6] introduced bivariate Kantorovich variant of the operators
given by Lupag and Lupag [19], and they investigated the rate of convergence by means
of the modulus of continuity and proved a Voronovskaja type asymptotic theorem for the
bivariate Lupas-Kantorovich operators. In the same year, Agrawal et al. [5] constructed
the bivariate Lupag-Durrmeyer operators and they examined some approximation pro-
perties of these operators using Peetre’s K-functional and also discussed the asymptotic
behaviour of the operators. In 2018, inspired by the concept of Ozarslan and Duman [30],
Kajla and Miclaus [14] generalized the Lupag-Kantorovich type operators based on Polya
distribution. They gave the theorem about the degree of approximation and discussed a
Voronovskaja type theorem for the bivariate operators. Subsequently, Agrawal and Gupta
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[3] introduced the Kantorovich variant of g-analogue of the Stancu operators defined by
Nowak [27] and they also studied bivariate operators in their work. Recently, Rahman et
al. [31] have presented the bivariate extension of Kantorovich variant of Lupag operators
based on Polya distribution with shifted knots «;, G;, ¢ = 1,2 and have investigated some
aproximation properties of these operators.

In this section, we present bivariate Lupas Kantorovich-Stancu type operators via
Pochhammer k-symbol mainly motivated by the paper [6]. Also we give rates of con-
vergence via modulus of continuity and the Lipschitz class functions for the bivariate case
and we prove a Voronovskaja type theorem for these operators. Finally, we try to illustrate
the approximation process with some graphics.

Let J? = J x J where J = [0,1] and C (J?) be the space of all real-valued continuous
functions on J? endowed with the norm

9llc(2) = sup |g (z,y)].
zyeJ

dlg 0O'g

: - f
oxt’ Oyt o

Let C? (J?%) be the space of all continuous functions g € C (J?) such that
i = 1,2 belong to C (J?). The norm of g € C? (J?) is defined by

d'g
oyt

9 .

0'g

HQHC’Q(ﬂ) = ”gHC(ﬂ) + Z H&L-Z
i=1

C(J2) ‘ C(J2)

We construct Lupag-Kantorovich-Stancu type operators in the bivariate case as follows

(n1+B1+1)(n2 + B2+ 1)

(7)1 (72)

ni no
ni no
X Z Z ( my ) ( meo > (nlx)mhiﬁ (n1 7n1$)n1—m1,k1

mi+ai+1 motag+1
n1+B81+1 no+Bo+1

Ké?}ﬁgmﬂlﬁ%khb) (fiz,y) =

(3.1)

X (nQy)mQ,k'Q (n2 - n2y)n27m2,k2 / / f (t7 S) dtds?

mitay _mgtag
n1+B1+1 no+B2+1

where ni,ns € N, k1,ke > 0 and ag, as, 81, F2 are nonnegative real numbers provided
0<a; <ay < B < B

For the simplicity we use the notation Kfﬁ’%k) instead of K,(ff}ﬁgz’ﬂ vBzkuk) pich is
given as

¢ (a1,02,81,82,k1,k2) (f;x,y) = K (a,B.k) (fiz,y),

ni,ng ni,n2
where a = (a1, a2), B = (B1,582), k= (k1,k2).

It is obvious that the extension K,S‘f;ﬁ;k) given above coincides with the operators in [6]
when k; = 1 and «; = 0, B8; = 0 for i« = 1,2. Also, the special case ay = 85 = 0 of the
operators in [31] gives the operators Ké‘f;ﬁ;l) .

First, we state some basic lemmas which are required to prove approximation properties

of K,(Ii’%k). Let us denote the monomials e; ; (z,y) = 'y’ for (i,j) € Ny x No.
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Lemma 3.1. Let ni,ns € N and ki, ks > 0. From Lemma 2.9, for the operators Kfﬁ 7’?2’ )

defined by (3.1), we have

KT(L?:gz’k) (eo0; z,y) = 1,

200 + 1 nix
K (.B.k) . —
n1,n2 (610,93,.@) 2(7?,1 +Bl + 1) n +/31 + 1’
200 + 1 nay
K (a.B.k) . _
ni,n2 (8017$7y) 2(n2 +ﬁ2 + 1) no +,62 4 17
2 k141
(B k) ) _ . m [ 2 1 ( 1 )}
s (e 0 = 0 T [P 0D

(201 + 1)y (a1 +1)* — o3
(m+B+1)° 3(m+pi+1)"

n3

ko +1
K259 (eqp; 2, =[2+ 1- ( 2 ﬂ
s (eo2; 2, ) (ot Bo £ 1 v +y(l—y) s+ kg
(2ag + 1) noy N (g +1)° —a2
(n2+ B2+ 1)°  3(na+ o+ 1)

Corollary 3.2. Let ny,ne € N and ki,ko > 0. From Lemma 3.1, the central moments of

the operators Ky(n’ﬁé ) are given by

K80 (e19 — w52, y) = 5 (n?o—t ;11_1_ - n(lﬁizll)fr
K59 (e —wiwy) = 5 (njof 5t D n(ffg;)fl,
Ko ((610 —x)%; x,y) — W {x (1—2) (W i+ 1)2>
+ (B +1) (B 201) z + (Oélﬂg)—al}
K5 (e = 9)s2,y) = (nz+ﬁlz+1)2 {y (1-y) (% — (B2t 1)2>
+ <52+1>(52—2a2>y+(0‘2+13>—%}.

Lemma 3.3. Let ny,n2 € N and ki, ko > 0. Then for every f € C (J?),

lim KW (ei52,y) = ey,

for (i,§) € {(0,0),(0,1),(1,0)} and

(o, B.k) . —
n171n12Hi>oo K”l ng (620 + €o02; 7, y) = €20 + €02

uniformly on J%, J =1[0,1].
Theorem 3.4. Let ny,na € N and ki, ko > 0. Then for every f € C (J?), we have

lim Bk (f) — fH — 0. (3.2)

ni,ng—>00 H ni,n

Proof. According to the Korovkin’s theorem for the bivariate case given in [36], by ap-
plying the results given in Lemma 3.3, we get the desired result. g
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For any function f € C (J?), the complete modulus of continuity for bivariate case is
defined as follows:

5 (£38) =sup {I£ (19) = £ (0.9)]: (69 (@9) € 72 and (¢~ 2)? + (5~ )" < 6}

(3.3)

Moreover, the partial moduli of continuity of f with respect to z and y is given by
wi (f;0) =sup{|f (z1,y) = f(z2,y)[ 1y € J and |z1 — 22| <}, (3-4)
wa (f;0) =sup{[f (z,y1) = f (z,y2)| : @ € J and |y1 — ya| < 6} (3.5)

Theorem 3.5. Let ni,n2 € N and ki, ko > 0. Then for every f € C (J?) for all (z,y) €
J2, we have the following result

KR () = /() <2w< el + 53?,;52)),

where

3 3
T kit l g g, (et D —ad)
Sniks _ni+ﬁi+1( T B 200+ . Li=1,2  (3.6)

and @ (f;.) is the complete modulus of continuity defined by (3.3).

Proof. By the definition of the operators (3.1), the complete modulus of continuity (3.3)
and Cauchy-Schwarz inequality, it follows

‘Kfﬁ,’ﬁ;k) (f;2,y) — [ (=, y)’
< KB (1f (t,s) — f(z,9)];2,y)

n1,m2
—w(fa n1,n2) +5n1,n2 ni,ne (t_x) +(S_y) LY
~ 1 1/2
<@ (f;0n1ns) (1 + — (Kf@‘f‘;ﬁg’k) ((t - ;p)2 + (s — y)2 ;:c,y)) )
n1,m2
1/2
<5 (3 Gnns) (1 b (KO (= 2)? ) + K04 (s = y) 1)) ) .

ni,n2

From Lemma 2.11, we find that

K& (Fr2,) = [ (2,9)]

a1,B1) | claz,B2)\ /2
<£7(Llylk'11 + éT(L22l€22 ) ) )

- 1
<w (f7 6n1,n2) (1 + 5

ni,ng
where
3 3
(a1.,81) _ 1 ki+1 5 (a1 +1)" — g
§n1, n1+,61+1< 4 +/81+ o + 3 y
3 3
(azyﬁz _ 1 ko +1 9 (aQ + 1) — a2
Taking

¢ (a1,61) a2 B2)
m,n2 n1,k1 n2 ko

we reach the required result. ]



Lupas type operators based on Polya distribution with Pochhammer k-symbol 355

Theorem 3.6. Let ny,n2 € N and ki, ko > 0. Then for every f € C (J?) for all (z,y) €
J?, we have the following result

\Ké?;ﬁﬁ<f;x,y>—f<x,y>\s2<wl (f; 5533,;?”>+wz (f; 5;3?,;§2>>),

where wy (f;.) and we (f;.) are the partial moduli of continuity of f defined by (3.4) and

(awﬁz)

(3.5) , respectively and &, is as in Theorem 3.5.

Proof. From (3.1) and the Cauchy Schwarz inequality, we can easily obtain
[KS9 (Fr2,9) — £ (@,9)| < K (1F () = £ (@) 52,0)
< Kt (If (t,8) = £ ()l soy) + KB (f (Gy) = £ (@y)]52,9)
< Kt (@ (fi [t = o]) 2, p) + K (s (fils —y))i2,9)
<wr (f300) (14 5K (|t = 2l )
+wa (f;0ny) (1 + 5 L {02 Ph2) (15— y) ;y))

< wi (f;0ny) (1 + i (K,(ffl’ﬁlvkl) ((t — 1) ;a:))l/Z)

v (0) (14 58 (K225 (5 —3)) )

From Lemma 2.11,
1 o 1/2
RIE9 (fia) = 1 )] <o (7380 (14 5 (55) )
n1
. 1 (az,82)\ 1/2
Featrion) (14 5 (6532) ).

Taking d,, = \/57(10:,11;?1) and 6, = \/57(12"2];52), we complete the proof. O

We continue by recalling the definition of the Lipschitz class for bivariate function f. It
is known that a function f belongs to Lipys (71,72) if it satisfies

[f(ts) = f (@)l < Mt — ™ |s —y|™,

where M >0, 0 <y <1, 0 < v < 1. We now prove the rate of convergence for the
bivariate operators by virtue of the Lipschitz class.

Theorem 3.7. Let M >0, 0 <~ <1, 0<~ <1 and f € Lipy (y1,72). Then

H k) (f)—fH SM()\(al,Bl)) g (Amz,ﬂg))%”

ni,n2 ni,k1 na,ko
where )\nol“,fl = HK(a1 Puokr) ((t - )% ) Hand )\ngku = HKsz;Z’BQ’]Q) ((s - )% ) H .

Proof. Taking into account f € Lipys (71,72), this allows us to write

K82 (i) = £ (2,y)] < KB (f (1) =  (2,9)]52,9)
< MK (jt— 2™ |s =y 2,)

ni,n2

— MKé?lyﬁlyk’l) (‘t _ x’% ;x) K(Oé2w327k2) (|8 _ y‘w ;y) )

n2
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Applying the Holder’s inequality, we get
2m

K(Oél,ﬁl,kl) (60; LU))

ni

‘K(aﬁ,k) (fim,y) — f(m,y)‘ <M (Kr(lolflyﬁl,k‘l) ((t — z)? ;x))'nh(

ni,mno
2=72

x (o) (5= ) ) )7 (2P (i)

<M (/\(0617/31))771 ()\(062’;52)>772

ni,k1 na,ka

0

Theorem 3.8. Let n1,n2 € N and ki,ko > 0. If f has partial derivatives f, and f, on
J2, then for all (z,y) € J?, we have

1 1
(o H1)) 2 B2)) 2
829 () = ] < ey (V)7 + Wllony (Ve
where )\( ! Bl)and )\;Of,ﬁz) are given as in Theorem 3.7.

Proof. Slnce [ € C(J?), we can write as follows
t s
fts) = f @) = [fulws)dut [f,(@0)do (3.7)
x y

Applying K,(l?fz’k)to the both sides of (3.7), we obtain

K89 (fr2,y) = £ (2,9)]
/fv(:z,v)dv

S
< Knl’fﬁé (/f u, s)du|;x y) +K7(L?’£2k) (
y

With the help of the inequalities which are given as follows

t S
/fu (u,s)du /fv (x,v)dv
x Yy
we can write
K82 (i) = £ (2,0)]
< ol KD (1t = al52) + 1y lloee K254 (1s — yl5y).

By considering Cauchy Schwarz inequality, from Corollary 3.2, we can deduce the desired
result as

K29 (fiay) = £ (@9)] < Wl o (KE0 (6= 2)%52))F (KG9 (i)
ey (K250 (5 = )19))? (K225 (eqs )

3 1
< ellogsy (Net”)* + Wulloe (M)’

< fllege Is = vl

< [[fellos2) It — 2| and

N

Theorem 3.9. For f € C?(J?), we have
lim n (K29 (F52,) - f(2,9))

n—oo

- <a1+;— (ﬁ1+1)x> fo (2, y) + (a2+;—(52+1)y) fy (z,y)

+%(kﬁrl)x(l—x)fm(x,w+%(kz+1)y(1—y)fyy(fcay),
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uniformly on J2.
Proof. Let (x,y) € J? be arbitrary. In view of the Taylor’s series expansion of the
function f at the point (z,y), we obtain

fts) = f(zy)+ fo(z,y) (E—2) + fy (z,9) (s —y)
5 (foa (220) (0= 2 4 26y (2,) (£ = 2) (5 =)

() (s = 9)?) + Qs y) /(- 2) 4 (s — )", (3.8)
for (t,s) € J? where Q (¢, s;z,y) € C (J?) and  lim Q(¢,s;2,y) = 0.
(t,5)—(z,y)

Applying the operators Kq(ﬁ;ﬁ *) o the both sides of (3.8), it follows

1 (047,3,1() . —
Jim n (KPR (fr2,9) = (2,9))
= fo (2,y) lim nK M) (8 —2)52) + fy (2,y) lm nK 0200 ((s —y) 5y)

1 , o . o
+ o (@) lim nEK PR (= 2) ) + foy (2,y) Jim nEKSGP9 (- 2) (s = ) se.y)
1 , X
+ 3y (@,y) Jim nE S5 (s =) cy)

+ lim. nK Pk <Q (t,s;2,y) \/(t — ) 4+ (s —y)h, y) . (3.9)

n,n
Using the Cauchy Schwarz inequality to the last term of the right side of the equation
(3.9), we reach

(an,f‘ﬁB’k) (Q (t,s;2,y) \/(t —o)t+ (s —y)he, y)>

< (K2 (92 (¢, s32,0) 52, y))% (RGP (=)' + (s —9)" s 2.9))?

< (K2 (92 (¢, s32,0) 52, y))% (2R Ak (¢ = 2)ts2) + 2K 228 (s - y)tsy))
In view of the Theorem 3.4, we can write

lim K (%P <92 (t,s;2,y) ;w,y) = Q% (z,y;7,y) =0 (3.10)

n—o0

uniformly, since

lim Q¢ s;z,y)=0 3.11
e O y) (3.11)

uniformly on J2. Using the equation (3.10) and the limit relations which are given by

Corollary 2.12, we have
lim nk(®AK) (Q (t,s;2,9) \/(t o)+ (s—y)h :U,y) =0.

n—00 n,n
In view of Corollary 2.12 again, we obtain
Tim nE SR (- 2) (s —y)sa,y) = lim nE AR (1 — ) K202 (s ) = 0

and we thus find that
lim n (K29 (F52,) - f(2,9))

n—oo

- <a1+;— (ﬁ1+1)x> fo (2, y) + (a2+;—(52+1)y) fy (z,y)

+%(kﬁrl)x(l—x)fm(x,w+%(kz+1)y(1—y)fyy(fcay),

N|=
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which completes the proof. O
Remark 3.10. The case a1 = ag = 1 = B2 = 0, k1 = ko = 1 in Theorem 3.9 presents

(o)

the Voronovskaja type theorem for the bivariate operators Dz,n given by Agrawal et
al. [6].

Example 3.11. Let f (z,5) = 222y cos (5”7”’> ,mi=n3 =20,k =k =02, a1 =ay =

0.3 and 81 = B2 = 0.5. The convergence of the bivariate operators K,(ﬁjgék) (green) and

WERET
Dm(Z; */ (yellow) in [6] to the function f (red) is demonstrated in Figure 7. It can be

noted that for k1 = ko = 0.2, the approximation of the operators Kr(ff,’gz’k) is better than

oL, L
nymny

the operators Dy \n, ) to the function f.

Example 3.12. Consider f (z,y) = 2zcos(3n (z+y)), k1 = k2 =04, a1 = ag = 0.3
and B1 = B2 = 0.6. Figure 8 presents the approximation process of the bivariate operators

K,(f,’%k) to the function f (red) for ny = ny = 10, 20, 40 (yellow, green, blue, respectively).

It is clearly seen that as the values of ni, n9 increase, the approximation of the operators

K,(ff,’gék) is getting better.

Example 3.13. Let f (z,y) = 72° (;1; - i) sin (2my) (red). Figure 9 shows the convergence
of Kq(l?fz’k) to the function f for ny =ne =10, a1 =as =p1 =P =0 and k1 = kg =
0.3, 0.9, 1.2 (yellow, green, blue, respectively). As the values of ki, ko decrease towards

to zero, the approximation of the bivariate operators Kfﬁ’fék) is getting better.

1 {}—-
os]
(J.();
0

0.2+

-0.2

(o nlng

* 1 1
Figure 7. Convergence of Km;fgk) and Dnl(,n2 ) to the function f
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Figure 8. Approximation of the operators Kﬁ?y’fz’k) for ny = ny = 10, 20, 40

Y060 T T 0L 04 06 08
X

Figure 9. Approximation of the operators Kr(l(f,’f;k) for k1, ke = 0.3, 0.9, 1.2
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